
Sidecar: In-Network Performance Enhancements
in the Age of Paranoid Transport Protocols

Gina Yuan, David K. Zhang, Matthew Sotoudeh, Michael Welzl†, Keith Winstein
Stanford University and University of Oslo†

ABSTRACT
In response to ossification and privacy concerns, post-TCP
transport protocols such as QUIC are designed to be “para-
noid”—opaque to meddling middleboxes by encrypting and
authenticating the header and payload—making it impossible
for Performance-Enhancing Proxies (PEPs) to provide the
same assistance as before. We propose a research agenda
towards an alternate approach to PEPs, creating a sidecar
protocol that is loosely-coupled to the unchanged and opaque,
underlying transport protocol. The key technical challenge to
sidecar protocols is how to usefully refer to the packets of the
underlying connection without ossification. We have made
progress on this problem by creating a tool we call a quACK
(quick ACK), a concise representation of a multiset of numbers
that can be used to efficiently decode the randomly-encrypted
packet contents a sidecar has received. We implement the
quACK and discuss how to achieve several applications with
this approach: alternate congestion control, ACK reduction,
and PEP-to-PEP retransmission across a lossy subpath.

CCS CONCEPTS
• Networks → Network protocols; Network protocol design;
Transport protocols; Middle boxes / network appliances;

KEYWORDS
networks, network protocols, transport protocols, middle-
boxes, performance-enhancing proxy (PEP), QUIC

ACM Reference Format:
Gina Yuan, David K. Zhang, Matthew Sotoudeh, Michael Welzl†,
Keith Winstein. 2022. Sidecar: In-Network Performance Enhance-
ments in the Age of Paranoid Transport Protocols. In The 21st ACM
Workshop on Hot Topics in Networks (HotNets ’22), November 14–
15, 2022, Austin, TX, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3563766.3564113

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets ’22, November 14–15, 2022, Austin, TX, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to
the Association for Computing Machinery.
ACM ISBN 978-1-4503-9899-2/22/11. . . $15.00
https://doi.org/10.1145/3563766.3564113

1 INTRODUCTION
In the 1970s, the Internet’s architects created TCP and IP as
different beasts. IP is spoken and understood by every host
and router. But in the canonical model, TCP is implemented
only in hosts [4, 28], while routers and other network com-
ponents simply exchange IP datagrams on a best-effort basis
without regard to their payloads.

TCP/IP benefited greatly from its end-to-end principles, but
in practice, the “right way” to implement TCP can depend on
the particulars of the network path—particulars that hosts are
typically unaware of. An appropriate retransmission timeout
or congestion-control scheme for a heavily multiplexed wired
network wouldn’t be ideal for paths that include a high-delay
satellite link, Wi-Fi with bulk ACKs and frequent reordering,
or a cellular WWAN [10, 22]. Moreover, end-to-end retrans-
missions can be wasteful when a long network path includes
a single hop with nontrivial noncongestive loss.

By the 1990s, many networks had broken from the canon-
ical model by deploying in-network TCP accelerators, also
known as Performance-Enhancing Proxies [2, 3, 5, 6, 8, 11,
12, 17, 24, 26]. These “PEPs” can insert themselves in the
middle of each TCP connection to change the network be-
havior over a specific subpath (Fig. 1(a)). Because TCP isn’t
encrypted or authenticated, PEPs achieve this without the
cooperation or knowledge of end hosts. A 2011 study esti-
mated that 25% of Internet paths include a TCP PEP [13],
and it’s likely that many users benefit—especially those on
unusual or innovative access networks for which the default
congestion-control or retransmission behavior of a faraway
server isn’t well-tuned.

PEPs also carry a big cost: protocol ossification [25]. When
a middlebox inserts itself in a connection and enforces its
preconceptions about what an IP payload represents, it can
thwart the transport protocol’s evolution, dropping traffic
between hosts that try to speak an upgraded version of the
protocol. TCP PEPs have hindered the deployment of new
TCP options and behaviors, such as multipath TCP [27].

In response to this ossification, and to an increased em-
phasis on privacy and security, post-TCP transport protocols
are designed to be “paranoid”—opaque and impervious to
meddling middleboxes, by encrypting and authenticating the
transport header and payload. The most popular of these is
QUIC [16], found in billions of deployed Web browsers and
millions of webservers [29], as well as encrypted protocols
used by applications such as Signal, Zoom, and Mosh.

QUIC’s encryption and authentication mean that connec-
tions can’t be “split” by a middlebox without host cooperation,

https://doi.org/10.1145/3563766.3564113
https://doi.org/10.1145/3563766.3564113

HotNets ’22, November 14–15, 2022, Austin, TX, USA Yuan et al.

Client host Server host
Proxy

TCP client TCP serverTCP
server

TCP
client

(a) Connection splitting with a traditional PEP.

Client host Server host

Sidecar

Proxy

Hash
Influence

rate

QUIC client
application

Sidecar

QUIC server
application

Sidecar

TCP/QUIC connection quACKs Local interface

(b) Congestion control division with the sidecar.

Figure 1: Existing PEPs vs. the proposed sidecar. The
transport connection is not interrupted in case (b).

nor can middleboxes understand the sequence or acknowledg-
ment numbers in transit. This makes it impossible for a PEP
to transparently adjust a flow’s loss-detection, retransmission,
or congestion-control scheme.

What about a “non-transparent” PEP that announces its
presence and offers to help? Past work has shown how “para-
noid” transport protocols could be redesigned to permit PEPs [9,
14]. For a protocol like QUIC, this would probably involve
redesigning the system of cryptographic keys and header en-
cryption so that a host could credential a PEP for limited
access to some transport headers (e.g., sequence and acknowl-
edgment numbers) without compromising other security prop-
erties. This would add considerable complexity and would
tightly couple the transport protocol to a PEP’s possible needs.
We believe this would be a tough row to hoe.

In this paper, we propose a research agenda towards an al-
ternate approach to PEP assistance for next-generation trans-
port protocols. We believe it is possible to leave the transport
protocol unchanged on the wire, and instead create a second
protocol—a “sidecar” protocol—that is only loosely coupled
to the underlying transport protocol, and is spoken between a
PEP and one or both hosts, or between two PEPs (Fig. 1(b)).
PEPs could volunteer their assistance to hosts, and hosts
would accept that assistance or not, without credentialing the
PEP, without compromising the underlying security and relia-
bility properties of the protocol, and without tightly coupling
the sidecar protocol to the underlying host-to-host transport
protocol. Several applications could be achieved with this
approach, e.g., alternate congestion control, ACK reduction,
and PEP-to-PEP retransmission across a lossy subpath.

In our view, the key technical challenge that has to be
solved to enable any of these sidecar protocols is the follow-
ing: if sequence numbers are encrypted, and if the PEP has
no special credentials to access them, then how can a side-
car protocol usefully refer to the packets of the underlying

Construction: 𝑅 → quACK

Decoding: 𝑆 + quACK → 𝑆 \ 𝑅

Figure 2: QuACK interface, where 𝑅 and 𝑆 are the multi-
sets of received and sent elements, respectively.

transport connection? More specifically: how can a PEP effi-
ciently express a “cumulative ACK + selective ACK” over
encrypted sequence numbers?

We have made progress on solving this problem by creating
a tool we call a “quACK” (Fig. 2). A quACK is a concise
representation of a multiset of numbers that correspond to the
randomly-encrypted packet headers a sidecar has received.
We refer to packets by these random-looking identifiers, as
opposed to any protocol-level sequence number. Given a
quACK and a list of candidate packets a sidecar has sent,
the sidecar can efficiently determine exactly which subset of
those packets have yet to be received.

Designing such a quACK is non-trivial. One strawman
solution could, similar to [21, 23], echo the identifier of every
received packet to the sender, who calculates a set difference
with its sent packets to find the missing packets. This approach
uses extraordinary bandwidth. Another strawman returns a
hash of a sorted concatenation of all the received packets, and
the sender hashes every subset of sent packets of the same
size until it finds the correct subset. This approach can easily
become computationally infeasible.

In contrast, our algorithm leverages related theoretical work
in straggler identification [7] to transfer the minimal amount
of data for the sender to efficiently identify its subset of miss-
ing packets. In particular, for 𝑛 = 1000 sent packets and up
to 𝑡 = 20 missing packets, we implement a quACK with the
following metrics:

(1) 82 bytes transmitted from the receiver to the sender,
(2) ≈100 ns additional processing time per packet,
(3) <100 us decoding time from quACK and list of candi-

date packets to the missing packets,
(4) 0.000023% chance that a candidate packet has an inde-

terminate result.
In the rest of the paper, we describe three sidecar protocols
that leverage the quACK to enable performance enhance-
ments for next-generation transport protocols (§2). We dis-
cuss the quACK primitive and its algorithms in more detail
(§3). We demonstrate that our implementation of the quACK
can meet the practical performance constraints of our sidecar
protocols (§ 4). Finally, we discuss a research agenda and
conclude (§5).

2 SIDECAR PROTOCOLS
To prevent the same ossification that emerged from existing
PEPs, proxies on a connection’s path should act as regular
routers for packets between the end hosts—they can with-
hold or delay packets, but they cannot modify the packets or
make decisions based on their contents. The server end host
primarily sends data to the client end host.

Sidecar Protocols HotNets ’22, November 14–15, 2022, Austin, TX, USA

Name Proxy Role Server Role Client Role

Congestion Con-
trol Division

Send and receive quACKs. Determine the downstream sending rate. Receive quACKs. Determine
the congestion window.

Send quACKs.

ACK Reduction Send quACKs. Receive quACKs. Move the
sending window.

None.

In-Network
Retransmission

Send and receive quACKs. Buffer and retransmit packets when
necessary. Set the communication frequency based on the loss ratio.

None. None.

Table 1: Example proposed sidecar protocols.

To enable performance enhancements, we propose that
hosts and proxies have separate sidecars that communicate
with other sidecars via the sidecar protocol to influence the
E2E-encrypted base protocol, without ossification. In particu-
lar, proxies should still be regular routers, although end hosts
can update the base protocol due to their explicit consent.

Sidecars communicate with each other by sending quACKs
(quick ACKs) (Fig. 2). They can also configure sidecar pro-
tocol parameters with each other such as the communication
frequency and properties of the quACK. We describe the
quACK primitive and these algorithms in detail in §3.

A key contribution of the quACK is that it can express
the same information as cumulative and selective TCP ACKs
without any visiblity into the raw, protocol-level sequence
numbers. We further show that with just this information,
we can provide three different performance enhancements to
QUIC as sidecar protocols that do not rely on specific protocol
fields (Table 1). These protocols demonstrate that quACKs
can enable PEP functionality previously thought to be im-
possible in the E2E-encrypted setting, opening up a research
agenda for in-network acceleration without ossification.

2.1 Congestion Control Division
Servers can sometimes transmit data through a PEP faster than
to the client directly, and splitting an end-to-end connection
into multiple segments enables the PEP to better adjust its
sending rate or implement a different kind of congestion
control on each segment entirely. However, PEPs cannot spoof
and split connections that use QUIC, and proposed QUIC
standards [19, 20] cannot be applied generally to other E2E-
encrypted protocols, unlike the sidecar.

QuACKs make it possible to perform PEP-style connection-
splitting for congestion control via a sidecar protocol, even
when the base protocol is E2E-encrypted. In Fig. 1(b), the
client sends quACKs to the proxy, which separately sends
quACKs to the server. On each segment, a quACK can be sent
e.g., at a fixed interval such as once per RTT. The quACK
enables the sender on each segment to determine exactly
which packets have yet to be received since the last quACK.

The sidecars use information derived from quACKs to in-
fluence the sending rate on the downstream segment. For
example, the proxy can drain a buffer of unforwarded QUIC
packets at a slower rate if it detects a large number of packets
have yet to be received. The server end host, which can mod-
ify the base protocol, can decrease the congestion window

(cwnd). The server no longer needs to rely on end-to-end
ACKs to make decisions to increase the cwnd, though these
ACKs still govern the retransmission logic.

The only changes that need to be made to the end hosts
are installing a library on the client to generate quACKs, and
on the server to decode quACKs and adjust the cwnd. No
changes need to be made to the QUIC protocol specification.

2.2 ACK Reduction

Client host Server host

Sidecar

Proxy

Hash

QUIC server
application

Sidecar

QUIC client
application

TCP connection quACKs Local interface

Figure 3: Sidecar ACK reduction.

A TCP PEP proposal for ACK reduction [18] drastically
reduces the number of ACKs a client needs to transmit by
having the PEP acknowledge packets on behalf of the client.
A strawman proxy for E2E-encrypted protocols could reflect
every packet it receives from the server, but this is even worse
than client ACKs, which can accumulate sequence numbers.
Fig. 3 shows how a proxy sidecar could provide the same
functionality for E2E-encrypted protocols by using quACKs,
which are agnostic of protocol-level sequence numbers but
can concisely represent the received packets.

The sidecar protocol effectively treats the quACKs as client
ACKs. The proxy can send quACKs, e.g., every other packet
such as in TCP, much more frequently than in the protocol for
congestion control (§2.1). The proxy does not need to read or
modify QUIC packet contents, and the client does not need
to participate in the sidecar protocol at all. This protocol can
enable the server to move its sending window ahead more
quickly than if it had to wait for ACKs from the client an
additional hop away. The client can also transmit fewer ACKs
using the proposed ACK frequency extension in QUIC [15],
reducing network congestion.

Though these quACKs generally replace ACKs from the
client, end-to-end ACKs have some special roles that the side-
car protocol cannot fulfill. For example, end-to-end ACKs
may convey Explicit Congestion Notification (ECN) infor-
mation. Also, quACKs do not inform about packets that are

HotNets ’22, November 14–15, 2022, Austin, TX, USA Yuan et al.

dropped from the proxy to the client. As a solution, the server
can still rely on quACKs in most cases, and use the less
frequent end-to-end ACKs when retransmission is necessary.

2.3 In-Network Retransmission

Sender-side Proxy

Sidecar

Client host Server hostReceiver-side Proxy

Sidecar

QUIC server
application

QUIC client
application

TCP connection quACKs Local interface

Figure 4: In-network retransmission with the sidecar.

In Fig. 4, sidecar instances on two routers are statically
configured to retransmit packets in case packet loss happens
on the path segment between them; such a mechanism was
recently proposed to the IETF [23]. In-network retransmission
can be beneficial when the RTT between the two routers
is significantly smaller than the end-to-end RTT [1]. The
proposed mechanism uses per-packet hashes to ACK every
packet, similar to the strawman proxy, adding unnecessarily
large overhead. Different from quACKs, such hashes are not
cumulative, and hence lost ACKs are not accounted for.

The receiver-side proxy on the left-hand side of Fig. 4
transmits a quACK to the sender-side proxy on the right-hand
side. The sender-side proxy does not need to read or modify
packet contents, just hold packets in a buffer in case they
need to be retransmitted. The interval at which the receiver-
side proxy produces and transmits the quACK is flexible,
as it should ideally depend on the loss ratio. The sender-
side proxy determines the loss ratio, and can configure the
communication frequency accordingly.

3 QUACK
As the previous section has illustrated, the senders and re-
ceivers of quACKs in a sidecar protocol generally need to be
able to identify packets, concisely acknowledge their recep-
tion, and efficiently decode the acknowledgments—but we
were previously vague about what the algorithms looked like.

We now elaborate on these algorithms. In this section we
describe a construction of the quACK based on solving a sys-
tem of power sum polynomials. Our construction is adapted
from a solution to the related problem of straggler identifi-
cation [7]. After presenting the algorithm, we discuss how
senders and receivers would practically apply it to transmit
and decode quACKs in sidecar protocols.

3.1 The QuACK Problem and Power Sums
We describe the quACK problem and a solution based on
solving a system of power sum polynomial equations.

Let a sender send a multiset of elements (which are in-
tegers) 𝑆 to a receiver. At any given time the receiver has
received a subset 𝑅 ⊆ 𝑆 of the sent elements. We would like
the receiver to communicate a small amount of information to
the sender, who then efficiently decodes the missing elements,

i.e., the set difference 𝑆 \ 𝑅. We call this small amount of
information the “quACK”, and the problem is: what is in a
quACK and how do we decode it?

Consider the simplest case, when the receiver is only miss-
ing a single element. The receiver can communicate the sum∑

𝑥∈𝑅 𝑥 of the received elements to the sender. The sender
computes the sum

∑
𝑥∈𝑆 𝑥 of the sent elements and subtracts

the sum from the receiver, calculating:∑︁
𝑥∈𝑆

𝑥 −
∑︁
𝑥∈𝑅

𝑥 =
∑︁

𝑥∈𝑆\𝑅
𝑥,

which is the sum of elements in the set difference. In this case,
the sum is exactly the value of the missing element.

In fact, we can generalize this scheme to any number of
missing elements 𝑚. Instead of transmitting only a single
sum, the receiver communicates the first𝑚 power sums to the
sender, where the 𝑖-th power sum of a multiset 𝑅 is defined as∑

𝑥∈𝑅 𝑥
𝑖 . The sender then computes the first 𝑚 power sums

of 𝑆 and calculates the respective differences 𝑑𝑖 for 𝑖 ∈ [1,𝑚],
producing the following system of equations:

∑︁
𝑥∈𝑆\𝑅

𝑥𝑖 = 𝑑𝑖 | 𝑖 ∈ [1,𝑚]
 .

Efficiently solving these𝑚 power sum polynomial equations
in𝑚 variables is a well-understood algebra problem [7]. The
solutions to these equations are exactly 𝑥 ∈ 𝑆 \ 𝑅.

Since the receiver does not know 𝑚 ahead of time, both
parties can also maintain a count of elements accumulated
in the power sums since the beginning of the connection. To
avoid two rounds of communication to first determine𝑚 and
then calculate the 𝑚 power sums to send, the receiver can
instead communicate a quACK that contains 𝑡 power sums
for some threshold 𝑡 ≥ 𝑚, and the count. The sender can then
determine𝑚 based on its own count and use the first𝑚 power
sums. Note that if 𝑡 < 𝑚, the decoding process fails.

3.2 Using QuACKs in a Sidecar Protocol
In a sidecar protocol, a sender sends a multiset of packets 𝑆
and a receiver receives a subset 𝑅 ⊆ 𝑆 . We think of packets
as numbers, e.g., 32 bits from a randomly-encrypted QUIC
header, and call these numbers the identifiers. The receiver
communicates a quACK, which consists of 𝑡 power sums for
some threshold 𝑡 , and a count of accumulated packets, to the
sender. The sender then decodes the packets in 𝑆 \𝑅 using the
technique described above.

The receiver may configure several protocol parameters:
(1) a threshold number of missing packets 𝑡 ,
(2) the number of bits 𝑏 used in the identifier,
(3) the communication frequency of quACKs.

Receivers select 𝑡 based on the communication frequency,
and the estimated bandwidth usage and loss rate on the link.

When the sidecar protocol is initiated, both the sender and
receiver initialize 𝑡 power sums to 0. To reduce decoding time,
we amortize power sum calculation: The sender updates the
sums before sending each packet, and the receiver updates

Sidecar Protocols HotNets ’22, November 14–15, 2022, Austin, TX, USA

them when receiving each packet. Both parties also main-
tain a count, and the sender maintains a log of sent packets.
To bound the size of the quACK while preserving a unique
solution, all power sum arithmetic is performed modulo the
largest prime that can be expressed in 𝑏 bits.

When the receiver is ready to send a quACK, it sends the
𝑏 · 𝑡 bits corresponding to its 𝑡 power sums, and the count,
to the sender. The sender subtracts the received count from
its own count to determine the number of missing packets
𝑚. Note that the number of bits used to represent the count
only needs to be big enough to represent this difference, and
the count itself can wraparound. If the difference also wraps
around, then the polynomial equations either cannot be solved
or the solutions do not correspond to packets in 𝑆 .

The sender decodes the missing packets in its log by solv-
ing the first𝑚 polynomial equations derived from the quACK,
mapping the identifiers to their original packets. If 𝑏 is too
small, a decoded identifier may correspond to multiple candi-
date missing packets. The sender considers the fate of these
packets indeterminate, and interprets the results based on the
specific sidecar protocol. If 𝑡 < 𝑚, decoding fails because
there are not enough equations to solve.

3.3 Practical Considerations
There are some practical considerations when using a
quACK and setting parameters. We discuss how small modi-
fications to the quACK can address these considerations.

Resetting the threshold. The threshold parameter should
only apply to the number of missing packets since the last re-
ceived quACK, rather than over the entire connection. When
decoding missing packets, the sender assumes they will never
be received and removes them from its log and power sums.
Thus these packets will not be counted in the threshold of the
next received quACK.

Re-ordered packets. Packets may also be re-ordered, causing
missing packets to later be received. Thus discarding missing
packets can be problematic. The sender can buffer missing
packets for a period of time before actually deleting them
from the log to allow the missing packet to be received.

In-flight packets. The sender may have logged many more
packets since when the receiver initially transmitted the quACK.
Say the sender has logged 𝑛′ packets and the quACK includes
𝑛 packets where 𝑛′ − 𝑛 > 𝑡 . Rather than increasing 𝑡 , the
sender can temporarily truncate the log suffix such that the
log has length 𝑛 + 𝑡 , considering the truncated packets to be
in transit. When the sender decodes the remaining log, it con-
siders any continuous suffix of missing packets to also be in
transit, instead of actually missing.

Exceeding the threshold. If the number of missing packets
exceeds the threshold, the sender and receiver must reset the
connection if they wish to use the quACK.

Dropped quACKs. The implementation is resilient to

quACKs that are dropped in transmission, since the power
sums in both the sender and receiver are cumulative.

4 EVALUATION
We demonstrate that our implementation of the quACK based
on power sums can both concisely represent and efficiently
decode the set of received packets from a list of sent packets.
Our code is shared at https://github.com/ygina/quack.

We evaluate our implementation on a 2019 MacBook Pro
running macOS Monterey v12.4 with a 2.4 GHz 8-Core Intel
i9 processor and 32 GB memory, representative of a client
end host. Our code, including all benchmarking code and the
two strawman solutions, is written in 1408 lines of C++.

A quACK that represents 𝑛 = 1000 sent packets and up to
𝑡 = 20 missing packets with 𝑏 = 32-bit identifiers takes 106
us to construct and 61 us to decode, and requires 82 bytes
to be transferred from the receiver to the sender. Using 32-
bit identifiers, there is a 0.000023% chance that a candidate
packet has an indeterminate result. In comparison, our two
strawmans use extraordinary bandwidth or computation.

We additionally show how modifying 1) the threshold num-
ber of missing packets 𝑡 and 2) the number of identifier bits
𝑏 affects these metrics, and discuss how an end host could
select these parameters and 3) the communication frequency
that affects 𝑛 based on the specific sidecar protocol.

4.1 Comparison to Strawman QuACKs

Construc- Decoding QuACK
tion Time Time Size (bits)

Strawman 1 222 us 126 us 𝑏 · 𝑛 = 32000
Strawman 2 387 ns ≈7e+06 days 256 + 𝑐 = 272
Power Sums 106 us 61 us 𝑡 · 𝑏 + 𝑐 = 656

Table 2: Strawmans compared to the power sum QuACK,
using 𝑛 = 1000, 𝑡 = 20, and 𝑐 = 16 bits to store the count.
All use 𝑏 = 32-bit identifiers, which results in a 0.000023%
chance that a candidate packet has an indeterminate re-
sult. Average of 100 trials with warmup.

The strawman quACKs described in § 1 are unrealistic,
using either extraordinary space or computation (Table 2). In
comparison, the size of our power sum quACK is 82 bytes
(4000 bytes in Strawman 1), and is proportional only to the
threshold. The decoding time of the power sum quACK is 61
us (≈7e+06 days in Strawman 2).

In the following sections, we discuss how modifying the
quACK parameters 𝑡 , 𝑛, and 𝑏 affects these metrics, and ar-
gue how these results put the quACK within the latency and
bandwidth constraints of our three sidecar protocols.

4.2 Configuring QuACK Parameters
Construction Time The construction time is how long it
takes to construct a quACK (with threshold 𝑡) from a list of
𝑛 packets with 𝑏-bit identifiers. Typically, the construction

https://github.com/ygina/quack

HotNets ’22, November 14–15, 2022, Austin, TX, USA Yuan et al.

10 20 30 40 50

50

100

150

200

250

16 bits 24 bits 32 bits

20 40
Threshold (n=1000)

100

200

Figure 5: Construction (us).

0 10 20
Missing Packets (n=1000,t=20)

0

20

40

60

Figure 6: Decoding (us).

time is directly proportional to 𝑡 , as it uses one modular mul-
tiplication and addition per end host and for each power sum
determined by 𝑡 (Fig. 5). The value of 𝑏 determines which
hardware instructions and, in the 16-bit case, pre-computation
optimizations the arithmetic can use. Our implementation
amortizes construction time (≈100 ns per packet) by updating
the power sums as each packet is sent and received.

Decoding Time The decoding time is how long it takes to
decode𝑚 missing packets from a list of 𝑛 packets with 𝑏-bit
identifiers, given a quACK. It is directly proportional to 𝑚,
which is at most 𝑡 (Fig. 6). Decoding involves calculating the
coefficients of a polynomial with degree𝑚, and solving the
polynomial. For a small 𝑛, such as here, it is more efficient
to plug in all candidate roots than to solve the roots directly.
Again, 𝑏 determines the hardware and pre-computation opti-
mizations. We expect stable links to mostly not be missing
packets, which takes virtually no time to decode.

QuACK Size The quACK size is the number of bits trans-
mitted from the receiver to the sender. Our implementation
uses 𝑏 · 𝑡 + 𝑐 = 656 bits, where 𝑐 is the number of bits used to
hold the number of missing packets. Note 𝑐 should be at least
log2 𝑡 , or a little larger to avoid having to detect wraparound.

Collision Probability The collision probability is the prob-
ability that a randomly-chosen 𝑏-bit identifier in a list of
𝑛 packets maps to more than one packet in that list. Thus
if packets with that identifier have both been received and
dropped, the fate of those packets is considered indeterminate.
Note that collisions are known to the sender beforehand. If
we assume that identifiers are randomly-distributed, which is
the case in randomly-encrypted QUIC packet headers, this
probability is equal to 1−(1−1/2𝑏)𝑛−1. The more bits we use,
the more likely we are able to disambiguate actual missing
packets from their candidates. When 𝑛 = 1000, using 32 bits
results in an almost negligible chance of collision while using
16 bits results in a 1.5% chance (Table 3).

Identifier Bits 8 16 24 32
Collision Prob. 0.98 0.015 6.0e-05 2.3e-07

Table 3: Collision probabilities for 𝑛 = 1000.

4.3 Selecting the Communication Frequency
We discuss how a sender might select a communication fre-
quency for each of our three proposed sidecar protocols.

In congestion control division, which unlike TCP does not
ACK for reliability, we quACK only once per RTT. Assuming
a 60ms RTT on a 200 Mbps link and a maximum handled 2%
loss rate, at 1500 bytes/packet (a typical MTU), this is ≈1000
sent packets with 20 missing packets per RTT, the parameters
in §4.1. The added latency of the quACK is the amortized
construction time, or ≈100 ns per packet.

In ACK reduction, the receiver could quACK e.g., every
𝑛 = 32 packets, similar to TCP which ACKs every other
packet. However, the quACK works for encrypted protocols.
To reduce the quACK size, we can omit 𝑐, which is always 𝑛.
Setting 𝑡 < 𝑛 uses less bandwidth compared to Strawman 1.

The quACK frequency for in-network retransmission should
change dynamically based on the loss ratio. The sender who
configures this frequency could target a constant 𝑡 = 20 miss-
ing packets per quACK. If the link is relatively stable, the
sender-side proxy could decrease the frequency through the
sidecar protocol, which the receiver-side proxy applies by the
subsequent RTT. Only 𝑛 changes per quACK, and for large 𝑛,
we can use the decoding algorithm that depends only on 𝑡 .

5 CONCLUSION
Sidecar protocols provide PEP-like functionality to “paranoid”
transport protocols, without ossification. We describe a primi-
tive called a quACK (quick ACK) that allows a middlebox to
concisely and efficiently acknowledge an arbitrary subset of
E2E-encrypted packets, enabling sidecar protocols.

For sidecar protocols to become a reality, several questions
must still be answered: How do we handle adversarial prox-
ies? How does an end host discover participating proxies, and
how would a proxy interact with multipath transport proto-
cols? How do we transition in-network accelerators from the
old world of TCP to a new world dominated by “paranoid”
and opaque transport protocols? How do we build client li-
braries that speak the sidecar protocol for a variety of end
hosts including mobile phones, browsers, and IoT devices?

There are also questions that explore the newly-proposed
functional separation: What other sidecar protocols could a
quACK enable, and what similar protocol-agnostic digests
could we design to provide even more enhancements? How
do we further optimize the algorithm and implementation of
the quACK towards nearly-zero overhead quACKing? How
will transport protocols continue to evolve with increasing
privacy and ossification concerns, and how should the role
of in-network accelerators change in response? Answering
such questions will be essential in designing next-generation
transport protocols and middlebox functionality.

ACKNOWLEDGMENTS
We thank Mary Wootters for valuable discussions on error cor-
recting codes. This work was supported in part by NSF grants
2045714, 2039070, 2028733, 1931750, 1918056, 1763256, and
DGE-1656518, DARPA contract HR001120C0107, a Stanford Grad-
uate Fellowship, a Sloan Research Fellowship, and by Google,
Huawei, VMware, Dropbox, Amazon, and Meta Platforms.

Sidecar Protocols HotNets ’22, November 14–15, 2022, Austin, TX, USA

REFERENCES
[1] Runa Barik, Michael Welzl, Peyman Teymoori, Safiqul Islam, and

Stein Gjessing. 2020. Performance Evaluation of In-network Packet
Retransmissions using Markov Chains. In 2020 International Confer-
ence on Computing, Networking and Communications (ICNC). 10–16.
https://doi.org/10.1109/ICNC47757.2020.9049757

[2] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby. 2001.
Performance Enhancing Proxies Intended to Mitigate Link-Related
Degradations. RFC 3135. (June 2001). https://doi.org/10.17487/
RFC3135

[3] C. Caini, R. Firrincieli, and D. Lacamera. 2006. PEPsal: a Performance
Enhancing Proxy designed for TCP satellite connections. In 2006 IEEE
63rd Vehicular Technology Conference, Vol. 6. https://doi.org/10.1109/
VETECS.2006.1683339

[4] D. Clark. 1988. The Design Philosophy of the DARPA Internet Proto-
cols. In Symposium Proceedings on Communications Architectures and
Protocols (SIGCOMM ’88). Association for Computing Machinery,
New York, NY, USA, 106–114. https://doi.org/10.1145/52324.52336

[5] Bryce Cronkite-Ratcliff, Aran Bergman, Shay Vargaftik, Madhusudhan
Ravi, Nick McKeown, Ittai Abraham, and Isaac Keslassy. 2016. Virtu-
alized Congestion Control. In SIGCOMM. ACM, New York, NY, USA,
14.

[6] Paul Davern, Noor Nashid, Cormac J. Sreenan, and Ahmed H. Zahran.
2011. HTTPEP: a HTTP Performance Enhancing Proxy for Satellite
Systems. Int. J. Next Gener. Comput. 2, 3 (2011).

[7] David Eppstein and Michael T. Goodrich. 2011. Straggler Identification
in Round-Trip Data Streams via Newton’s Identities and Invertible
Bloom Filters. IEEE Trans. Knowl. Data Eng. 23, 2 (2011), 297–306.
https://doi.org/10.1109/TKDE.2010.132

[8] Viktor Farkas, Balázs Héder, and Szabolcs Nováczki. 2012. A Split
Connection TCP Proxy in LTE Networks. In 18th European Conference
on Information and Communications Technologies (EUNICE), Róbert
Szabó and Attila Vidács (Eds.), Vol. LNCS-7479. Springer, Budapest,
Hungary. https://doi.org/10.1007/978-3-642-32808-4_24

[9] Bryan Ford and Janardhan R. Iyengar. 2008. Breaking Up the Transport
Logjam. In 7th ACM Workshop on Hot Topics in Networks - HotNets-
VII, Calgary, Alberta, Canada, October 6-7, 2008, Carey L. Williamson,
David G. Andersen, and Steve D. Gribble (Eds.). ACM SIGCOMM,
85–90. http://conferences.sigcomm.org/hotnets/2008/papers/15.pdf

[10] Prateesh Goyal, Mohammad Alizadeh, and Hari Balakrishnan. 2017.
Rethinking Congestion Control for Cellular Networks. In Proceedings
of the 16th ACM Workshop on Hot Topics in Networks (HotNets-XVI).
Association for Computing Machinery, New York, NY, USA, 29–35.
https://doi.org/10.1145/3152434.3152437

[11] D. A. Hayes, D. Ros, and Ö. Alay. 2019. On the importance of TCP
splitting proxies for future 5G mmWave communications. In IEEE
LCN.

[12] Keqiang He et al. 2016. AC/DC TCP: Virtual Congestion Control
Enforcement for Datacenter Networks. In SIGCOMM. ACM, New
York, USA, 14.

[13] Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh,
Mark Handley, and Hideyuki Tokuda. 2011. Is It Still Possible to
Extend TCP?. In Proceedings of the 2011 ACM SIGCOMM Confer-
ence on Internet Measurement Conference (IMC ’11). Association
for Computing Machinery, New York, NY, USA, 181–194. https:
//doi.org/10.1145/2068816.2068834

[14] Janardhan Iyengar and Bryan Ford. 2009. Flow Splitting with Fate
Sharing in a Next Generation Transport Services Architecture. (2009).
https://doi.org/10.48550/ARXIV.0912.0921

[15] Jana Iyengar and Ian Swett. 2021. QUIC Acknowledgement
Frequency. Internet-Draft draft-ietf-quic-ack-frequency-01. Inter-
net Engineering Task Force. https://datatracker.ietf.org/doc/html/
draft-ietf-quic-ack-frequency-01 Work in Progress.

[16] Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-Based
Multiplexed and Secure Transport. RFC 9000. (May 2021). https:
//doi.org/10.17487/RFC9000

[17] Aman Kapoor, Aaron Falk, Theodore Faber, and Yuri Pryadkin. 2005.
Achieving faster access to satellite link bandwidth. In Proceedings
IEEE 24th Annual Joint Conference of the IEEE CS and ComSoc.,
Vol. 4. IEEE.

[18] Dzmitry Kliazovich, Simone Redana, and Fabrizio Granelli. 2012.
Cross-Layer Error Recovery in Wireless Access Networks: The ARQ
Proxy Approach. Int. J. Commun. Syst. 25, 4 (apr 2012), 461–477.
https://doi.org/10.1002/dac.1271

[19] Mike Kosek, Tanya Shreedhar, and Vaibhav Bajpai. 2021. Beyond
QUIC v1: A First Look at Recent Transport Layer IETF Standardization
Efforts. IEEE Communications Magazine 59, 4 (2021), 24–29. https:
//doi.org/10.1109/MCOM.001.2000877

[20] Zsolt Krämer, Mirja Kühlewind, Marcus Ihlar, and Attila Mihály. 2021.
Cooperative Performance Enhancement Using QUIC Tunneling in 5G
Cellular Networks. In Proceedings of the Applied Networking Research
Workshop (ANRW ’21). Association for Computing Machinery, New
York, NY, USA, 49–51. https://doi.org/10.1145/3472305.3472320

[21] Zsolt Krämer, Sándor Molnár, Marcus Pieskä, and Attila Mihály. 2020.
A Lightweight Performance Enhancing Proxy for Evolved Protocols
and Networks. In 2020 IEEE 25th International Workshop on Computer
Aided Modeling and Design of Communication Links and Networks
(CAMAD). 1–6. https://doi.org/10.1109/CAMAD50429.2020.9209304

[22] Nicolas Kuhn, François Michel, Ludovic Thomas, Emmanuel
Dubois, Emmanuel Lochin, Francklin Simo, and David
Pradas. 2021. QUIC: Opportunities and threats in SAT-
COM. International Journal of Satellite Communications
and Networking (2021). https://doi.org/10.1002/sat.1432
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/sat.1432

[23] Yizhou Li, Xingwang Zhou, Mohamed Boucadair, Jianglong Wang,
and Fengwei Qin. 2020. LOOPS (Localized Optimizations on Path Seg-
ments) Problem Statement and Opportunities for Network-Assisted Per-
formance Enhancement. Internet-Draft draft-li-tsvwg-loops-problem-
opportunities-06. Internet Engineering Task Force. https://datatracker.
ietf.org/doc/html/draft-li-tsvwg-loops-problem-opportunities-06 Work
in Progress.

[24] A. Mihály et al. 2017. Supporting multi-domain congestion control by
a lightweight PEP. In 2017 IINTEC.

[25] G. Papastergiou et al. 2017. De-Ossifying the Internet Transport Layer:
A Survey and Future Perspectives. IEEE Communications Surveys
Tutorials (2017).

[26] Michele Polese, Marco Mezzavilla, Menglei Zhang, Jing Zhu, Sundeep
Rangan, Shivendra Panwar, and Michele Zorzi. 2017. milliProxy: A
TCP proxy architecture for 5G mmWave cellular systems. In 2017 51st
Asilomar Conference on Signals, Systems, and Computers. 951–957.
https://doi.org/10.1109/ACSSC.2017.8335489

[27] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio
Honda, Fabien Duchene, Olivier Bonaventure, and Mark Handley. 2012.
How Hard Can It Be? Designing and Implementing a Deployable
Multipath TCP. In Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation (NSDI’12). USENIX
Association, USA, 29.

[28] J. H. Saltzer, D. P. Reed, and D. D. Clark. 1984. End-to-End Arguments
in System Design. ACM Trans. Comput. Syst. 2, 4 (nov 1984), 277–288.
https://doi.org/10.1145/357401.357402

[29] Johannes Zirngibl, Philippe Buschmann, Patrick Sattler, Benedikt
Jaeger, Juliane Aulbach, and Georg Carle. 2021. It’s over 9000: Analyz-
ing Early QUIC Deployments with the Standardization on the Horizon.
In Proceedings of the 21st ACM Internet Measurement Conference.
Association for Computing Machinery, New York, NY, USA, 261–275.
https://doi.org/10.1145/3487552.3487826

https://doi.org/10.1109/ICNC47757.2020.9049757
https://doi.org/10.17487/RFC3135
https://doi.org/10.17487/RFC3135
https://doi.org/10.1109/VETECS.2006.1683339
https://doi.org/10.1109/VETECS.2006.1683339
https://doi.org/10.1145/52324.52336
https://doi.org/10.1109/TKDE.2010.132
https://doi.org/10.1007/978-3-642-32808-4_24
http://conferences.sigcomm.org/hotnets/2008/papers/15.pdf
https://doi.org/10.1145/3152434.3152437
https://doi.org/10.1145/2068816.2068834
https://doi.org/10.1145/2068816.2068834
https://doi.org/10.48550/ARXIV.0912.0921
https://datatracker.ietf.org/doc/html/draft-ietf-quic-ack-frequency-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-ack-frequency-01
https://doi.org/10.17487/RFC9000
https://doi.org/10.17487/RFC9000
https://doi.org/10.1002/dac.1271
https://doi.org/10.1109/MCOM.001.2000877
https://doi.org/10.1109/MCOM.001.2000877
https://doi.org/10.1145/3472305.3472320
https://doi.org/10.1109/CAMAD50429.2020.9209304
https://doi.org/10.1002/sat.1432
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/sat.1432
https://datatracker.ietf.org/doc/html/draft-li-tsvwg-loops-problem-opportunities-06
https://datatracker.ietf.org/doc/html/draft-li-tsvwg-loops-problem-opportunities-06
https://doi.org/10.1109/ACSSC.2017.8335489
https://doi.org/10.1145/357401.357402
https://doi.org/10.1145/3487552.3487826

	Abstract
	1 Introduction
	2 Sidecar Protocols
	2.1 Congestion Control Division
	2.2 ACK Reduction
	2.3 In-Network Retransmission

	3 QuACK
	3.1 The QuACK Problem and Power Sums
	3.2 Using QuACKs in a Sidecar Protocol
	3.3 Practical Considerations

	4 Evaluation
	4.1 Comparison to Strawman QuACKs
	4.2 Configuring QuACK Parameters
	4.3 Selecting the Communication Frequency

	5 Conclusion
	References

