
The Case For Secure Delegation
Dmitry Kogan, Henri Stern, Ashley Tolbert, David Mazières, and Keith Winstein

Stanford University

ABSTRACT
Today’s secure stream protocols, SSH and TLS, were de-
signed for end-to-end security and do not include a role for
semi-trusted third parties. As a result, users who wish to dele-
gate some of their authority to third parties (e.g., to run SSH
clients in the cloud, or to host websites on CDNs) rely on
insecure workarounds such as ssh-agent forwarding and Key-
less TLS. We argue that protocol designers should consider
the delegation use-case explicitly, and we propose a definition
of “secure” delegation: Before a principal agrees to delegate
its authority, a system should provide it with secure advance
notice of who will do what to whom under that authority.

We developed Guardian Agent, a delegation system for
the SSH protocol that, unlike ssh-agent forwarding, allows
the user to control which delegate machines can run which
commands on which servers. We were able to implement
Guardian Agent in a way that remains fully compatible with
existing SSH servers, by “handing over” a secure connection
to the delegate once it has been set up. Additionally, we use
this work to suggest a path for secure delegation on the Web.

1 INTRODUCTION
Internet users often want to authorize untrusted machines
to perform some operation on their behalf without giving
them their credentials. For example, consider a developer
who wants to pull the latest version of her private GitLab
repository to her virtual machine running in Amazon’s cloud.
To do that, she must allow the Git client on the Amazon
machine to authenticate to GitLab on her behalf. Or consider
a bank that wants to serve its home page from a content
delivery network (CDN) without sharing the private key of
the https://www.bank.com certificate with all the edge servers.

Neither the Secure Shell protocol (SSH), used as a secure
transport for Git and other services, nor the Transport Layer
Security protocol (TLS), used to secure the Web, allows a
user to do this securely. In our view, the fear of introducing a
man-in-the-middle vulnerability has led protocol designers to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets-XVI, November 30–December 1, 2017, Palo Alto, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to
the Association for Computing Machinery.
ACM ISBN 978-1-4503-5569-8/17/11. . . $15.00
https://doi.org/10.1145/3152434.3152444

Figure 1: ssh-agent forwarding vs. Guardian Agent

Allow use of key /home/alice/.ssh/id_rsa?
Key fingerprint SHA256:qwLY8d0kKayuxPNR7HDa8M43eIZ65l/
TKJyzVvMICYQ.

Cancel OK

(a) Current ssh-agent forwarding: when granting permission, the user
doesn’t know the identity of the delegate, the commands the delegate will
run, or the server it will run them on.

Allow alice@aws to run 'git-fetch-pack alice/private-repo'
on git@gitlab.com?

Cancel OK

(b) With Guardian Agent, the user has explicit control over the who, what,
and to whom of the delegated authority, and can approve each execution
individually (the when). The system works with existing OpenSSH servers.

create stream protocols tailored solely for secure end-to-end
communication between two parties and which therefore lack
first-class support for delegation.

The result: this void has been filled by an ecosystem of
workarounds such as ssh-agent forwarding [13], shared cer-
tificates [12] and Keyless TLS [18]. Without support from the
underlying protocols, these workarounds prove themselves
to be insecure. For example, ssh-agent forwarding exposes
the user’s private keys to unauthenticated challenges without
the ability to know which machine is asking to authenticate,
what server it wants to authenticate to, and what command it
proposes to run [4]. Workarounds that enable delegation of
secure websites to CDNs are also vulnerable [6, 12].

We first describe what we mean by “secure” delegation.
Intuitively, most acts of delegation can be captured by a state-
ment of the form “The principal grants the delegate permis-
sion to perform some operation on a target.” A delegation
mechanism should capture that intent rather than ask the user
to sign a “blank check.” We distill this requirement:

Secure Delegation

Before allowing a third party to act under the principal’s
credentials, the principal or its agent should be able to
verify and enforce: who is the delegate, what command
or operation the delegate can issue to whom, and when
(e.g., a single use or for a period of time).

We believe this principle ought to be uncontroversial, but
while delegation is common in both the SSH and TLS settings,
we are unaware of “secure delegation” mechanisms for either.

https://www.bank.com
https://doi.org/10.1145/3152434.3152444

Figure 2: Two common delegation scenarios

$ ssh

CDN

Principal Delegate Relying Party

SSH

TLS

In §2 we discuss existing delegation solutions for SSH and
TLS in light of this principle.

Next, we developed Guardian Agent, a delegation system
for SSH that obeys this requirement (Figure 1). Our scheme
works by first having the user’s machine establish an authen-
ticated SSH connection with the server, “locking” it to a
specific command, and then handing the connection off to the
untrusted delegate so it can complete the operation. Guardian
Agent is open-source software1 and is actively used at our
institution. Guardian Agent installs on the user’s machine and
the delegate; it requires no changes to OpenSSH servers.

In summary, this paper makes the following contributions:
(1) we point to the lack of secure delegation as a problem

common to both major secure stream protocols used
today, SSH and TLS,

(2) we propose a definition of secure delegation, arguing
that the principal should control who, under its author-
ity, can do what to whom,

(3) we describe and evaluate Guardian Agent, a secure
delegation scheme for SSH, and

(4) we present ideas on how secure delegation can be inte-
grated into secure stream protocols more generally.

2 DELEGATION TODAY
Delegation was originally studied in the context of distributed
systems [10, 17], and various formal models [1] and architec-
ture designs [9, 21] have been proposed.

In this section, we present the current state of delegation
for two common protocols (Figure 2): delegation of user
credentials to untrusted SSH clients, and delegation by web
servers to content distribution networks (CDNs).

2.1 SSH
Today’s workflows often include work across multiple ma-
chines, trusted and untrusted. For instance, a user may want
to “git pull” or “git push” from a cloud server that belongs to
a third-party company. While these use-cases have become
increasingly common in the Internet age, and the notion of a

1Available at https://github.com/StanfordSNR/guardian-agent.

user’s identity can no longer be tied to a physical machine,
users are left without secure options to integrate secure dele-
gation into their SSH workflows.

A naïve solution for delegation to a client machine is for
the user to simply grant their credentials to it. Storing a private
key on an untrusted machine allows any root user to read from
disk or memory and reap the user’s credentials. Even if the
private key is secured by a passphrase, a root user could log
the user’s keystrokes or alter the binary that decrypts the key.2

Further, copying credentials may be impossible if the user’s
private key is stored on a hardware security module.

Instead, the dominant system today is ssh-agent forwarding.
SSH provides a program called ssh-agent that safeguards
users’ credentials on a local machine. The ssh-agent signs
challenges from ssh processes on the local machine (allow-
ing them to authenticate to remote servers as the user) without
exposing the decrypted private key to other processes. The
ssh-agent does not learn which server the process is authen-
ticating to, or which command it intends to execute; this is
acceptable because these local processes are assumed to be
under the user’s control.

However, SSH also provides an option (ssh -A) to for-
ward ssh-agent requests from a remote machine (a delegate)
back to a local ssh-agent. A process running on the delegate
can then issue opaque signing requests to the user’s ssh-agent,
which signs them as if they came from a local ssh process.

Unfortunately, ssh-agent forwarding is not a secure delega-
tion protocol. By enabling it, users are allowing remote ma-
chines (delegates) to authenticate as the user, without knowing
which remote machine is asking, what command it will run,
and what server it will run it on. A delegate that seems to be
running an innocuous command (e.g., “git pull” from GitLab)
could, instead, connect to a different server that the user has
access to and add a rogue key to the user’s authorized_keys
file. The user and ssh-agent will not know the difference be-
cause the agent signs only an opaque challenge—essentially
a blank check.

2.2 HTTPS Delegation to CDNs
The Transport Layer Security protocol (TLS) enables secure
websites by providing an authenticated secure stream to the
server and the client, with the Hypertext Transport Protocol
(HTTP) usually used on top of it (HTTPS). Although TLS
supports mutual authentication, it is mostly used today with
one-sided server authentication, using the X.509 public key
certificate infrastructure which binds domain names to public
keys. When a user visits a website using an HTTPS connec-
tion, the server presents it with a certificate for the domain
name requested by the user. The client then chooses a random
secret key and encrypts it with the public key in the certificate.

2Users can mitigate the risk of key compromise if they have cooperation
from the server—for example, by creating finer-grained accounts with limited
permissions, and placing keys to just those limited roles on the third-party ma-
chine. But even such mechanisms do not allow users to learn what operations
are done in their names.

https://github.com/StanfordSNR/guardian-agent

This ensures that only the legitimate owner of the domain
can decrypt the secret, thus establishing an authenticated en-
crypted tunnel between the browser and website.

However, current web infrastructure often has a beneficial
use for a man-in-the-middle. A Content Distribution Network
(CDN) is usually transparent to the browser, and is imple-
mented by routing the browser’s request to the nearest CDN
edge server. The edge server serves the locally stored parts of
the website directly, and proxies other requests.

What happens when a CDN needs to handle the contents of
an HTTPS website? To establish an authenticated the tunnel
between the browser and the CDN, the origin website needs
to delegate its credentials to the CDN. Let us examine this
scenario through the lens of our secure delegation principle.
Our claim is that for the delegation to be secure, the origin
website must be able to verify the identity of the CDN (the
who) and the integrity of the content served by the CDN (the
what). It should also be able to revoke the delegation (the
when) at will, e.g., when an edge server is compromised. As
CDNs usually serve the public contents of the website, the
origin usually does not need to restrict the clients to which the
CDN serves the data (the to whom), although one can also
consider scenarios where client authentication is required.

Several approaches are used in this setting [12], none satis-
fying our notion of secure delegation:

(1) In the past, CDNs would host only HTTP content.
HTTPS content would be served from the origin web-
site. Alternately, a website may host its home page
itself, while hosting less-important assets on a separate
domain for which it is willing to issue a certificate to
the CDN.

(2) Duplicating the private key to all the CDN edge servers.
Placing the key on machines across multiple sites con-
trolled by third-parties in multiple countries increases
the risk for the website owner. The origin website has
no guarantees about who is using the key and cannot
verify the integrity of the contents served on its behalf.

(3) Proxying TLS handshakes. With SSL Splitting [11],
the origin website performs the TLS handshake, after
which it sends the encryption session key to the CDN,
while keeping the data integrity key to itself [11]. It
then supplies the CDN with the data integrity tags for
individual data records. The downside of this scheme is
that it requires using separate encryption and integrity
keys and is not compatible with contemporary ciphers.

(4) In CloudFlare’s Keyless TLS [18], the origin website
provides the CDN with a decryption or signature oracle
that the CDN uses to decrypt the session pre-master
key that the browser encrypts with the public key in the
certificate. Bhargavan et al. [6] describe an attack on
this scheme in which an adversary that compromises a
single edge server can then decrypt other sessions.

3 GUARDIAN AGENT
In this section, we present our solution to the secure delega-
tion problem in SSH. Our system consists of a custom SSH
client (which runs on the delegate) and an authentication agent
(on the user’s machine). Schematically, the client requests that
the agent establishes an SSH connection to a server as the
user, in order to run a certain command. If the user approves,
the agent establishes an SSH connection to the server using
its credentials, proxied at the TCP layer by the delegate, and
executes the command at the client’s request. The client may
send or receive data directly to and from the server by asking
the agent to “hand over” the encrypted connection after the
command is locked in.

We use a trick to make this handoff easier: rather than
defining a serialization format for the entire state of an SSH
client and then transmitting that serialized state from the agent
to the client, the agent simply allows the client to re-key the
session.

An important property of our system is that it requires no
changes to the server, and can be used as a drop-in replace-
ment for existing SSH clients and SSH agents. This provides
users with increased security without waiting for changes by
SSH servers they need to interact with (e.g., GitLab).

3.1 Technical Background
The SSH protocol consists of three major components [24].

The SSH transport layer protocol [25] is the lowest-level
component. It typically runs on top of TCP/IP, and provides
higher layers with an encrypted connection that guarantees
data integrity and authenticates the server to the client.

One particular feature supported by the SSH transport layer
protocol is key re-exchange, which either party can initiate at
any time during the connection by sending an SSH_MSG_-
KEXINIT packet 3. Many SSH implementations make use of
this feature periodically. The re-exchange is processed iden-
tically to the initial key-exchange, and allows changing all
algorithms and keys. Furthermore, all encryption and com-
pression contexts are reset after a key re-exchange. The ses-
sion identifier remains unchanged throughout the connection.
The packets of the key re-exchange itself are protected by the
previously negotiated encryption and message authentication
keys, until an SSH_MSG_NEWKEYS packet brings the new
keys into effect.

The SSH authentication protocol [22] runs on top of the
SSH transport layer protocol, and its goal is to authenticate
the user to the server. Multiple authentication methods are
supported, including password and public key. The authenti-
cation takes place once per connection—immediately after
the initial key exchange. In particular, it is not repeated on
subsequent key re-exchanges.

The SSH connection protocol [23] provides higher-level
services such as interactive shells, execution of remote com-
mands, forwarded TCP/IP connections and UNIX domain

3In the SSH context, “packet” refers to protocol messages, not IP datagrams.

Figure 3: Guardian Agent connection flow

Connection Setup

Data Flow

Handoff

Agent
(on user’s machine)

Delegate
(SSH client)

Server

Get User Approval

Key Exchange

Key Exchange Reply

Key Exchange

Execution Request

Client Authentication

Command

No More Sessions

Key Exchange

Key Exchange Reply

Key Exchange
Reply

Set Session ID
and Seq. Numbers

Send Data

Send Data

sockets, etc. These are implemented as independent flow-
controlled channels, which the connection protocol multi-
plexes over the transport protocol’s encrypted stream. Within
the context of this protocol, a session is a remote execution of
a program, which may be a shell or other command (Figure 1
shows the command for a typical “git pull” operation).

The popular OpenSSH implementation provides a useful
extension to the SSH connection protocol in the form of a
no-more-sessions global request [13]. On receipt of
this request, an OpenSSH server will refuse to open future
sessions, effectively locking the connection to the commands
that have already been executed. This request is rejected by
non-OpenSSH servers.

3.2 System Architecture
Guardian Agent consists of a custom SSH client (running
on the delegate) and an authentication agent (on the user’s
machine). It operates on the following three layers.
Control Layer. When the client (on the delegate machine)
wishes to execute a command on some server under the user’s
authority, it sends a message to the agent with the username,
host and port of the server and the requested command. The
agent checks this request against its local security policy in
order to approve or deny it.

Data Transport Layer. From the perspective of the unmod-
ified server, the connection must take place over a single
uninterrupted TCP/IP connection, whether the agent (user’s
machine) or client (on the delegate) is driving the show. Fur-
thermore, the agent may not necessarily have connectivity to
the server (e.g., if the server is on the same internal network
as the client). The agent opens an SSH connection to the

server over a TCP tunnel through the client, which acts as a
TCP-level proxy. When the agent later “hands off” the SSH
connection to the client, the client continues to use the same
TCP connection to the server.

SSH transport and authentication. To enforce the security
policy, the agent initiates the SSH connection to the server, au-
thenticates as the user (using the credentials locally available
to it), and remains in control of the connection until it is safe
to hand it off to the client—which occurs after the command
has been sent and “locked in.” Although the connection is
made through a TCP tunnel provided by the delegate, before
handoff, the connection is end-to-end between the agent and
server. The delegate cannot inspect or tamper with it.

3.3 Transport Handoff
In most delegation use-cases, the delegate would like to run
a command on the server (e.g., “git pull” from a particular
repository), and send or receive data directly. The client could,
in theory, perform all data transmission through the agent, but
this is likely to be slow if it involves substantial data transfer
(§3.4). We envision the agent as running on the user’s laptop
with unknown connectivity; the user’s goal is to authorize the
delegate to speak directly to the server in a constrained way.

For this reason, after verifying the who (delegate), the
what (the command) and the to whom (the server), and after
no-more-sessions has been sent to prevent future com-
mand execution, the agent allows the delegate to take over the
rest of the connection. We call this a transport “handoff.”

When a handoff is to take place, the agent-to-server SSH
connection needs to be transformed into a client-to-server
connection. A naïve way to perform such a handoff would
have consisted of capturing the full state of the SSH connec-
tion on the agent, transferring it to the client, and restoring
it there. This state would have to include many things: the
SSH session ID, the channel IDs, flow-control windows, the
choice of the cryptographic algorithm suite, and the precise
state of each of the ciphers and MACs used. These states
are cipher-specific and are rarely exposed by current ciphers,
much less in a standardized way.

This naïve handoff would have to be explicitly supported
and implemented by each cipher, and would create a coupling
between the cipher suite used by the client and the one used
by the agent. The system would have to ensure that the agent
and server end up negotiating a choice of cryptographic al-
gorithms that is also supported by the client. This three-way
compatibility would be difficult to maintain over time.

Instead, we exploit the fact that the SSH transport-layer
protocol supports key re-exchange. When the client wishes to
take over the connection from the agent, it sends an SSH_-
MSG_KEXINIT packet to the agent. If the agent is willing to
permit a handoff, the agent forwards this packet to the server
along with subsequent packets in both directions, effectively
enabling a key exchange to take place directly between the
client and the server. This key-exchange allows the client and

the server to negotiate a cipher suite that is not coupled to the
algorithms supported by the agent.

When key re-exchange is completed, the agent completes
the handoff by sending the client a small amount of global
state that need to be synchronized explicitly: the SSH se-
quence number in each direction and the SSH session ID. At
this point, the client can disconnect from the agent and speak
directly to the server—which is none the wiser that a handoff
has occurred.

The complete connection flow is illustrated in Figure 3.

3.4 Implementation
We implemented the Guardian Agent client and agent on top
of the Go ssh package [2] in about 2,000 lines of Go.

The agent implements a basic policy which consists of a
whitelist of allowed ⟨server, client, command⟩ entries. When
a connection does not match any existing whitelist entry, the
agent prompts the user on its local machine for approval.
Both terminal-based and GUI prompts are provided. Figure 1
shows an example.

When used in conjunction with OpenSSH servers, which
support the no-more-sessions feature, Guardian Agent
supports a safe handoff of the connection to the client, locked
to a particular command (the what) and one invocation of
it (the when). When used with non-OpenSSH servers, the
client can either keep the connection running through the
agent for its entire duration (which carries the obvious draw-
back of all traffic needing to flow through the user’s ma-
chine), or request a handoff without the extra security given by
no-more-sessions. Even in this case, Guardian Agent
is able to lock in the who and the to whom (the identity of
the client and server), unlike current ssh-agent forwarding.

In order to provide the agent with the identity of the del-
egate (the who), we implemented a modified ssh-agent for-
warding protocol, which prepends every connection to the
agent with a forwarding notice that contains the identity of
the remote machine from which the connection originates.4

4 EVALUATION
We tested Guardian Agent as a drop-in replacement for the
OpenSSH ssh binary, both for interactive terminal sessions
and for remote connections used by tools such as git, scp,
rsync, and mosh [20]. To verify compatibility, we tested
both our client and agent on Linux, macOS, and OpenBSD.
We successfully used Guardian Agent to connect to unmodi-
fied OpenSSH servers as well as to the public SSH servers of
GitHub, BitBucket, and GitLab.

Of the three commercial services, only GitLab uses an
OpenSSH-based server and allows Guardian Agent to lock in
the what (e.g., the particular repository and push vs. pull) and
the when (limiting to one invocation). Unfortunately, GitHub
and Bitbucket use alternate server implementations that do
not support the no-more-sessions request. This means

4A similar approach was suggested in a draft of the ssh-agent protocol [26].

Figure 4: Time to clone a Git repository to an untrusted
delegate using three delegation methods.

Empty (150KB) 10MB 60MB

Repository size

1

2

4

8

16

32

64

T
im

e
to

cl
on

e
(s

ec
on

d
s)

Insecure forwarding (ssh -A)

Guardian Agent

Tunneling

that, at present, Guardian Agent cannot restrict a delegate to
push or pull to a particular repository on GitHub or Bitbucket.

To evaluate the performance cost of our protocol, we mea-
sured the time it takes to pull a Git repository to an AWS EC2
instance without disclosing the private SSH key to the EC2
instance. In the experiment, we first connected to the EC2
instance using SSH from a local laptop in our institution’s
network. The laptop contained the private key required to
authenticate to the server. We then compared three different
delegation methods (by modifying the GIT_SSH_COMMAND
environment variable):

(1) current ssh-agent forwarding (ssh -A), which is fast
but does not allow the agent to verify any of the facts
(who, what, to whom, when) before granting approval,

(2) Guardian Agent, and
(3) tunneling all data from GitHub through the local’s

trusted local host, which is slow but also satisfies our
principle of secure delegation.

We tested how the time to clone the repository scales with
the repository size. The results, presented in Figure 4, show
that the more complex handshake protocol of Guardian Agent
increases the latency of establishing the connection. However,
our results also show that Guardian Agent’s performance is
comparable to current forwarding, and scales significantly
better than tunneling, since Guardian Agent tunnels only the
initial handshake, and most data flows directly between the
client and the server.

5 LIMITATIONS AND FUTURE WORK
5.1 Limitations of Guardian Agent
Guardian Agent successfully accomplishes its two main goals.
First, it serves as a testbed for our secure delegation princi-
ple, and second it remedies the current state of insecure SSH
delegation without having to wait for servers to adopt newer
protocols. However, it has limitations, mostly from the fact
that the underlying SSH protocol is left unchanged for com-
patibility with unmodified servers:

(1) Command enforcement (the what and when) is only
possible when connecting to OpenSSH servers.

(2) Even with OpenSSH servers, the no-more-sessions
request only prevents the creation of sessions, which
includes command execution but not other types of
channels, such as X11 and port forwarding.

(3) In order to give the agent the ability to approve or deny
each command execution, our protocol cannot support
session multiplexing over the same SSH connection
(commonly known as the ControlMaster mode).
As a result, a new TCP connection, handshake, and
handoff are required for each command.

(4) Following an operation, a server might want to be able
to prove to the principal (or to a third-party) that it re-
ceived valid delegated permissions for the operation.
However, this is not possible, because the SSH connec-
tion protocol is only MACed with a symmetric key, and
not digitally signed.

5.2 SSH: future work
What would the SSH protocol look like if its designers had
planned explicitly to allow secure delegation?

The server could explicitly accept delegated credentials,
obviating the need for an agent-initiated connection and hand-
off. One possible design for such credentials would be special
short-lived principal-generated certificates limited to a partic-
ular delegate public key (the who), a set of commands (the
what), the server public key (the to whom) and a session-
specific nonce (the when). The latter would be relayed to
the principal by the client as part of the delegation request,
and would allow the principal to restrict the credentials to
a single use, without requiring the server to store additional
state. Additionally, certificate chains could provide support for
multi-hop delegation. This feature could be based on the “sim-
ple public-key certificate authentication system” supported
by OpenSSH [14], by adding the ability to pin the public key
of the server or a session-specific nonce in the certificate.

5.3 TLS delegation for HTTPS
We have discussed the limitations of existing TLS delegation
schemes used by CDNs in §2.2. What would HTTPS look like
if its designers had planned to allow web servers to delegate
limited authority to third parties to speak on their behalf?

Secure delegation to CDNs carries the potential to reduce
the amount of blind trust a publisher needs to place in the
CDN, thus democratizing the CDN market by allowing new
entrants to win business more quickly (and enabling secure
peer-to-peer CDNs, where browsers assist other browsers).

Secure delegation for CDNs could involve an initial three-
party TLS handshake between the browser, CDN, and origin
(similar to Keyless TLS [18], or multi-context TLS [15]), to-
gether with a scheme that would allow the browser to verify
the contents it receives from the CDN. Multiple works have
focused on amending HTTP with content integrity mecha-
nisms that would allow the browser to verify the copy of the

data stored on a proxy [3, 5, 8, 16]—these could provide the
what guarantee for downstream data. The system should also
allow the server to verify the integrity of upstream data sent
by the client (e.g., in POST requests). A potentially inter-
esting protocol has been recently suggested by Eriksson et
al. [7, 19]: they propose a modification to HTTP that would
allow an origin server to delegate delivery of the payload of
an HTTP response to a third-party.

Another question would be: to what extent can secure
delegation be shoehorned into HTTPS without modifying
browsers, and can we reuse the same tricks that worked well
for SSH in this context? We hope to motivate the community’s
interest in such problems.

6 CONCLUSION
In this paper, we proposed a notion of “secure delegation,” in
which principals do not authorize third parties to take action
on their behalf unless they can verify who will be acting
under their imprimatur, what command will be issued to
whom, and when. Although we believe this principle ought
to be uncontroversial, the popular technique of ssh-agent
forwarding supports none of these, and schemes like Keyless
TLS enforce only the “who” (identity of the CDN).

We designed and implemented Guardian Agent, which
demonstrates that it is possible to add secure delegation to
SSH without modifying the wire protocol or the server, and
without deeply instrumenting the internals of the SSH imple-
mentation (e.g., keys, nonces, other cipher state). Guardian
Agent is in regular daily use by a small number of people at
our organization, including the authors.

Historically, the TLS and SSH working groups have shied
away from standardizing protocol features intended to en-
courage “man-in-the-middle” applications. The focus of both
efforts has been on pure end-to-end security, but in the ab-
sence of sanctioned support for delegation use-cases, a variety
of insecure delegation methods are now widespread in both
the SSH and TLS contexts.

We believe Guardian Agent carries a hopeful message:
many of the benefits of secure delegation can be gained right
now, without painful changes to current protocols, as a strict
security upgrade, and with modest performance impact. As
a retrofit, such methods may be fragile or incomplete, and
we believe our principle of who/what/to whom/when can be
used to evaluate the quality of such solutions. For the future,
we propose that designers should consider delegation as a
first-class use-case of new secure protocols.

ACKNOWLEDGMENTS
We thank Dan Boneh, Andrew Chin, Henry Corrigan-Gibbs,
John Emmons, Sadjad Fouladi, John Hood, Riad S. Wahby
and Francis Yan for feedback and helpful discussions, and the
HotNets reviewers for their valuable comments. This work
was funded in part by the Stanford Cyber Initiative, Stan-
ford Secure Internet of Things Project, and DARPA (grant
HR0011-15-2-0047).

REFERENCES
[1] Martín Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin.

1993. A calculus for access control in distributed systems. ACM
Transactions on Programming Languages and Systems 15, 4 (Sep 1993),
706–734. https://doi.org/10.1145/155183.155225

[2] The Go Authors. 2011. Go ssh package. (2011). Retrieved October 16,
2017 from https://godoc.org/golang.org/x/crypto/ssh

[3] Michael Backes, Rainer W. Gerling, Sebastian Gerling, Stefan Nürn-
berger, Dominique Schröder, and Mark Simkin. 2014. WebTrust – A
Comprehensive Authenticity and Integrity Framework for HTTP. In
Applied Cryptography and Network Security. Springer International
Publishing, 401–418. https://doi.org/10.1007/978-3-319-07536-5_24

[4] Daniel Barrett, Richard Silverman, and Robert Byrnes. 2005. SSH, The
Secure Shell: The Definitive Guide. O’Reilly Media, Inc.

[5] Roberto J. Bayardo and Jeffrey Sorensen. 2005. Merkle tree authen-
tication of HTTP responses. In Special interest tracks and posters of
the 14th international conference on World Wide Web (WWW ’05).
1182–1183. https://doi.org/10.1145/1062745.1062929

[6] Karthikeyan Bhargavan, Ioana Boureanu, Pierre-Alain Fouque, Cristina
Onete, and Benjamin Richard. 2017. Content delivery over TLS: a
cryptographic analysis of keyless SSL. In 2017 IEEE European Sym-
posium on Security and Privacy (EuroS&P). IEEE. https://doi.org/10.
1109/EuroSP.2017.52

[7] Göran A.P. Eriksson, John Mattsson, Nilo Mitra, and Zaheduzzaman
Sarker. 2016. Blind cache: a solution to content delivery challenges in
an all-encrypted web. Ericsson Technology Review (Aug 2016).

[8] Camille Gaspard, Sharon Goldberg, Wassim Itani, Elisa Bertino, and
Cristina Nita-Rotaru. 2009. SINE: Cache-friendly integrity for the
web. In 2009 5th IEEE Workshop on Secure Network Protocols. IEEE.
https://doi.org/10.1109/npsec.2009.5342250

[9] Morrie Gasser, Andy Goldstein, Charlie Kaufman, and Butler Lampson.
1989. The Digital distributed system security architecture. In Proceed-
ings of the 12th National Computer Security Conference. 305–319.

[10] Morrie Gasser and Ellen McDermott. 1990. An architecture for practi-
cal delegation in a distributed system. In Proceedings of the 1990 IEEE
Computer Society Symposium on Research in Security and Privacy.
IEEE. https://doi.org/10.1109/risp.1990.63835

[11] Chris Lesniewski-Laas and M. Frans Kaashoek. 2005. SSL splitting:
Securely serving data from untrusted caches. Computer Networks 48, 5
(Aug 2005), 763–779. https://doi.org/10.1016/j.comnet.2005.01.006

[12] Jinjin Liang, Jian Jiang, Haixin Duan, Kang Li, Tao Wan, and Jianping
Wu. 2014. When HTTPS Meets CDN: A Case of Authentication in
Delegated Service. In 2014 IEEE Symposium on Security and Privacy.
IEEE. https://doi.org/10.1109/sp.2014.12

[13] Damien Miller. 2008. OpenSSH protocol vendor extensions. (Jul 2008).
Retrieved October 16, 2017 from https://raw.githubusercontent.com/
openssh/openssh-portable/master/PROTOCOL

[14] Damien Miller. 2010. OpenSSH certificates. (Mar 2010). Retrieved
October 16, 2017 from https://raw.githubusercontent.com/openssh/
openssh-portable/master/PROTOCOL.certkeys

[15] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leontiadis, Jeremy
Blackburn, Diego R. López, Konstantina Papagiannaki, Pablo Ro-
driguez Rodriguez, and Peter Steenkiste. 2015. Multi-Context TLS
(mcTLS): Enabling Secure In-Network Functionality in TLS. In Pro-
ceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication (SIGCOMM ’15). ACM, 199–212. https:
//doi.org/10.1145/2785956.2787482

[16] Kapil Singh, Helen J. Wang, Alexander Moshchuk, Collin Jackson,
and Wenke Lee. 2012. Practical End-to-end Web Content Integrity.
In Proceedings of the 21st International Conference on World Wide
Web (WWW ’12). ACM, 659–668. https://doi.org/10.1145/2187836.
2187926

[17] Karen R. Sollins. 1988. Cascaded authentication. In Proceedings of
the 1988 IEEE Symposium on Security and Privacy. IEEE. https:
//doi.org/10.1109/secpri.1988.8108

[18] Douglas Stebila and Nick Sullivan. 2015. An Analysis of TLS Hand-
shake Proxying. In 2015 IEEE Trustcom/BigDataSE/ISPA. IEEE, 279–
286. https://doi.org/10.1109/Trustcom.2015.385

[19] Martin Thomson, Göran A.P. Eriksson, and Christer Holmberg.
2016. An architecture for secure content delegation using HTTP.
Technical Report. IETF Secretariat. https://tools.ietf.org/html/
draft-thomson-http-scd-02

[20] Keith Winstein and Hari Balakrishnan. 2012. Mosh: An Interactive Re-
mote Shell for Mobile Clients. In 2012 USENIX Annual Technical Con-
ference (USENIX ATC ’12). USENIX, 177–182. https://www.usenix.
org/conference/atc12/technical-sessions/presentation/winstein. Avail-
able at http://mosh.org.

[21] Edward Wobber, Martín Abadi, Michael Burrows, and Butler Lampson.
1993. Authentication in the Taos operating system. ACM SIGOPS
Operating Systems Review 27, 5 (Dec 1993), 256–269. https://doi.org/
10.1145/173668.168640

[22] Tatu Ylönen and Chris Lonvick. 2006. The Secure Shell (SSH) Authen-
tication Protocol. RFC 4252. RFC Editor. http://www.rfc-editor.org/
rfc/rfc4252.txt

[23] Tatu Ylönen and Chris Lonvick. 2006. The Secure Shell (SSH) Connec-
tion Protocol. RFC 4254. RFC Editor. http://www.rfc-editor.org/rfc/
rfc4254.txt

[24] Tatu Ylönen and Chris Lonvick. 2006. The Secure Shell (SSH) Protocol
Architecture. RFC 4251. RFC Editor. http://www.rfc-editor.org/rfc/
rfc4251.txt

[25] Tatu Ylönen and Chris Lonvick. 2006. The Secure Shell (SSH) Trans-
port Layer Protocol. RFC 4253. RFC Editor. http://www.rfc-editor.
org/rfc/rfc4253.txt

[26] Tatu Ylönen, Timo J. Rinne, and Sami Lehtinen. 2004. Secure Shell
Authentication Agent Protocol. Internet Draft. IETF Secretariat. https:
//tools.ietf.org/html/draft-ietf-secsh-agent-02

https://doi.org/10.1145/155183.155225
https://godoc.org/golang.org/x/crypto/ssh
https://doi.org/10.1007/978-3-319-07536-5_24
https://doi.org/10.1145/1062745.1062929
https://doi.org/10.1109/EuroSP.2017.52
https://doi.org/10.1109/EuroSP.2017.52
https://doi.org/10.1109/npsec.2009.5342250
https://doi.org/10.1109/risp.1990.63835
https://doi.org/10.1016/j.comnet.2005.01.006
https://doi.org/10.1109/sp.2014.12
https://raw.githubusercontent.com/openssh/openssh-portable/master/PROTOCOL
https://raw.githubusercontent.com/openssh/openssh-portable/master/PROTOCOL
https://raw.githubusercontent.com/openssh/openssh-portable/master/PROTOCOL.certkeys
https://raw.githubusercontent.com/openssh/openssh-portable/master/PROTOCOL.certkeys
https://doi.org/10.1145/2785956.2787482
https://doi.org/10.1145/2785956.2787482
https://doi.org/10.1145/2187836.2187926
https://doi.org/10.1145/2187836.2187926
https://doi.org/10.1109/secpri.1988.8108
https://doi.org/10.1109/secpri.1988.8108
https://doi.org/10.1109/Trustcom.2015.385
https://tools.ietf.org/html/draft-thomson-http-scd-02
https://tools.ietf.org/html/draft-thomson-http-scd-02
https://www.usenix.org/conference/atc12/technical-sessions/presentation/winstein
https://www.usenix.org/conference/atc12/technical-sessions/presentation/winstein
http://mosh.org
https://doi.org/10.1145/173668.168640
https://doi.org/10.1145/173668.168640
http://www.rfc-editor.org/rfc/rfc4252.txt
http://www.rfc-editor.org/rfc/rfc4252.txt
http://www.rfc-editor.org/rfc/rfc4254.txt
http://www.rfc-editor.org/rfc/rfc4254.txt
http://www.rfc-editor.org/rfc/rfc4251.txt
http://www.rfc-editor.org/rfc/rfc4251.txt
http://www.rfc-editor.org/rfc/rfc4253.txt
http://www.rfc-editor.org/rfc/rfc4253.txt
https://tools.ietf.org/html/draft-ietf-secsh-agent-02
https://tools.ietf.org/html/draft-ietf-secsh-agent-02

	Abstract
	1 Introduction
	2 Delegation Today
	2.1 SSH
	2.2 HTTPS Delegation to CDNs

	3 Guardian Agent
	3.1 Technical Background
	3.2 System Architecture
	3.3 Transport Handoff
	3.4 Implementation

	4 Evaluation
	5 Limitations and Future Work
	5.1 Limitations of Guardian Agent
	5.2 SSH: future work
	5.3 TLS delegation for HTTPS

	6 Conclusion
	Acknowledgments
	References

