Congestion-Control Throwdown

Michael Schapira
Hebrew University of Jerusalem
schapiram @huji.ac.il

ABSTRACT

Congestion control is a perennial topic of networking research.
In making decisions about who sends data when, congestion-
control schemes prevent collapses and ultimately determine
the allocation of scarce communications resources among
contending users and applications.

The field has seen considerable recent activity. Even after
three decades of research, basic principles and techniques
remain up for debate. In this throwdown-as-paper, the authors
find themselves at loggerheads over the fundamental tenets
of congestion control.

1 INTRODUCTION

After attending a research conference, the authors find them-
selves seated next to each other on a flight home to their
respective employers.

Hamilton: What a coincidence that we ended up sitting to-
gether! I want to tell you about our vision for congestion
control—it’s pretty wild.

Burr: Yes, we keep meeting. I think it’s only fair to tell you
that I recently read a draft on this topic that sounds like it was
yours, and it drove me to distraction in that way that only the
topic of congestion control can do.

Hamilton: Well, we’re strapped in, the seat-belt light is on,
and you’ve got nobody else to talk to on this airplane—Ilooks
like we’re stuck working this out. Let me try to make the case.

2 HAMILTON’S OPENING STATEMENT

First, let me tell you how I perceive the differences between
three recently proposed paradigms for rate-control on the
Internet, namely, Remy [8, 10], PCC [3], and BBR [1].

2.1 Remy vs. PCCvs. BBR

Remy takes as input explicit assumptions about the network,
such as ranges of wire speeds, RTTs, number of senders on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

HotNets-XVI, November 30-December 1, 2017, Palo Alto, CA, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to
Association for Computing Machinery.

ACM ISBN 978-1-4503-5569-8/17/11...$15.00
https://doi.org/10.1145/3152434.3152446

Keith Winstein

Stanford University
keithw @cs.stanford.edu

bottleneck links, and also the designer’s global optimization
objective, say, proportional fairness. Remy then generates
a model of the network and seeks a “good” mapping from
observed network state (average of packet ACKSs inter-arrival
times, ratio of current RTT and minRTT, etc.) to control ac-
tions (such as a multiplier/increment to the congestion win-
dow). BBR’s design philosophy is different; BBR models the
network pipe as a single link, repeatedly probes the band-
width and RTT, and paces the rate so as to track the bottle-
neck link’s bandwidth. Lastly, PCC continuously associates
the sending rate with a numerical utility value that reflects a
local performance objective (say, “high throughput and low
loss rate”). This is accomplished through a utility function,
which aggregates experienced performance-related statistics
(e.g., goodput, loss rate, and latency) into a numerical value.
PCC'’s control algorithm adapts the sending rate in the direc-
tion (faster/slower) that empirically yields better utility for
the sender.

I see two fundamental distinctions between these three
paradigms:

¢ Reliance on a network model. Remy takes as input a
priori assumptions about the network and generates a
model of the network, BBR generates a model of the
network pipeline in an online manner, whereas PCC
does not rely on a network model. In this sense, Remy
and BBR both represent white-box approaches, whereas
PCC takes a black-box approach.

e Global vs. local optimization. Remy explicitly aims
to reach a global optimum. BBR and PCC, in contrast,
optimize local performance.

I argue that designing rate-control schemes that robustly
achieve high performance across a variety of network envi-
ronments and, in particular, in the wild wild Internet, involves
coming to terms with certain hard truths.

2.2 Generating an accurate network model of
the Internet might not be feasible

The Internet is remarkably complex, maybe too complex for
white-box approaches. Traffic flows enter and leave, network
devices and links might fail, packets might traverse differ-
ent communication media / organizations / numbers of hops,
different end-hosts employ different rate-control protocols,
latency increases and packet losses can result from temporary
microbursts or PHY-layer corruption (as opposed to conges-
tion), etc. Unless the network exhibits very high stability
and predictability (as in, arguably, highly optimized WANSs),
which is rarely the case, any network model is likely to be

https://doi.org/10.1145/3152434.3152446

highly inaccurate and, consequently, not a solid base for de-
cision making. In fact, even when designers of white-box
approaches argue for why these might fare well in practice
despite the huge gap between their models and reality, the
argument eventually boils down to empirical evidence [8].

Black-box approaches, in contrast, do not generate a model
the network, but instead seek good mappings from empirically-
observed performance to changes in sending rate. I believe
that this design philosophy can provide inherently higher
robustness to variability in network conditions.

2.3 You cannot reach a global optimum at
Internet scale

Different applications have different performance require-
ments, typically unbeknownst to the rate-control protocol.
Even defining the “right” global optimization objective is not
obvious. Worse yet, even if such a notion exists, optimizing
the objective function relies on the assumptions that (1) all
end-hosts employ the prescribed protocol (and, possibly, even
that all routers use the same queuing policy); and (2) traf-
fic flows persist long enough for global optimization to be
meaningful.

I believe that giving up on the aspiration of explicitly op-
timizing a metric of global network performance in the wild
Internet is an unfortunate, yet unavoidable, consequence of
the Internet’s complexity. Instead, rate-control design should
focus on achieving other desiderata such as optimizing local
performance goals, fairness on bottleneck links, fast conver-
gence to equilibrium for persistent flows, quick utilization of
spare capacity, and more.

2.4 Rate-control via online learning is a
promising direction
Out of the three rate-control schemes I mentioned, only PCC
is both black-box and does not explicitly optimize global per-
formance. I believe, however, that while PCC is a promising
paradigm for next-generation congestion control, the specific
manifestation of this paradigm in [3] is far from realizing its
full potential. Now, let me tell you about a research direction
that I am very excited about: applying ideas and machinery
from the rich body of research on online learning in learning
theory and game theory to the context of rate-control.
Online learning (a.k.a. “no-regret learning”) provides a
useful and powerful abstraction for decision making under
uncertainty. In the online learning setting, a decision maker
repeatedly selects an action from a set of available strategies.
Only after selecting a strategy does the decision maker be-
come aware of the implications of selecting that strategy, in
terms of a resulting utility value. I posit that online-learning al-
gorithms are particularly appropriate for rate-control. Specifi-
cally, online learning algorithms provide provable guarantees
(namely, “no regret” [2, 4]) even under complete uncertainty
about the environment, i.e., without assuming/inferring any-
thing about the relation between choices of strategies and the
induced utility values. Moreover, online learning algorithms

“play well” together, in the sense that (under the appropriate
conditions) global convergence to a stable outcome (equi-
librium) is guaranteed when multiple decision makers apply
online learning.

Rate-control can easily be cast as an online learning chal-
lenge: A traffic sender repeatedly selects sending rates. After
sending at a certain rate and waiting “long enough,” the sender
learns the implications for performance of sending at that rate
by translating aggregated statistics (e.g., achieved goodput,
packet loss rate, average latency) into a numerical utility value,
as in PCC (see [3] for details). Instead of the ad hoc choice of
utility function and the fairly naive rate-control scheme used
in [3], I argue that a principled approach, informed by online
learning theory, should be applied. Preliminary experimenta-
tion with state-of-the-art online-learning-based rate-control
schemes suggest that these outperform TCP, BBR, and PCC’s
realization in [3], in terms of achieved throughput and la-
tency across highly variable network environments, adapting
to rapidly changing network conditions, convergence rate and
stability, and beyond.

So, what do you think?

3 BURR SPEAKS IN OPPOSITION

Hamilton, despite our disagreements, I couldn’t have asked
for a better colleague to be strapped down next to in an air-
plane. And I appreciate your efforts to frame a taxonomy
of recent approaches to wide-area congestion control: BBR,
PCC, and Remy. But (you knew there was a “but”), your view
of the world doesn’t make a whole lot of sense to me!

Let me make a few points in reply:

3.1 Local optimization = lousy outcomes

As I understand it, the innovation of PCC is that each flow ex-
plicitly performs online optimization of an objective function.
This is distinguished from traditional TCP congestion-control
algorithms (NewReno, Vegas, FAST, Cubic, the RemyCCs,
etc.), where a human (or in the case of Remy, a computer
program) first thought really hard offline to design a good
congestion-control algorithm, and then deployed that algo-
rithm on endpoints.

In PCC, because the optimization is online, the objective
function necessarily only includes inputs that are locally per-
ceptible to the individual flow. Two signals are considered:
(1) how many bits per second is that flow sending, and (2)
how many of those bits per second are making it through to
that flow’s receiver (i.e., the throughput).

My view: distributed hill-climbing of a locally percepti-
ble utility function is not a sound foundation for Internet
congestion control. To explain why I think this, let me bring
up one of the most old-fashioned and classical congestion-
control problems there is: a symmetric parking-lot topology
(Figure 1). And to make it really traditional, I want to start
with the assumption that all three flows are long-running and
that if a link is oversubscribed, it simply drops packets pro-
portionally to reduce its utilization to 100% (no queueing).

B c

sender sender recelver
10 Mbit/s 10 Mbit/s

C a

il receiver |

Figure 1: A parking-lot topology [9]. Routers x and y are con-
nected by a 10 megabit-per-second link, and so are y and z.
Long-running flows A and B each cross one of the links; flow
C crosses both links. We’d like to deploy the same congestion-
control algorithm at each of the three senders and have the net-
work function sanely.

There’s no one right answer to the question of how this
network’s resources should be divided among the flows. There
is a family of Pareto-efficient fair solutions. The max-min
fair solution has A, B, and C each getting 5 Mbit/s. The
proportionally fair solution recognizes that C contends with
twice as many flows of cross-traffic as A and B do, and so
gives C half the allocation (3% Mbit/s) of A and B (6% Mbit/s
each). The “max total throughput” solution simply gives A
and B 10 Mbit/s each, leaving C with nothing.

Each of these solutions corresponds to maximizing a global
total of each flow’s individual utility, for various utility func-
tions. For example, the proportionally fair solution maximizes
log A + log B + log C, where each flow’s individual utility is
the log of its own throughput.

Except: it wouldn’t make sense to have each flow set its
sending rate by locally maximizing its own utility function. If
the objective is log(throughput), then each flow is just going
to flood as fast as possible, in order to get the biggest possible
share of the contended 10 Mbit/s links. The faster a flow’s
competitor sends into a congested link, the faster the flow
itself needs to send in order to preserve its share. There’s a
tragedy of the commons in “online” optimization in this way.

Ah, you say, but this is not how PCC works. PCC has an
objective function that penalizes loss even if throughput is
good, so a flow will not want to flood the network with a
huge sending rate just to eke out a little more throughput. The

objectiveist- |1 — m —s-L, where s is the sending

rate, t is the throughput, and L := 1 — é is the loss rate.!

IThis is the flow’s optimization objective, but the presence of the loss penalty
makes it, to me, not really a “utility” function. An application using TCP
(with PCC as the congestion control) will have no idea and no reason to care
what the underlying IP datagram loss rate is; TCP’s job is to retransmit lost
segments anyway. If PCC delivers good throughput to the application, that
ought to be enough. Datagram loss itself is none of the application’s business,
and therefore none of a utility function’s business. The need for this kind of

10 O max total throughput
Distributed local optimization
of PCC’s utility function

can converge to any solution
in this range.

62/3 — .
pl’OpOl’TlOIl‘Al

fairness

max-min
fairness

31/3 |-

The “dumb” algorithm always achieves
within 1% of tlgle proportionally fair solution.

throughput of flows A and B (Mbit/s)

0 ! ! ! J
0 31/3 5 62/3 10

throughput of flow C (Mbit/s)

Figure 2: Convergence region of distributed optimization of
PCC'’s objective function (red shaded strip) compared with a
“dumb” algorithm on the topology of Figure 1. PCC always con-
verges to something, but is sensitive to initial conditions—it can
end up getting stuck in an allocation where flow C receives as
little as 2.1 Mbit/s (upper-left of red shaded region) or as much
as 6.3 Mbit/s (lower-right)—a threefold range. By contrast, a
simple AIMD scheme consistently achieves close to the propor-
tionally fair allocation (blue dot), no matter which flow starts
first or at what rate.

There is great attraction to a design where we can say, “for-
get trying to design a good congestion-control scheme offline;
simply specify an objective function and each flow will maxi-
mize it online, making no assumptions about the network and
having no regrets.” A lot of effort goes into designing these
schemes; if they can be replaced by online maximization of
an objective function, that would be awesome.

Unfortunately, this seems to me too ambitious, even for sim-
ple network scenarios. I performed a numerical experiment
with an idealized PCC in the topology of Figure 1. The three
flows start with a sending rate between 0 and 11 Mbit/s. At
each step of the simulation, one of the flows tries to improve
its situation by differentially adjusting its sending rate until it
can no longer find an improvement in its objective function
(akin to PCC’s “micro-experiments”). This proceeds in round
robin until all three rates have reached a fixed point where no
scheme can improve by changing its rate up or down.?

The good news is that PCC always converges to some stable
allocation of rates. The bad news is that the allocation it finds
(and then preserves for eternity) can vary widely, depending
on the initial rates or which flow starts first, even though
they all last forever once they get started. The three flows

penalty term limits PCC’s agility to swap in a different function, because the
designer needs to make sure that whatever function they choose has a term
like this so it won’t create a tragedy of the commons.

2Source code to replicate these results is at https:/github.com/keithw/
netsolve. The calculations are done in double-precision floating point, and
the simulation is judged to have reached a fixed point when no flow wants to
adjust its rate by more than +10~7 Mbit/s.

https://github.com/keithw/netsolve
https://github.com/keithw/netsolve

can stabilize in a solution where A=7.9, B=7.9, C=2.1, or a
solution where A=3.7, B=3.7, C=6.3. Both of these, as well as
every allocation in between, are fixed points of the distributed
local optimization algorithm. Reasonable people can disagree
about the “right” allocation of resources in this topology, but
I don’t think you can persuade me that a good scheme can be
so sensitive to “which flow started first” that your own flow’s
allocation should vary by a factor of 3 for the rest of eternity.

The problem here is that each flow is only seeing its own
throughput—it has no idea how happy or unhappy the other
flows are, and once the three flows stabilize, there is no more
loss and therefore no more interesting congestion signals to
learn from. None of the flows has any cause for regret (there
is no better rate for any of them to have chosen individu-
ally), so your emphasis on no-regret learning as the future of
congestion control seems like a red herring.

Ultimately, when congestion-control decisions are decen-
tralized (as they generally are outside of single-owner net-
works), I suspect that a good congestion-control scheme can’t
simply optimize a locally perceptible objective function. Call
this Burr’s conjecture: it is impossible for a decentralized
congestion-control scheme to be globally asymptotically sta-
ble (never mind the quality of the outcome!) over a network
with “dumb” bottlenecks (e.g. DropTail queues), if it operates
by greedily optimizing an objective function whose only in-
put is the fate of its own traffic (when were packets sent, and
which arrived and when).3

Which is not to say that good congestion-control algo-
rithms don’t exist—only that good algorithms behave in a
more sophisticated manner than simply optimizing a locally
perceptible objective function. Good schemes must balance
exploitation (of a current situation) with exploration (behavior
that might be against the flow’s self-interest in the short term,
because of the chance that the status quo might not be good
for other more-deserving traffic). The place where we design
such algorithms is offline.

Consider, for example, a simple rate-based AIMD scheme.
The scheme sends at a particular rate. At equal time intervals,
it adjusts the rate based on whether it has seen any losses
during the most recent interval. If there hasn’t been any loss,
it increases the rate by 10 kbps. Otherwise, it decreases it by a
percentage between 0 and 1% (chosen uniformly at random).

This the dumbest of dumb schemes. The individual flows
don’t online-optimize any locally-measurable function, but
they do have a pattern of exploration and exploitation behav-
ior that was designed in upfront. And it turns out that on our
classical congestion-control problem, the scheme performs
a lot better than the idealized PCC. If run on the three flows
in Figure 1, this scheme will achieve within 1% of the pro-
portionally fair solution A=B=6.7, C=3.3 (shown with arrow
and blue dot on Figure 2) over the long term, no matter which

3Classical results in Network Utility Maximization [7, 9] are compatible
with this conjecture; e.g. the primal algorithm specifies a particular algorithm
(not just a utility function) for each sender, and requires knowledge of overall
link prices that I suspect cannot be learned from an individual flow’s traffic
over a DropTail queue, or a proportional-loss link as in the example.

flow started first or at what rate. The dumb scheme does what
it was designed—offline—to do. TCP Reno/Vegas/Cubic and
the outputs of the Remy tool all represent attempts at com-
ing up with these “dumb” schemes that yield good overall
outcomes under an arbitrary pattern of flow arrivals.

Bottom line: just because a congestion-control scheme
has each flow independently optimize a locally perceptible
objective function, and just because that objective function
is engineered so that this doesn’t lead to a tragedy of the
commons, and just because the scheme converges to some
allocation of rates where no flow has reason for regret, we
can’t conclude that it’s a good scheme.

3.2 Every scheme embodies assumptions
about the network

To me, then, the burden is on those who propose “online’
techniques to demonstrate that they work better in a realistic
setting than in a toy example. If you don’t think my classical
parking-lot network is relevant, then the argument necessarily
involves some statement of opinion about what a realistic
network and workload look like. That’s stating a model or an
assumption!

Why don’t we use the dumb scheme? One reason is that in
real life, flows come and go, and convergence time matters.
The tiny Al and MD constants (0—1% decrease if loss, 10 kbps
increase if not) are great for achieving within 1% of the pro-
portionally fair allocation over the long term, but bad for
converging quickly, and terrible for allowing in newly joining
flows when the network is already fully utilized. Those con-
stants embody a designer’s expectations about the networks
and scenarios the scheme will face: how quickly will flows
arrive or depart the network (leading to a need to converge to
a new allocation), versus how important is it for long-running
flows to do well?

PCC, also, carries its designers’ assumptions about the
network. The objective function assumes that loss will be
provided as a useful congestion signal, and the constant of
0.05 represents an assumption that stochastic loss will be less
than 5% if all is well. When these assumptions are violated,
PCC—with its default objective function—performs poorly.
On network paths with deep-buffered bottlenecks and no loss,
such as some cellular networks, PCC blasts and builds up a
standing queue. Across links with too much stochastic loss,
PCC can’t get anything done. TCP Reno represents some of
the same assumptions, embodied in constants like the initial
window and rate represent. Like PCC, BBR also has plenty
of tuning constants.

There’s no problem with tuning constants, but they do
represent somebody’s expectations about the conditions or
workload that the scheme will ultimately face. When you say
that “any network model is likely to be highly inaccurate,” that
may well be, but this affects every congestion-control scheme
(perhaps every engineered system!). TCP Tahoe-like schemes
worked well in the 1990s on shallow-buffered bottlenecks
with many flows; they performed poorly in the 2000s on

s

deep-buffered bottlenecks with a single flow (“bufferbloat™).

What changed was the quality of the match between Tahoe’s
implicit assumptions and the networks it faced.

You are certainly right to point out that modeling the entire
Internet is infeasible, but there’s no evidence you would need
to. TCP Tahoe did well for a long time with a very simple
model. (Of course, it took a decade from when Tahoe was
implemented [6] until the theorists could tell us [7] what
Tahoe’s model was.)

Remy represented an effort to force designers to be explicit
about their assumptions by specifying them in a structured
format to a protocol-design tool that would then produce an
algorithm and all its constants. Depending on how the model
is stated—and how much uncertainty or confidence it has
about the breadth of networks and workloads the protocol will
ultimately encounter—maybe Remy would synthesize the
“dumb” scheme from above, or TCP Reno, or a specialized
scheme, or who knows.

Just because PCC is less explicit about its assumptions
and model doesn’t mean that it doesn’t have them. The true
distinction, in my view, isn’t about “reliance on a network
model” or the presence of assumptions; the difference is in
whether those assumptions were written down, and whether
the protocol’s behaviors online (including all the constants,
initial conditions, etc.) can be justified as being a function of
the assumptions and goal of the protocol. If you find yourself
tempted to start tuning an algorithm for different kinds of
networks (cellular CC, underwater acoustic CC), that’s a sign
to me that it has, deep down inside, assumptions about the
network it will ultimately be running over.

You believe that PCC does not rely on a network model
and is therefore inherently robust to variability in network
conditions, but how can this be true? How does PCC perform
when the network loses 50% of its packets to stochastic loss?

I was reminded of the “Al koan” [5] on this topic:

In the days when Sussman was a novice, Minsky
once came to him as he sat hacking at the PDP-6.
“What are you doing?”, asked Minsky.

“I am training a randomly wired neural net to play
Tic-Tac-Toe.”

“Why is the net wired randomly?”, asked Minsky.
“I do not want it to have any preconceptions of
how to play.”

Minsky shut his eyes,

“Why do you close your eyes?”, Sussman asked
his teacher.

“So that the room will be empty.”

At that moment, Sussman was enlightened.

4 HAMILTON REPLIES

Burr, I could not have hoped for a better sparring partner! But,
I disagree with quite a few things you said.

4.1 White-box vs. black-box approaches are
inherently different design philosophies

I do not agree that any design approach reflects a model of
the network, and I think that this is actually important.

A useful analogy: identifying cats. Consider the analogy of
identifying cats in images. One approach is “thinking really
hard” (offline or online), coming up with an explicit model of
“what’s a cat” (e.g., “cats have pointed ears and sharp teeth”),
and then basing decisions on this model. A different approach
is applying machine learning (ML). Decisions under the ML
approach need not necessarily be “interpretable”, in the sense
that a model of a cat can be reverse engineered from the
ML scheme (say, trained neural network). In fact, the most
accurate ML approaches to date aren’t.

Why is this important? Because in computer vision, and
other central areas in computer science, giving up on the
aspiration of basing decisions on accurate explanatory mod-
els of complex phenomena has proven crucial for moving
beyond the state of the art. Sure, in some cases white-box
approaches for identifying cats might prove excellent (say, if
all cats actually have pointed ears and no other animal does...).
However, these are, in general, outperformed by black-box,
empirical-evidence-driven approaches.

Now, back to rate control. Online-learning-based rate-control
reflects a black box approach in the exact same sense as in
the above computer-vision-related example; it does not base
its decisions on an (offline/online-generated) model of the
network, but instead adapts rates in response to empirically-
observed performance derived from past rate selections. The
results for PCC in [3], and preliminary experimentation with
other black-box approaches to rate-control, provide initial
evidence that in this context, too, black-box approaches can
outperform white-box approaches. Importantly, unlike many
ML techniques, online learning also comes with provable
guarantees.

One size to fit them all? I am not arguing that any single
black-box approach can be optimal across all network envi-
ronments. I expect different choices of utility functions and
of online learning algorithms to fare differently in different
contexts. Choosing the online-learning method to use in a
certain context should be driven by the designer’s goal (opti-
mize bandwidth? minimize latency?) and guided by empirical
and theoretical explorations. I hope to see online learning
rate-control applied to different network environments (wire-
less, data centers, etc.) in the near future. I conjecture that
this could lead to better performance than that achievable by
white box approaches even in the environments for which
these white-box approaches were designed.

That said, I do hypothesize that black-box approaches to
rate-control a la PCC can provide high performance in a more
robust manner, obviating the need to design numerous differ-
ent specialized protocols, each tailored for a fairly specific
network environment, as is essentially the case with TCP.

What are network models good for? While I question re-
liance on a network model as a design philosophy, network
modeling is, of course, indispensable for analyzing rate-control
protocols.

4.2 Optimizing in wonderland?

When discussing rate-control on the parking-lot topology, you
assume that all three flows are long-running and run the same
protocol, all links drop packets proportionally, other flows do
not enter and leave in the interim, links do not fail, no tran-
sient microbursts, and more. You also restrict your attention
to the steady state (hopefully) approximated eventually. You
might argue that this is for means of illustration, but I actu-
ally think that these assumptions typically underly white-box
approaches. There are more things in heaven and earth, Burr,
than are dreamt of in your network models!

Optimizing rate-control is plausible in sufficiently stable
and predictable networks, and when the notion of optimum is
obvious. The heart of our disagreement lies elsewhere: with
the exception of very specific environments (highly-optimized
private backbone networks?), are the above conditions satis-
fied? I believe that the answer is, in general, “No”.

So, whether or not “Burr’s conjecture” is true is beside the
point. The point is that global optimization frameworks (such
as Network Utility Maximization [7, 9]) fall apart when the
actual network conditions violate their underlying assump-
tions, say, some connection employs a different protocol, or
some router discards packets according to a different queue-
ing policy. This motivates the need for other objectives and
conceptual frameworks for protocol design.

4.3 What’s next?

I believe the properties of PCC you point out as not inherent
to the online learning paradigm, but merely properties of its
specific realization in [3]. In my view, identifying the “right”
algorithms and utility functions to build into online-learning
rate control in different contexts is a conceptually fascinating
and practically promising research agenda.

S BURR’S CONCLUSION

Hamilton, this has been a fascinating plane ride. I apologize
for all those times I hit the call button to try to get you moved
to a different seat. I salute your willingness to shake things
up in this 30+-year-old research area—one that governs when
we speak and when we stay silent on the Internet, perhaps
the most important communications medium since cuneiform.
Let me try to summarize our disagreement:

The “white-box vs. black-box design philosophy” issue
means a lot to you, and little to me. I think you view BBR
and Remy, and even Reno, as arrogant: they presume to have
an opinion about how the network will behave. Reno cuts the
window if it encounters loss because it assumes that loss indi-
cates overload. BBR assumes that it can infer the bottleneck
bandwidth and rate. Remy wants the designer to specify a
whole litany of assumptions upfront. Whereas it seems purer

to simply have an objective function (even if it needs some
carefully chosen constants) that the flow tries to optimize by
wiggling its rate up and down.

To me, this philosophizing is beside the point. I don’t think
it’s relevant what the designer was thinking; I care about what
the code does at runtime. Every scheme we’ve named has
situations where it does well and situations where it does
poorly—these represent, ultimately, the scheme’s assump-
tions about what the network and workload will look like. I
don’t think there’s evidence that schemes that online-optimize
a locally perceptible objective function perform better in a
broader range of scenarios than other protocols.

You see more-principled learning methods as the future,
and I’m not so sure. I look forward to “no regret” conges-
tion control, but ultimately the test will be how the code per-
forms at runtime. My numerical experiment on the parking-
lot network showed problems with the distributed-online-
optimization approach even where no flow had cause for
regret. So I'm skeptical this is what’s needed.

Is there still a need for a theory of congestion control?
One thing we didn’t discuss is the genesis of BBR. To develop
this scheme and tune all of its constants and behaviors, Google
says they tried many iterations of BBR on a fraction of the
company’s traffic, slowly ramping up the deployment as they
searched for pathological behaviors or situations where BBR
underperformed their status-quo scheme. This might be as
close as you can get to “model-free” design, since they are
designing the scheme live against Google’s actual traffic—a
substantial fraction of the whole Internet—and optimizing
metrics of interest that, in the end, correlate with money
made. It’s not so easy for a skeptical outsider to go toe-to-toe
with them because they have all that data and we don’t. In a
world where much of the Internet’s traffic comes from a small
number of big players who can confidently go their own way,
is there still a role for theory, or for arguments like ours?

6 HAMILTON’S CONCLUSION

We’re at the gate—I have to go. But rest assured, when our
children tell our story, they’ll tell the story of this flight.

ACKNOWLEDGMENTS

Hamilton thanks Brighten Godfrey for extensive brainstorm-
ing about the above-discussed topics, the rest of the PCC team
at Hebrew U. and UIUC for valuable comments, and also
Nathaniel Pendleton. Burr thanks Mohammad Alizadeh, Hari
Balakrishnan, Anirudh Sivaraman, Nick McKeown, Philip
Levis, and William P. Van Ness. Both authors thank the Hot-
Nets reviewers for their helpful comments. This work was
funded in part by DARPA grant HR0011-15-2-0047.

REFERENCES

[1] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson.
BBR: Congestion-based congestion control. Queue, 14(5):50:20-50:53,
Oct. 2016.

[2] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games.
Cambridge University Press, New York, NY, USA, 2006.

[3] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira. PCC: re-
architecting congestion control for consistent high performance. In 12th
USENIX Symposium on Networked Systems Design and Implementation,
NSDI ’15, Oakland, CA, USA, May 4-6, 2015, pages 395-408, 2015.

[4] D. Fudenberg and D. Levine. The Theory of Learning in Games. The
MIT Press, 1998.

[5] W.D. Hillis. Al Koans (ca. 1980), available at https://groups.google.
com/d/topic/net.jokes/KrSD2dbCzQ8.

[6] V. Jacobson. Congestion Avoidance and Control. In SIGCOMM, 1988.

[7] F. P. Kelly, A. Maulloo, and D. Tan. Rate Control in Communication
Networks: Shadow Prices, Proportional Fairness and Stability. Journal
of the Operational Research Society, 49:237-252, 1998.

[8] A. Sivaraman, K. Winstein, P. Thaker, and H. Balakrishnan. An experi-
mental study of the learnability of congestion control. In SIGCOMM,
Chicago, Illinois, August 2014.

[9] R. Srikant. The Mathematics of Internet Congestion Control.
Birkhauser, 2004.

[10] K. Winstein and H. Balakrishnan. TCP ex Machina: Computer-
Generated Congestion Control. In SIGCOMM, Hong Kong, China,
August 2013.

https://groups.google.com/d/topic/net.jokes/KrSD2dbCzQ8
https://groups.google.com/d/topic/net.jokes/KrSD2dbCzQ8

	Abstract
	1 Introduction
	2 Hamilton's Opening Statement
	2.1 Remy vs. PCC vs. BBR
	2.2 Generating an accurate network model of the Internet might not be feasible
	2.3 You cannot reach a global optimum at Internet scale
	2.4 Rate-control via online learning is a promising direction

	3 Burr Speaks in Opposition
	3.1 Local optimization = lousy outcomes
	3.2 Every scheme embodies assumptions about the network

	4 Hamilton Replies
	4.1 White-box vs. black-box approaches are inherently different design philosophies
	4.2 Optimizing in wonderland?
	4.3 What's next?

	5 Burr's Conclusion
	6 Hamilton's Conclusion
	Acknowledgments
	References

