
Expressive Policies For Microservice Networks
Karuna Grewal
Cornell University

kgrewal@cs.cornell.edu

P. Brighten Godfrey
University of Illinois

Urbana-Champaign and VMware
pbg@illinois.edu

Justin Hsu
Cornell University

justin@cs.cornell.edu

ABSTRACT
Microservice-based application deployments need to admin-
ister safety properties while serving requests. However, to-
day such properties can be specified only in limited ways
that can lead to overly permissive policies and the potential
for illegitimate flow of information across microservices, or
ad hoc policy implementations.
We argue that a range of use cases require safety prop-

erties for the flow of requests across the whole microser-
vice network, rather than only between adjacent hops. To
begin specifying such expressive policies, we propose a sys-
tem for declaring and deploying service tree policies. These
policies are compiled down into declarative filters that are
inserted into microservice deployment manifests. We use a
light-weight dynamic monitor based enforcement mecha-
nism, using ideas from automata theory. Experiments with
our preliminary prototype show that we can capture a wide
class of policies that we describe as case studies.

CCS CONCEPTS
• Networks → Network manageability; • Security and
privacy → Logic and verification;

KEYWORDS
Mircroservices; Service-mesh; Security Automata.
ACM Reference Format:
Karuna Grewal, P. Brighten Godfrey, and Justin Hsu. 2023. Expres-
sive Policies For Microservice Networks. In Proceedings of The 22nd
ACM Workshop on Hot Topics in Networks (HotNets’23). ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3626111.3628181

1 INTRODUCTION
Microservice-based application design offers separation of
concerns between the components of the application. This

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
HotNets’23, November 28-29, 2023, Cambridge, Massachusetts
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0415-4/23/11.
https://doi.org/10.1145/3626111.3628181

design enables flexible deployment with the configuration
changing and scaling on the fly, and independent develop-
ment of microservices by different teams. Each microservice
exposes its functionalities over a well-defined interface for
other microservices to consume, and a typical request pro-
cessing involves many such interactions among a fleet of
microservices. This communication pattern makes microser-
vice interface a suitable granularity to express and enforce
communication policies.

Several systems are used today to implement communica-
tion policies between microservices. Kubernetes clusters use
a container-network interface (CNI) plugin (e.g., Calico [13],
Cilium [4]) to set up network connectivity, e.g., allocating IP
addresses to containers and setting up any necessary virtual
communication tunnels. These CNI features can also be used
to enforce policies by restricting communication between
API endpoints. Service meshes act as a layer 7 proxy, inter-
cepting all incoming and outgoing service traffic, and thus
have access to more information. Specifically, the service
mesh’s sidecar proxies (e.g., Envoy [5]) understand HTTP
and can see API endpoints and parameters – and can thus
allow or block communication between microservices using
finer grained conditions on the specific API call.

The above systems can, however, only control single-hop
interactions: clients sending requests to certain API end-
points. Single-hop policies do not consider the rich structure
of microservice interactions: a request produces a service
tree of API calls to other microservices, which in turn may
trigger several other requests. As a result, some desirable
policies may not be possible to specify using single hop poli-
cies, missing the opportunity to protect against illegitimate
flow of requests or concisely express the actual intent.
This paper explores the need for more expressive safety

properties for network communication in microservice de-
ployments. In addition to single-hop policies, we consider
policies over the service tree associated with an API call.
We present and discuss several example service tree poli-
cies: indirect connectivity, intermediate service interactions,
and fine-tuned traffic management. Such fine-grained poli-
cies can be used by cluster administrators to improve safety
of deployments, while also specifying higher-level policies
(e.g., “no request from Internet clients should ever lead to a
WRITE call to a certain database”) that do not refer to specific
one-hop microservice-to-microservice interactions.

https://doi.org/10.1145/3626111.3628181
https://doi.org/10.1145/3626111.3628181

HotNets’23, November 28-29, 2023, Cambridge, Massachusetts Karuna Grewal, P. Brighten Godfrey, and Justin Hsu

To show that service tree policies are feasible to specify,
we propose a regular expression based language to specify
properties over inter-service interactions. Regular expres-
sions have been well-studied as a specification language for
path-based network properties [12]. However, inter-service
interactions in microservices yield a tree of service interac-
tions, so our work adapts ideas from regular expressions to
reason about properties over service trees.

Today there is no easy way to enforce such policies. One
option is to directly implement the safety checks for inter-
service interactions into the microservice application code.
This approach is invasive for existing applications and lacks
the benefits of separating policies from the application. Sep-
arating policies from the application offers modularity and
convenience to application developers, who might rely on
more experienced security team for the security policies. An-
other alternative is to enforce information flow control type
safety properties using taint tracking systems, where the
taints carried by requests and responses are used to prevent
illicit flow of information; this was recently proposed for
serverless applications [1]. However, it requires designing
a security lattice to specify policies, which as we describe
later is not feasible for many properties.

To address these limitations, we present a framework that
compiles policies into traffic filters that configure the Istio [6]
service mesh and filter the incoming requests. Our solution’s
policy enforcement is decoupled from the application besides
assuming that the application propagates request headers
(i.e., headers from incoming requests are copied by the ser-
vice onto resulting outgoing requests). This is feasible for
applications as it is a common pattern used for monitoring
that can be implemented using common distributed tracing
frameworks, like Jaeger [7] and Zipkin [15].
In summary, this paper begins to lay out the subtleties

and scope of safety properties in microservice networks. The
history of policies in the network layer may be instructive:
safety policies and other configurations originally emerged
in low level device configurations, resulting in management
limitations until the advent of SDN. To avoid such pitfalls
and take advantage of the unique opportunities of the service
layer, our goal is to initiate a discussion of the right set of
policies for the emerging domain of service layer networking.

2 MOTIVATING SAFETY POLICIES
Microservices background. Microservice application de-

ployments are typically partitioned across several containers.
The services running in these containers interact by querying
API endpoints using communication protocols, for instance
REST APIs or gRPC running over HTTP.

Our work focuses on safety properties enforceable at the
granularity of the API calls between microservices, which

Figure 1: Example Photo Gallery Application

has become a useful place for cluster administrators to con-
trol communication policy. For example, Kubernetes con-
tainer network interfaces (CNIs) typically allow administra-
tors to define which microservices can talk with each other
[8]. More granular policies are possible if the application
is deployed on a service mesh [2]. A service mesh offloads
common networking functions from applications into side-
cars, which are supporting containers for the microservice’s
main deployment container. Each microservice’s sidecar acts
like a proxy that can handle all request flow in and out of
the microservice instance. Since they understand HTTP and
other protocols, sidecars, like Envoy [5] support L7 policies,
whitelisting or blocking a client from reaching certain other
microservice or API endpoints in some microservice.

2.1 Safety policy use cases
The distributed nature ofmicroservices raises new challenges
for safety properties, which often span multiple microser-
vices. To ground the discussion, we describe a set of safety
policies that might be useful for application deployments.

Photo gallery application. Consider a Flickr-like photo
gallery application in Figure 1. On uploading an image, the
frontend service invokes the face labeling service for iden-
tifying the faces in the image. The application might be
implemented using the following four services:
(1) InitFrontend (init). Initiates the image post-processing.
(2) LabelFaces (label). Labels faces in an image.
(3) FetchFaceTags (fetch). Fetches the set of faces that

an authenticated user is authorized to access. We as-
sume that authorized faces are the ones that have been
previously labeled by the user, so that they cannot get
information about faces that they didn’t already know.

(4) Authenticate (auth). Implements an additional layer
of two-factor authentication around the fetch service.

In this application, a request to the init service initiates
a data scrubbing routine before invoking the label service.
The data scrubbing routine, which scrubs unauthorized set
of face labels, starts with first stage of authentication. For
authentication, the init service invokes the auth service

Expressive Policies For Microservice Networks HotNets’23, November 28-29, 2023, Cambridge, Massachusetts

with the userID and an authentication stage parameter set to
first. This is followed by a request from the init service to
the fetch service, which in turn invokes the auth service to
execute the second stage of authentication before responding
with the set of authorized face labels. init will then invoke
label with these face labels.
We now describe several policies that the application or

cluster administrators may want to enforce.

Policy 0: Service-to-service direct connectivity. A policy
at this granularity will block any direct API call from a given
service to a specified service. For example, an application or
security team might disallow the init service to directly call
the fetch service to minimize unnecessary access.

Policy 1: Service-to-service indirect connectivity. Such
policies will block any API call to an endpoint𝐴 if it was trig-
gered by a request flow originating from a certain endpoint
𝐵. For example, a compliance team might disallow access
to the label service for users from a certain geographical
region if the label service’s database storage policies are
not compliant with the regional data protection policies.

Policy 2: Intermediate service interactions. Commonly,
microservice-based applications are backed by databases,
which might store personally identifiable information. In
such settings, we may want some data to be scrubbed be-
fore letting an untrusted service 𝑈 access it. In this case,
a service-to-service indirect connectivity policy that blocks
the database from serving any request that originated at 𝑈
will be restrictive. This policy will not allow the database
to serve data scrubbed requests that originated at 𝑈 . This
limitation motivates the need for policies that condition if
a request from a service can be served by another based on
intermediate inter-service interactions.
For instance, consider the data scrubbing routine com-

prising of a sequence of requests to the first authentication
stage, then the fetch service, and finally the second authen-
tication stage. The data scrubber will ensure that the label
service labels only authorized faces in an image uploaded
by an authenticated user. The data scrubbing policy should
require that a request from init can indirectly reach label
only after the sequence of invocations to auth, followed by
fetch, and then auth. This policy is similar to the network
layer waypointing policies.

Policy 3: TrafficManagement. Currently traffic manage-
ment applications, like A/B testing or load-balancing support
only service-to-service policies. The above intermediate ser-
vice interactions policies can be used for fine-tuned traffic
management. For example, a security team wants to test the
correctness of the beta version of the previously described
data scrubbing routine by dog-fooding its component ser-
vices on the internal users such that all gateway requests

from internal users that get served by the beta version of
the fetch service should also have been served by the beta
version of the auth service.

2.2 How can we enforce these policies?
Direct implementation in services. An ad hoc means to

enforce these policies is by direct implementation in the ser-
vice. For instance, a developer could add conditional checks
before serving requests to an endpoint to filter them based
on the source service. However, it is difficult to manage pol-
icy changes with this strategy because this approach will
require application-wide changes. Ideally, the policy enforce-
ment can be decoupled from the application so that separate
networking or security team can define application-wide
policies independent of the development team.

Enforcement in existing service meshes. Kubernetes
container-network interfaces (CNIs) and service meshes com-
monly let users express policies for filtering requests, ac-
cess control, or traffic splitting. However, they only support
coarse policies, like in Policy 0, and are not capable of en-
forcing more complex policies.

Taint tracking and information flow control. Enforce-
ment of security and safety properties have been explored
through taint tracking and information flow control (IFC) sys-
tems. Intuitively, taint tracking is amethod to trackwhat data
sources a piece of data, like request or response messages
may depend on by carrying an additional taint information
in its header. To use taint tracking, a user specifies the policy
by designing a security lattice, a set of security labels with
a partial order 𝑥 ≤ 𝑦 saying that label 𝑥 is less secure than
𝑦. Endpoints are assigned labels from the lattice based on
the data with which they interact, and taint tracking sys-
tems prohibit illict flows of data through static or dynamic
enforcement. For example, an endpoint with label 𝑥 can only
serve incoming requests or responses that carry taint 𝑦 if
𝑦 ≤ 𝑥 , and outgoing requests or responses from an endpoint
labeled with 𝑥 will be tainted as 𝑥 .

IFC systems provide strong guarantees, but have some gen-
eral drawbacks. First, developers usually think of security-
properties in terms of path-based properties, and it is not
obvious how to design the required security lattice. Further-
more, the service graphs must be fixed for the application
and the lattice cannot be dynamically modified. However,
dynamic changes in microservice applications are central to
support the features of elasticity and flexible deployment.
Finally, since security lattices can only represent partial

order relations, they cannot express some of our properties
that describe a non-partial order relation on the requests.

For example. The data-scrubbing policy in Policy 2 can-
not be enforced by lattice-based IFC. An IFC system would

HotNets’23, November 28-29, 2023, Cambridge, Massachusetts Karuna Grewal, P. Brighten Godfrey, and Justin Hsu

label the service init, auth, fetch, and label with some
lattice’s labels, say, 𝑖 , 𝑎, 𝑓 , and 𝑙 respectively. Requests or
responses going out of a service will be labeled by the ser-
vice’s label. A service can serve requests with security label
lower than its own label. However, designing a lattice is not
feasible for this policy. This policy requires the information
from init to not flow into label, so their labels should sat-
isfy 𝑖 ≰ 𝑙 . Since init can send a request to auth, their labels
should satisfy 𝑖 ≤ 𝑎; while 𝑖 ≰ 𝑓 as init should not bypass
auth. Since a request from init tainted with 𝑎 can go to
fetch, we have 𝑎 ≤ 𝑓 . Similarly, since requests may flow
from fetch to auth, we need 𝑓 ≤ 𝑎. This implies that 𝑎 = 𝑓 .
However, this will let init bypass auth and invoke fetch
directly because 𝑖 ≤ 𝑎 = 𝑓 , violating our intended policy.

3 AN EXPRESSIVE POLICY FRAMEWORK
Service tree policies. Consider the photo gallery applica-

tion in Section 2. If we refer to init as 𝐼 ; auth as 𝐴; fetch
as 𝐹 ; and label as 𝐿, the request flow for a request to init
service in that application can be described as the service
tree below, where nodes denote endpoints. The tree can be
parsed from root to leaf to give various request flow paths. A
happens-before relation can be defined on these requests in
terms of the service tree, such that a request to a given end-
point happens-before the requests to any endpoint that occur
after it in the pre-order traversal of the service tree. For in-
stance, the following service tree describes three root to leaf
request paths (a) init → auth, (b) init → fetch → auth,
and (c) init → label, where requests in (a) happen before
those in (b), which happen before those in (c).

𝐼

𝐴
𝐹

𝐴

𝐿

We consider the following form of policies over requests,

regex in (start to final)
where start and final are two endpoints in our application,
and regex is a regular expression over the set of all endpoints
in the application besides start and final. regex specifies an
acceptable temporal ordering (or happens-before relation)
on the API calls in the request flow path from start to final.
The above policy specifies that a request originating at start
can arrive at final only after the temporal ordering of the
API calls in its request flow path between the call to start
and final matches the ordering specified by regex.

Example policy. We will now formally describe an ex-
ample access control policy in our language for the data-
scrubbing scenario described in Policy 2. The data-scrubbing
policy in our language will be 𝐴𝐹𝐴 in (𝐼 to 𝐿). This policy

specifies that for a request that reaches 𝐿 and happens after 𝐼 ,
the children requests of 𝐼 should satisfy 𝐴 happens-before 𝐹 ,
𝐹 happens-before 𝐴 and 𝐴 happens-before 𝐿.
The above policy for requests from 𝐼 toward 𝐿 can be re-

laxed to allow services besides 𝐿 to be invoked before the
mandatory data scrubbing routine, 𝐴𝐹𝐴. The regular expres-
sion (not 𝐿)∗ denotes zero or more occurrence of endpoints
besides 𝐿. Using this, we can specify the relaxed policy as

(not 𝐿)∗𝐴𝐹𝐴 in (𝐼 to 𝐿).
Table 1 summarizes common use cases for the policies of

the form regex in (𝐼 to 𝐿).

4 POLICY ENFORCEMENT
The central idea of our policy enforcement mechanism is that
a request carries around a special header with context about
the requests that happened before it. The policy violation
checks, which are based on the incoming request’s context
header are offloaded from the microservice into its sidecar
proxy using the service mesh layer.

To ease the translation from policy to enforcement, we pro-
pose a compilation procedure that generates traffic filtering
extensions for each microservice’s sidecar proxy. The proxy,
which can intercept incoming and outgoing microservice
traffic, runs these extensions to filter or update the context
headers of the requests. The incoming and outgoing response
headers remain unaffected.

Role of declarative filters. A declarative filter of the form
ServiceName ::= match ℎ𝑑𝑟 with

| 𝑢𝑖 → 𝑣𝑖

| ...
| 𝑢𝑛 → 𝑣𝑛

pattern matches on the header field ℎ𝑑𝑟 of an incoming re-
quest to the service ServiceName. A successful match of
the ℎ𝑑𝑟 value with 𝑢𝑖 modifies the value of ℎ𝑑𝑟 to 𝑣𝑖 . The
ℎ𝑑𝑟 value carries the context about requests that happened
before the given request; we write L for the set of context
values. A declarative filter describes rules for updating this
context. We rely on service code instrumentation for context
propagation of headers between responses and outgoing re-
quests. If an incoming request has no outgoing child request,
its response carries the same ℎ𝑑𝑟 as the incoming request;
otherwise its response carries the ℎ𝑑𝑟 from the response of
the last outgoing child request of the incoming request. If
an outgoing request is the first child request of its parent,
it carries the same ℎ𝑑𝑟 as its parent; otherwise (its parent’s)
previous child request’s response ℎ𝑑𝑟 flows into its ℎ𝑑𝑟 .

Example: Filters for data scrubbing. As an example,
consider the policy in Section 3. We take the following set of
contexts L = {𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5,⊥,⊤}, where 𝑞1 records that

Expressive Policies For Microservice Networks HotNets’23, November 28-29, 2023, Cambridge, Massachusetts

Table 1: Possible scenarios of safety properties enforced by regex in (𝐼 to 𝐿) policy, where 𝐼 , 𝐿 are two services.

Action Scenarios

Access Control Request from 𝐼 should reach 𝐿 after matching a sequence of data-scrubbing services given by regex.
Traffic Management Requests from 𝐼 should be served by beta-𝐿 after being served by beta version of services in regex.
Retry Policy Limit the number of retries to 𝐿 for external requests (or requests from 𝐼) if it matches a regex.

I ::= match 𝑐𝑡𝑥 with L ::= match 𝑐𝑡𝑥 with

| ∗ → 𝑞1 | 𝑞1, 𝑞2, 𝑞3, 𝑞5 → ⊤
| 𝑞4,⊥ → ⊥

F ::= match 𝑐𝑡𝑥 with A ::= match 𝑐𝑡𝑥 with

| 𝑞1, 𝑞3, 𝑞4, 𝑞5 → 𝑞5 | 𝑞1 → 𝑞2

| 𝑞2 → 𝑞3 | 𝑞3 → 𝑞4

| ⊥ → ⊥ | 𝑞2, 𝑞5 → 𝑞5

| ⊥ → ⊥
| 𝑞4 → 𝑞5

Figure 2: Filters

the given request is the child of a request to 𝐼 ; 𝑞2 records
that the given request is a child of a request to 𝐴, which was
a child request of 𝐼 ; 𝑞3 records that the request flow path
𝐼 → 𝐴 → 𝐹 happened immediately before the given request;
𝑞4 records that the request flow path 𝐼 → 𝐴 → 𝐹 → 𝐴

happened immediately before the given request; 𝑞5 records
that the 𝐼 happened before the given request, but the request
flow path between 𝐼 and this request violated the regex. The
context⊥ records that the given indirect request has reached
the endpoint 𝐵 while satisfying the property; ⊤ records that
the given request has violated the policy. L has two special
labels: ⊥ resets or erases the context from the request, and
⊤ describes that the request should be blocked. As we will
discuss in the next section, the set of contexts L can be
automatically generated from the policy. Assuming that the
context is carried in a custom HTTP header 𝑐𝑡𝑥 , the filters
at services 𝐼 , 𝐴, 𝐹, 𝐿 are described in Figure 2.
To see how these filters enforce the policy, consider a

request that has the following request flow path, 𝐼 → 𝐴 → 𝐿.
This request should not be allowed to label the requested
image because it has not been scrubbed in accordance with
the data scrubbing routine. We explain how the filters block
such a request by describing the modifications to the 𝑐𝑡𝑥
header applied by the filters. A request will start out in the ⊥
or empty context. The sequence of 𝑐𝑡𝑥 modification will be:
(at service 𝐼) ⊥ → 𝑞1, (at service A) 𝑞1 → 𝑞2, and (at service
𝐿) 𝑞2 → ⊤, which means that 𝐿 blocks the request.

Compiling policy to declarative filters. So far, we have
considered how enforcement works, given the contexts L

and the declarative filters. To generate the contexts and fil-
ters, we use an idea from automata theory: our safety policies
are regular expressions, and any regular expression can be
algorithmically converted to an equivalent deterministic fi-
nite automata that accepts only the behaviors that follow the
regular expression [11]. The set of contexts L can be read
off from the set of automata states, and the declarative filters
can then be obtained from the automata transitions.
We outline our compilation procedure, which requires

a few more ideas. To compute the transition relations, the
first step is to convert the policy into a regular expression,
for instance, policy 𝐴𝐹𝐴 in (𝐼 to 𝐿) becomes 𝐼𝐴𝐹𝐴𝐿, and
generating its deterministic finite automata. However, this
automaton will accept only those requests that start at 𝐼
and end at 𝐿 and match 𝐴𝐹𝐴 between 𝐼 and 𝐿 in the pre-
order traversal. But we should be able to accept requests that
start at, say, 𝐼 and do not reach 𝐿. Therefore, we augment
the original automaton, so that the transition relations we
extract from it will accept all, but only those requests arriving
at 𝐿 that had an 𝐼 happen-before them, and the substring
with 𝐼 and 𝐿 in pre-order traversal did not match with 𝐴𝐹𝐴.
Finally, the set of transitions in the augmented automaton
on a given service name or endpoint gives the match cases
for the filters at that service.

5 PROTOTYPE IMPLEMENTATION
We implemented a compiler in 1kLoC in python that takes
the policy and generates the declarative filters for each ser-
vice in the format described in Section 4. These declarative
filters are converted into configuration files that are used
to extend the functionality of Istio’s sidecar proxy, Envoy.
These filters are run whenever the sidecar proxy intercepts a
request at the service. Since Istio does not support mapping
incoming request to outgoing requests, we rely on minimal
application instrumentation for context propagation of head-
ers from parent to children request and response. We have
tested our current prototype on regular expression based
policies for enforcing access control.

6 DISCUSSION
Why enforce safety at inter-service interactions? On

the one hand, the application layer provides the finest gran-
ularity to enforce safety policies as it offers means to control

HotNets’23, November 28-29, 2023, Cambridge, Massachusetts Karuna Grewal, P. Brighten Godfrey, and Justin Hsu

the flow of information at the site of its origin. However,
these policies are difficult to manage due to the enforcement
being closely tied to the application code. On the other ex-
treme, L4 network layer offers a non-invasive enforcement
mechanism with the downside being the coarse policies.

Enforcing safety at inter-service interactions strikes a bal-
ance: policies have visibility into inter-service interactions,
while treating the services as black-boxes. The policies are
high-level enough to describe properties over HTTP requests,
while being minimally invasive for the application. More-
over, this decoupling of policy enforcement from application
helps eliminate the source of incorrectness from application
layer to that of inter-service interactions.
Other potential policy languages. For simplicity, we

have used regular expression based language to specify our
policies, but there are many potential policy languages that
can be compiled and enforced using our strategy. There is
likely a tradeoff: richer policy languages could potentially
specify more precise safety policies, but possibly require
more elaborate mechanisms to enforce. Exploring this trade-
off is an interesting direction for future work.
Managing safety policies. Current single-hop policies

can be unwieldy, since in a system with 𝑛 microservices, op-
erators need to define which of the 𝑛2 possible microservice
pairs may interact, which in turn are susceptible to changes
in the application architecture. Multi-hop policies are a step
toward easy-to-use and maintainable microservice policy
systems. Although, multi-hop policies could add additional
complexity, they can compactly express goals independent of
specific microservices. For instance, external queries should
never directly or indirectly access a secure database.

7 RELATEDWORK
Safety property enforcement for microservice applications
has been explored from the following three directions: by
extending the functionalities of common cloud-native solu-
tions, language-based enforcement, and distributed tracing.
On the cloud-native front, Istio [6] is a popular service mesh
that extends the cloud-native infrastructure to support traffic
management policies. However, as described in Section 2,
these policies are very coarse.
Trapeze [1] and Fabric [9] are IFC systems for serverless

applications and distributed systems respectively, both of
which have similarities to microservices. Both these work
offer strong security guarantees, and because all application
code needs to be checked statically, the code does not need
to be trusted (though it does need to be available). However,
their implementations are tied to a language-runtime and
require application changes and designing the security lattice.
Our work addresses these limitations and can handle a class
of safety properties broader than IFC properties.

Distributed tracing frameworks, like Jaeger [7] and Zipkin
[15] have been used to get visibility into end-to-end appli-
cation telemetry, service dependencies, and for root-cause
analysis. A downside to such frameworks is the instrumen-
tation requirement in the service code for trace collection.
Regular expressions have been used for specifying path

invariants in networks [3]. For instance, FatTire [10] and
Merlin [12] use regular expressions to specify per-packet
forwarding rules for fault tolerance and bandwidth allocation
policies. In contrast, NetQRE [14] uses regular expression to
filter flows of packet for quantitative network monitoring.

8 FUTURE DIRECTIONS
Parallel/non-deterministic vs sequential API calls.

Asynchronous APIs that are commonly used for running
background functions add non-determinism to the API call
service tree. Intuitively, an occurrence of a non-deterministic
API call in a service tree can be seen as spawning an indepen-
dent service sub-tree. Therefore, instead of having a single
sequence of API calls, like with synchronous APIs, we will
have a set of such sequence of calls. We see future possibility
to explore safety properties on the set of independent service
trees generated while using an asynchronous API.

Context propagation. As highlighted in Section 4, cur-
rently the application needs to be instrumented and trusted
for context propagation. This is a standard requirement not
only for our work but also for tracing the execution tree of
a request across microservices. It is generally difficult for
other entities (e.g., the service mesh’s sidecars) to propagate
context because the application is a black box and it is not
clear which requests entering the application caused the ap-
plication to generate other requests. Somehow removing the
context propagation requirement would reduce the need to
trust the application.

Efficiency. Similar to most dynamic enforcement mecha-
nism, policy enforcement at service mesh is on the critical
path of the application traffic. Therefore, making more effi-
cient hybrid enforcementmethods that can combine dynamic
and static enforcement are a possibility.

9 CONCLUSION
This paper describes the subtleties and scope of safety prop-
erties in microservice networks. To this end, it proposed the
specification for a class of regular expression based proper-
ties and its enforcement using service meshes.

Acknowledgments. This work benefited from discussions
with Fred Schneider and Rolph Rector. We thank the review-
ers for their constructive feedback. This work is supported
by NSF grants #2152831 and #2312714.

Expressive Policies For Microservice Networks HotNets’23, November 28-29, 2023, Cambridge, Massachusetts

REFERENCES
[1] Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk,

Mooly Sagiv, Thomas Schmitz, and Keith Winstein. 2018. Secure
Serverless Computing Using Dynamic Information Flow Control. Pro-
ceedings of the ACM on Programming Languages 2, OOPSLA, Article
118, 26 pages. https://doi.org/10.1145/3276488

[2] Sachin Ashok, P. Brighten Godfrey, and Radhika Mittal. 2021. Lever-
aging Service Meshes as a New Network Layer. In Proceedings of the
Twentieth ACM Workshop on Hot Topics in Networks (HotNets’21). As-
sociation for Computing Machinery, New York, NY, USA, 229–236.
https://doi.org/10.1145/3484266.3487379

[3] Ryan Beckett, Xuan Kelvin Zou, Shuyuan Zhang, Sharad Malik, Jen-
nifer Rexford, and David Walker. 2014. An Assertion Language
for Debugging SDN Applications. In Proceedings of the Third Work-
shop on Hot Topics in Software Defined Networking (HotSDN ’14). As-
sociation for Computing Machinery, New York, NY, USA, 91–96.
https://doi.org/10.1145/2620728.2620743

[4] Cilium. 2023. Cilium. https://cilium.io/. (June 2023). Accessed: 2023-
06-30.

[5] Envoy. 2023. Envoy Proxy. https://docs.cilium.io/en/stable/security/
network/proxy/envoy/. (June 2023). Accessed: 2023-06-30.

[6] Istio. 2023. Service Mesh. https://istio.io/. (June 2023). Accessed:
2023-06-30.

[7] Jaeger. 2023. Jaeger Tracing. https://www.jaegertracing.io/. (June
2023). Accessed: 2023-06-30.

[8] Kubernetes. 2023. Service Traffic Policy. https://kubernetes.io/docs/
concepts/services-networking/service-traffic-policy/. (June 2023). Ac-
cessed: 2023-06-30.

[9] Jed Liu, Owen Arden, Michael D. George, Andrew C. Myers, Toby
Murray, Andrei Sabelfeld, and Lujo Bauer. 2017. Fabric: Building Open
Distributed Systems Securely by Construction. Journal of Computer
Security 25, 4–5 (Jan 2017), 367–426. https://doi.org/10.3233/JCS-15805

[10] Mark Reitblatt, Marco Canini, Arjun Guha, and Nate Foster. 2013.
FatTire: Declarative Fault Tolerance for Software-Defined Networks.
In Proceedings of the Second ACM SIGCOMMWorkshop on Hot Topics in
Software Defined Networking (HotSDN ’13). Association for Computing
Machinery, New York, NY, USA, 109–114. https://doi.org/10.1145/
2491185.2491187

[11] Michael Sipser. 1997. Introduction to the theory of computation. PWS
Publishing Company.

[12] Robert Soulé, Shrutarshi Basu, Parisa Jalili Marandi, Fernando Pedone,
Robert Kleinberg, Emin Gun Sirer, and Nate Foster. 2014. Merlin:
A Language for Provisioning Network Resources. In Proceedings of
the 10th ACM International on Conference on Emerging Networking
Experiments and Technologies (CoNEXT ’14). Association for Computing
Machinery, New York, NY, USA, 213–226. https://doi.org/10.1145/
2674005.2674989

[13] Tigera. 2023. Project Calico. https://www.tigera.io/project-calico/.
(Oct. 2023). Accessed: 2023-10-22.

[14] Yifei Yuan, Dong Lin, Ankit Mishra, Sajal Marwaha, Rajeev Alur, and
Boon Thau Loo. 2017. Quantitative Network Monitoring with NetQRE.
In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM ’17). Association for Computing
Machinery, New York, NY, USA, 99–112. https://doi.org/10.1145/
3098822.3098830

[15] Zipkin. 2023. Zipkin. https://zipkin.io/. (June 2023). Accessed: 2023-
06-30.

https://doi.org/10.1145/3276488
https://doi.org/10.1145/3484266.3487379
https://doi.org/10.1145/2620728.2620743
https://cilium.io/
https://docs.cilium.io/en/stable/security/network/proxy/envoy/
https://docs.cilium.io/en/stable/security/network/proxy/envoy/
https://istio.io/
https://www.jaegertracing.io/
https://kubernetes.io/docs/concepts/services-networking/service-traffic-policy/
https://kubernetes.io/docs/concepts/services-networking/service-traffic-policy/
https://doi.org/10.3233/JCS-15805
https://doi.org/10.1145/2491185.2491187
https://doi.org/10.1145/2491185.2491187
https://doi.org/10.1145/2674005.2674989
https://doi.org/10.1145/2674005.2674989
https://www.tigera.io/project-calico/
https://doi.org/10.1145/3098822.3098830
https://doi.org/10.1145/3098822.3098830
https://zipkin.io/

	Abstract
	1 Introduction
	2 Motivating Safety Policies
	2.1 Safety policy use cases
	2.2 How can we enforce these policies?

	3 An expressive policy framework
	4 Policy Enforcement
	5 Prototype implementation
	6 Discussion
	7 Related work
	8 Future directions
	9 Conclusion
	References

