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Abstract
The complexity of operator networks and myriad of special-
ized metrics produced by network function providers present
a formidable challenge in retrieving and analyzing operator
data, a vital component for network operations. This necessi-
tates specialist intervention, which is time-consuming and lim-
its customization. This paper proposes Data Intelligence for
Operators Copilot, a natural language interface for retrieval
and analytics tasks on operator data, leveraging foundation
models. It addresses the challenges posed by operator data
through a novel application of semantic search to effectively
provide necessary context regarding specialized metrics. The
system has outperformed state-of-the-art natural language
interfaces for databases, when applied to an operator-specific
benchmark dataset of expert-generated representative queries,
with 66% execution accuracy.

CCS Concepts
• Information systems → Information retrieval; • Net-
works → Mobile networks; Network management; Net-
work monitoring; • Computing methodologies → Natural
language processing.
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1 Introduction
Telecommunications operators gather vast amounts of data,
which includes node-level, gNodeB-level, user-level, and
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flow-level data. This data is utilized for various purposes,
such as network monitoring, tracking Key Performance In-
dicators, node management, network capacity management,
network planning, charging, policy enforcement, consump-
tion trend analysis for different types of traffic, and debugging.
In commercial operator networks, the number of such coun-
ters and metrics that are regularly computed, often exceeds
several thousands accounting for tens of Gbps of data trans-
fer [27, 29]. Retrieving relevant metrics and visualizing them
is crucial for network operations. However, the complexity
of modern wireless systems and the vast number of coun-
ters involved make this task challenging, necessitating expert
knowledge to perform this essential operation.

The process today involves specialists, with expert knowl-
edge, creating dashboards for a limited number of metrics,
which the operators browse through to obtain relevant infor-
mation. However, if operators require customized data, such
as visualizing throughput for a specific user rather than aggre-
gate throughput, or need access to different set of metrics for
complex debugging purposes, a loop through the specialists is
required. The specialists would need to identify the relevant
variables, write code in database query language to combine
them in an appropriate manner, create and share a dashboard.

This paper poses the following question: can the opera-
tors interact with their data by asking simple questions in
natural language, without having to remember any of the com-
plex counter names or how to combine them in a database
query language? Such a system has potential to significantly
transform the status quo by providing a more natural way
to interact with operator data without heavy reliance from
specialists, reducing the time to mitigate network issues and
providing more value from the operator data by reducing the
barrier to gain customized insights.

Recent advancements in natural language processing have
led to the development of foundation models [2] such as GPT-
4 [30], which have greatly improved the creation of natural
language interfaces for data interaction. Systems built on
these foundation models have demonstrated state-of-the-art
performance on standard text-to-SQL datasets [33]. However,
despite their success, these models face challenges when it
comes to specialized and niche domains like operator data.
Specifically, there are three main challenges that hinder their
performance in this domain:

• Specialized information: The data counter names and
metric definitions are highly specialized and specific to
the operator. This information may not even be publicly
available for metrics produced by a few network function
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(a) ChatGPT (b) DIO copilot

Figure 1: Comparison of responses between ChatGPT and DIO copilot for a sample question on operator data

vendors. This causes the foundation models to miss relevant
text patterns and struggle to understand the fields and how
they relate to the user question.

• Huge data: The number of data counters and metrics is
massive. It is infeasible to provide in-context description in
sufficient detail within the prompt size limits of even the
most advanced foundation models [30].

• Numerical accuracy: While the foundation models excel
at logical reasoning, they are not adept at providing numer-
ically accurate answers [25]. However, such accuracy is
vital for decision making in network operations.

This paper proposes to overcome these challenges by in-
corporating four components to enable Data Intelligence for
Operators Copilot (hereby referred to as DIO copilot ):

• Domain-specific database: The system incorporates com-
prehensive textual descriptions of various metrics. It also
contains a few complex and bespoke functions that operate
on these metrics to obtain entities that are of interest. The
inclusion of such domain-specific information enhances
the understanding of users’ questions and operator data
by the foundation models. Contrarily, many contemporary
’natural-language to database-query-language’ systems do
not integrate such comprehensive context, and only include
database schema, as the foundation models exhibit good
understanding of the data fields [33].

• Semantic search: The system utilizes a foundation model
to discern the necessary metrics to effectively answer a
user’s question. Given the constraints on prompt size, the
system employs a context extractor to sift through the
domain-specific database, extracting metrics whose descrip-
tions have a high semantic proximity to the user’s query.
This approach manages the complexity of huge number
of metrics by effectively filtering only a small number of
metrics and their descriptions that fit within the limited
prompt size of foundation models.

• Few-shot learning: To ensure numerical accuracy, the sys-
tem utilizes foundation models’ code generation capabil-
ities for data retrieval and analytics, instead of directly
prompting with data. Few-shot learning using a select num-
ber of expert-generated example user questions and corre-
sponding query language code, pertaining to operator data,
significantly enhances the accuracy of the code generated.

• Expert feedback: The paper introduces a novel method
enabling users to solicit expert assistance. This mechanism
triggers the creation of a GitHub [11] issue that domain
experts can address by contributing to the domain-specific
database, fostering a system that improves with usage.

A preliminary analysis has been conducted to demonstrate
the validity of the approach. The system has been imple-
mented and evaluated using more than 3000 metrics produced
by a major virtual network function provider for 5G core re-
lated to key network functions. The system incorporates GPT-
4 foundation model. A benchmark dataset consisting of 200
expert-generated questions and corresponding reference an-
swers, representative of questions in commercial operator de-
ployments, has been created. DIO copilot outperformed state-
of-the-art natural language interfaces for databases, when
applied to operator data, demonstrating an execution accu-
racy [33] of 66% compared to 48% achieved by state-of-the-
art adapted to work with operator-specific benchmark dataset.

1.1 Contributions
A natural language interface for retrieval and analytics of
operator data is enabled by two main contributions: (1) Novel
application of semantic search in ‘natural language to data-
base query language’ systems to provide a curated context of
specialized metrics without overwhelming the limited prompt
size of foundation models, and (2) A mechanism to enhance
the system with usage through incorporation of expert feed-
back and contribution, achieved by re-purposing repository
issues. The paper further highlights research challenges and
opportunities in enabling data intelligence for operators.
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2 Related work
The field of enabling natural language interfaces to database
queries has attracted significant interest due to its potential
in facilitating non-expert data analysis [3, 5, 10, 34, 43–45,
47]. Recent advances in foundation large language models
(LLMs) [6, 30, 49], with powerful zero-shot reasoning and
domain generalization capabilities, have led to state-of-the-art
performance [33] on benchmark text-to-SQL datasets [46].

However, these systems have limitations in terms of out-of-
domain generalization [23, 40]. [32, 38] have demonstrated
the effectiveness of similarity-based demonstration retrieval
in such cross-domain settings. These approaches append user
question with annotated examples selected based on relevance
to user question. [35] demonstrated that adapting Codex [30]
to a specific domain by prompting it with few annotated exam-
ples can be more effective than fine-tuning a smaller language
model on the same examples. However, these approaches
are complementary to our work as they focus on annotated
training examples alone, akin to few-shot learning, and do
not directly address the specialized nature of counter names
and metric definitions of operator data. Extending our system
using such complimentary techniques [32, 33, 38, 42] is part
of future work. High quality benchmark datasets [24, 46, 50],
including domain-specific datasets [7, 16, 48], have been in-
strumental to progress in this field. This paper develops a
domain-specific dataset for operator data.

Developing systems for supporting and analyzing big data
analytics for cellular network data [8, 13–15, 18, 19] is an
active area of research. [22] presents a persuasive argument
for the potential benefits of foundational models to the domain
of networking by drawing similarities between networking
tasks and similar counterparts in natural language processing.
However, challenges in enabling natural language interfaces
to operator data remain largely unexplored.

3 System design
Figure 2 describes the overall architecture of the DIO copilot .
Prior to delving into the specifics, the following provides a
concise summary of the operational procedure of the system.
The copilot has access to logs and databases containing oper-
ators’ data. When a user types a question in the message bar
as shown in Figure 1b, the system provides the metrics that
are most relevant to answering the user question, provides a
description of what the metric measures, details a database
query that it would run using the data corresponding to rele-
vant metrics, and provide a numerically accurate answer to
the user’s data retrieval and analytics query. Further, a dash-
board for visualization of time-series data of relevant metrics
is generated. The response includes options for feedback as
well as a button to request expert contributions. The system
comprises of four main components:

3.1 Domain-specific database
Foundation models have revolutionized data interaction by
enabling natural language interfaces. However, these models

face challenges when dealing with 5G operator data, particu-
larly in understanding and providing relevant answers to data
retrieval and analytics queries. For example, as illustrated
in Figure 1a when queried about the number of PDU ses-
sions using representative operator data and metric names,
these models fail to produce relevant answers and struggle to
comprehend the associated fields.

One of the key challenges with specialized information
is the translation and understanding of complex and often
product-specific metrics. Detailed documentation of each of
these metrics provide invaluable context to foundation models
and enhance the model’s understanding of specific fields.
For example, the documentation of ‘amfcc_n1_auth_request’
refers to ‘The number of authentication requests sent by AMF.
The AUTHENTICATION REQUEST message is defined
in section 8.2.1 of 3GPP TS 24.501. 64-bit counter’. Each
counter within the system is accompanied by an explanation
of the specific measurements and the data format. A domain-
specific database is built where each text sample contains the
definition and description of a particular metric.

Additionally, the domain-specific database features ‘func-
tion definitions’. Sometimes, it is not straightforward to amal-
gamate various counters to compute a specific outcome; such
a process might necessitate specialist-crafted functions or
queries. Hence, we have incorporated a provision that allows
specialists to add such bespoke functions and definitions to
the system. Function definitions consist of the function name,
description of what the function performs, executable func-
tion along with a description of the inputs and the outputs.

While one might consider fine-tuning [9, 26, 37] the foun-
dation model using the available documentation, this ap-
proach proves to be suboptimal due to the volatility of the
documentation. As new metrics and functions are continually
added or modified, the process of finetuning the entire model
becomes cumbersome, time-consuming, and expensive. Fur-
thermore, the product-specific nature of these metrics could
lead to misinterpretations, given that the foundation model
is trained across diverse data sets. For instance, terms like
‘subgraph_counts’ could have varying meanings in different
contexts that the model is trained on. Therefore, relying solely
on fine-tuning could lead to potential confusion.

To overcome these challenges, a prompt engineering ap-
proach [1, 4, 28, 39, 51], that integrates the domain-specific
database as additional context in the prompts, has been adopted.
By integrating the domain-specific information into the prompt,
we equip the model with the necessary knowledge to interpret
and respond accurately to queries concerning operator data.
Such an approach allows for dynamic updates to the metrics
and functions and resolves the ambiguity in the metric names
by grounding with respect to product-specific databases.

However, the task is complicated by the substantial number
of counters present in a typical commercial operator network.
The limited input prompt size of foundational models poses a
constraint, as it becomes difficult to accommodate all counter
definitions within this space. For example, although GPT-4
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Figure 2: System architecture

can accommodate up to 32,000 tokens, roughly equivalent
to 24,000 words [30], the number of counters generated by
commercial network function providers [29] exceeds 6,000.
Consequently, describing these counters adequately within
the input prompt becomes infeasible.

3.2 Extraction of relevant metrics
To overcome this challenge, we employ a context extractor
technique that narrows down the metrics in the context to
only those that possess semantic proximity to the user’s query.
This is achieved through the conversion of domain-specific
databases and user queries into word embeddings, followed
by the application of similarity search to identify the vectors
in the domain-specific database that exhibit the closest resem-
blance to the user question. The model is then prompted to
identify the most pertinent metrics from this filtered set in
order to address the user’s query effectively.

The first step involves an offline process of converting
the text samples in domain-specific database into word em-
beddings. Word embeddings are essentially mathematical
representations of word sequences, where words with similar
meanings occupy proximate spaces in a high-dimensional vec-
tor space. Each of the queries input by the user is converted
to word embedding as well. Cosine similarity between the
embedding vector of the query and vectors corresponding to
the domain-specific database is performed. The text samples
corresponding to the highest cosine similarity are identified
as the closest to the user question semantically.

After filtering the metrics through the context extractor, we
then utilize the foundation model to determine the most rele-
vant metrics to respond to the user’s query. The descriptions
of all the filtered metrics output from the context extractor are
fed as supplemental context to user question, and the founda-
tion model is prompted to identify the metrics in the context
that are most relevant to answering the user question. Since
only the definitions of top few semantically close metrics are
considered, their descriptions do not overwhelm the input
prompt of the foundation models. The foundation model is a
critical component in our workflow, leveraging their named

entity recognition and natural language understanding ca-
pabilities to select the most pertinent metrics among those
filtered by the context extractor.

3.3 Data processing
Foundation models have demonstrated capabilities to answer
data analytics queries on unstructured data. However, doing
so directly on operator data not only incurs a high cost, but
it can also result in numerical inaccuracies and be infeasible
due to data volume. Instead, an approach leveraging the code
generation capabilities of the foundation models is adopted.

The most relevant metrics obtained from the previous step
along with the user question are input to the foundation model,
which is then prompted to generate database query language
code to generate the answer for the user’s query and generate
code for creating time-series visualization of the relevant vari-
ables on a dashboard. Generating code automatically can be a
challenging task, often resulting in errors due to the complex-
ity of the query language. To overcome this hurdle, we utilize
few-shot learning techniques, enabling foundation models to
learn from a limited set of examples and generalize to gen-
erate accurate code. Specifically, a few example codes for
answering a sample of different user queries are included in
the prompt to the foundation model. By exposing the model to
carefully curated examples, we enhance its ability to generate
error-free code consistently. The generated code is executed
on the database in a sandboxed environment [12]. Similarly,
few-shot training examples for dashboard generation are used
to generate and then execute code for dashboard creation.

3.4 Expert feedback
This paper acknowledges that the foundation model based
systems do not always provide accurate and relevant an-
swers [2, 30]. Further, for complicated debugging processes,
it is not immediately apparent which metrics to use and how
to process those metrics to answer user queries.

Hence, DIO copilot includes mechanisms for incorporat-
ing expert feedback and data contributions. Upon receiving
a response, the user can optionally request expert assistance
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by clicking a designated raised-hand button, which will cre-
ate a GitHub repository issue. This issue will contain the
question, context, and response, and can be resolved through
contributions from domain experts. Currently, only a select
few pre-identified experts can resolve these issues. The ex-
pert data obtained through this process is then added to the
domain-specific database and attributed to the relevant expert
as its source.

The attribution of responses to the expert authors ensures
that experts receive recognition for their contributions, and
creates accountability to the information that is being added
to the domain-specific database. While limiting the number of
experts may create a bottleneck, leading to delays in resolving
the issues, the system leaves the possibility to expand the pool
of experts or adopting a voting mechanism, similar to Stack
Overflow [31], as part of future work.

4 Evaluation
DIO copilot has been built on representative operator coun-

ters and metrics produced by a major virtual network function
provider for 5G core. The data consists of more than 3000
metrics and statistics across a wide range of essential net-
work functions - Access and Mobility Management Function
(AMF), Session Management Function (SMF), NF Repos-
itory Function (NRF), Non-3GPP Inter-Working Function
(N3IWF), Network Slice Selection Function (NSSF), and
User Plane Function (UPF). In commercial operator networks,
these counters are then used to derive different entities, mon-
itored through dashboard panels. For example, statistics for
AMF call control service measuring ‘Initial registration pro-
cedure attempts’ and ‘Initial registration procedure success’
are used to produce a dashboard panel listing the ‘initial reg-
istration procedure success rate’.

The text from the documentation for different metrics,
made available by the vNF provider, is extracted and seg-
mented into text samples containing the names and detailed
description of each of the counters. The sentence-BERT all-
MiniLM-L6-v2 model [36] is used for embedding the text
samples and user queries into word-embedding vectors. The
FAISS [17] library is used for efficient storing of the embed-
ding vectors in domain-specific database, and for computing
cosine similarity. The top 29 most similar text samples are
appended as supplemental context to the user query. Few-shot
learning is enabled by feeding into the prompt an additional
20 expert-generated tuples consisting of user query, corre-
sponding context, relevant metrics and the PromQL query
that generates the correct output when executed.

The resulting prompt, generated using LangChain [21] li-
brary, is fed into the GPT-4 [30] foundation model. Maximum
number of output tokens is set to 1000 and temperature pa-
rameter of the foundation model is set to 0 for repeatable
answers to the same query. The same foundation model has
been employed to generate a PromQL query to answer user’s
question and dashboards with time-series data of the relevant
metrics. The PromQL language is chosen as it is popular with

operator deployments. A basic implementation is available
at [20], with the operator-specific data and metrics omitted.

4.1 Benchmark dataset
To evaluate the performance of DIO copilot for data retrieval
and analytics tasks on operator data, a benchmark dataset
of 200 expert-generated user questions and corresponding
reference PromQL expressions is obtained. Each reference
response consists of the metrics that are essential to answer
the corresponding user question, a PromQL query and a nu-
meric answer. The numeric answer is obtained by executing
the reference query on a database comprising synthetic yet
representative data for different metrics. None of the training
questions used for few-shot learning are incorporated into the
benchmark dataset. The queries span an extensive spectrum
of metrics related to diverse network functions, and target
multiple tasks like retrieval, averaging, sum and rate, and con-
tain up-to three metrics in a single expression. The benchmark
dataset is used only for evaluation purposes and no training
or finetuning is performed using the dataset.

4.2 End-to-end evaluation
A preliminary analysis has been performed using the bench-
mark dataset, described in Sec. 4.1, to demonstrate the validity
of the proposed approach.

4.2.1 Compared approaches The following approaches
and DIO copilot are probed with the same set of test queries
from the benchmark dataset.

• DIN-SQL: DIN-SQL [33] achieved the state-of-the-art on
standard text-to-SQL datasets. The system builds on LLMs
like GPT-4 through prompting approaches and decomposes
the text-to-SQL task into smaller sub-tasks. Few-shot learn-
ing prompt described in the paper [33] is used as a compar-
ison approach. However, there are two modifications. First,
rather than using SQL queries, the same set of few-shot
learning examples, i.e., user questions and corresponding
PromQL queries used as part of DIO copilot , are used as
few-shot learning examples. Second, since the entire data-
base schema does not fit in the limited context window of
GPT-4 model, approximately 600 of the metric names, that
are selected in a uniformly random manner among all the
metrics, are provided in the prompt.

• GPT-4: Foundation models like GPT-4 have been trained
on vast corpus of web data, and have demonstrated signifi-
cant capabilities to understand the schema of unstructured
data and directly perform analytics tasks [30, 35]. The same
subset of metrics used in DIN-SQL prompt are used in the
prompt of this approach as well, without any examples.

4.2.2 Metric of Merit Execution accuracy (EX), which
measures the percentage of times an approach produced an
answer that is numerically matching the reference answer, is
used to measure the performance of the different approaches.
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Approach EX (%)
DIO copilot 66
DIN-SQL 48

GPT-4 12

(a) End-to-end comparison

LLM EX (%)
GPT-4 66

GPT3.5-turbo 46
text-curie-001 13

(b) Foundation model

Figure 3: Analysis

4.2.3 Results Table 3a demonstrates that DIO copilot out-
performs state-of-the-art approaches when applied to operator
data. This can be mainly attributed to supplemental context
provided by the context extractor describing the metrics that
are semantically closest to user query. The other approaches
do not consider such curated context and can only access sub-
set of all the metric names due to limited input size for GPT-4.
The small frequency with which metrics used in operator
networks are discussed, if at all, in publicly available web cor-
pus and the ambiguity of the terms across multiple domains
makes it challenging for the foundation models to understand
the field names correctly without the context. For example,
for a benmark question on ‘LCS NI-LR procedure success
rate’, DIN-SQL incorrectly evaluates ‘100 * sum(amfcc lcs
ni lr success) / sum(amfcc lcs ni lr attempt)’ while DIO copi-
lot correctly identifies ‘amfcc lcs network induced location
request success’ and corresponding ‘attempt’ metrics as the
relevant metrics. Using just the base foundation model, GPT-
4, without few-shot learning performs poorly signifying the
importance of curated context and few-shot learning examples
when working with operators’ data.

4.2.4 Impact of the foundation model Different founda-
tion models can be used and each of these models exhibit
distinct capabilities, computational costs, and complexities.
We considered three foundation models in the form of GPT-4,
GPT-3.5-turbo, and Text-curie-001 [30] models. The results
from evaluating different foundation models while keeping
the rest of the architecture the same are showcased in Ta-
ble 3b. GPT-4 provides the best performance and there is a
significant drop even when the model is switched to GPT-3.5-
turbo model. However, it is interesting to note that even the
least performing model still outperforms using GPT-4 alone
in Table 3a underscoring the importance of context.

4.2.5 Inference cost The average cost of each user query
is 4.25 cents as the context information is appended to the
query. When GPT-4 model is replaced with GPT-3.5-turbo
(see Table 3b), the average cost reduces to 0.35 cents without
significant reduction in performance. However, the inference
cost is expected to reduce in the future with the advancements
in foundation LLMs and inference techniques [41].

5 Opportunities and challenges
This paper demonstrates the viability of an end-to-end sys-
tem for enabling a natural language interface for operator
data. However, to achieve a comprehensive system that sig-
nificantly simplifies network operations, several challenges
must be addressed, necessitating further research.

5.1 Diverse network function vendor formats
The evolution of cellular networks from traditional hardware-
based infrastructure to software-defined frameworks has led
to a surge in virtualized network function vendors, each pre-
senting unique data formats and semantics. This transfor-
mation has introduced significant challenges in integrating
data across multiple vendors. Solutions lie in establishing
industry-wide data formatting and interoperability standards,
as well as leveraging advancements in machine learning for
multi-source data integration, semantic understanding, and
consistency enforcement. The ability of foundation models to
comprehend unstructured data and perform few-shot learning
could significantly aid the integration process

5.2 Infusing domain knowledge
By incorporating further domain knowledge, the copilot could
better respond to user queries, identify metric relationships,
and provide more in-depth network issue insights, potentially
improving network management, troubleshooting, and predic-
tive modeling. However, embedding such domain knowledge
into the copilot poses significant challenges. Comprehensive
domain knowledge in the field of wireless networks includes
complex, dispersed and often proprietary knowledge, includ-
ing vendor-specific metrics, their interdependencies and im-
pact on network performance.

5.3 Network-specific embedding model
Generic embedding models may not fully comprehend the
wireless network domain’s unique jargon and semantics, po-
tentially affecting system accuracy. A potential remedy could
be a wireless network-specific word embedding model, trained
on a large telecommunications corpus. This specialized model
could better grasp the domain’s specific terminology and con-
text, enhancing its ability to identify semantic proximity be-
tween user queries and database entries. However, creating
such a model involves curating a vast, diverse, and evolving
corpus compatible with embedding model generators.

5.4 Correctness and safety
Inaccuracies in copilots’ responses could result in erroneous
decisions. Further, safety concerns arise, when the copilot
interacts with operational databases, such as the risk of un-
intentional execution of harmful code and controlling access
to sensitive data. These challenges, common in AI systems,
warrant significant research attention.
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