
Securing Public Clouds using Dynamic Communication Graphs

Sathiya Kumaran Mani§ Kevin Hsieh§ Santiago Segarra§⋆ Trevor Eberl§ Ranveer Chandra§

Eliran Azulai§ Narayan Annamalai§ Deepak Bansal§ Srikanth Kandula§

§Microsoft ⋆Rice University

Abstract–We leverage a novel telemetry source available in

public clouds today: periodic summaries of every flow that

enters or leaves any VM. A key aspect is that such telemetry

can be collected transparently to customers and with minimal

impact on their workloads. By consuming this telemetry, we

show how onemay realize complete and dynamic graphs of the

communication inside cloud subscriptions. We describe novel

analyses over these communication graphs with implications

on network security and management.

1 Introduction

As more enterprises transition their IT workloads to public

clouds, securing and optimizing the network communication

within cloud subscriptions is increasingly important.

Public clouds have a communication visibility problem how-

ever. For traffic in/out of a subscription, one may deploy fire-

walls or IDSes [7, 10, 20] at a network chokepoint. However,

for traffic within the subscription, customers do not have a

view on who talks to who, when or why in their cloud deploy-

ments. There is no one chokepoint that has a complete view

of the internal communication.

Furthermore, a typical cloud deployment uses many re-

sources of different kinds such as VMs, databases and lambdas.

Enterprises such asWalmart [19, 30, 47], which use millions of

cloud resources, have large teams that own different portions

of their cloud software. Thus, synthesizing a view of the com-

munication by examining all of the corresponding software

appears less promising.

In this work, we focus on generating network-wide com-

munication graphs such as the one shown in Figure 1. Nodes

correspond to IP addresses here but can also be services, ku-

bernetes pods or {(IP, port)} tuples. Edges represent commu-

nication between nodes, e.g., the number of packets, bytes

Permission tomake digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made

or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for components of

this work owned by others than the author(s) must be honored. Abstracting

with credit is permitted. To copy otherwise, or republish, to post on servers or

to redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

HotNets ’23, November 28–29, 2023, Cambridge, MA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to

the Association for Computing Machinery.

ACM ISBN 979-8-4007-0415-4/23/11. . .$15.00

https://doi.org/10.1145/3626111.3628198

Figure 1: IP-graph for one hour of communication in the

K8s PaaS cluster. Node colors represent roles automati-

cally inferred fromcommunicationpatterns (using Jaccard

score on neighbor set overlap and hierarchical louvain clus-

tering on the scored clique).

and connections. We can generate a time-series of graphs or

embed timeseries in the node and edge attributes of one graph.

The novel aspects are:

Complete the graphs aim to capture all of the commu-

nication (as opposed to using one or a few

packet traces from network chokepoints).

Dynamic the telemetry is continuous so that an ad-

ministrator gets up-to-date views while also

being able to do historical analysis such as

‘what changed?’ or ‘what happened during

that (past) event?’

Multi-
faceted

the graphs should be able to capture infor-

mation at different timescales and different

granularities so as to enable meaningful dis-

covery of patterns and rich analyses.

Using such graphs, we posit that customers can identify

wholistic optimization possibilities and improve protection in

the presence of advanced persistent threats [1, 23] or breaches

because, otherwise, even a single breached resource may open

up access to many other resources in a subscription [68, 69].

Previous works have discussed network-wide dynamicmon-

itoring and analytics systems, so what’s new? In ISP networks,

at AT&T, Gigascope[40–42] discusses a network-wide collec-

tion and analysis of netflow data from switches. In datacenter

networks, Facebook [66] and Microsoft [56], discuss deploy-

ing agents at every end-host in their datacenters and analyzing

the logs using data analytics systems. We are not aware how-

ever whether any of these prior systems were deployed widely,

https://doi.org/10.1145/3626111.3628198

HotNets ’23, November 28–29, 2023, Cambridge, MA, USA S. K. Mani, K. Hsieh, et al.

#IPs mon. Graph Size: #nodes (#edges) #Records
IP Graph IP-port Graph /minute

Portal 4 4K (5K) 13K (13K) 332

µserviceBench 16 33 (268) 0.2M (1M) 48K

K8s PaaS 390 541 (12K) 1.3M (3M) 68K

KQuery 1400 6K (1.3M) 12M (79M) 2.3M

Table 1: Cloud clusters and some aspects of their commu-

nication graphs that we built and analyzed in this paper.

The source telemetry is flow-level summaries everyminute

with schema as in Table 2.

or for a sustained period or have had net positive revenue. In

this paper, we offer some reasons why the converse can happen

in public clouds. That is, sustained and wide deployments with

a positive revenue. Our case rests on three aspects:

● Minimal Interference to customer workloads: That is,

the benefits of visibility such as enhanced security, di-

agnosability and manageability do not come at the cost

of worse performance. A key to this is if the loggers

have no effect on the resources that a customer pays for

in the cloud (e.g., a VM’s cores, memory and network

bandwidth).

● Low COGS1: The market will not support a high sur-

charge for enhanced security, diagnosability and man-

ageability. If an average VM costs 0.5$/hr2, a likely price-

point that the market will bear is 0.02$/hr/VM for a

surcharge of about 4%.3

● Appealing use-cases that are likely to be revenue positive.

We will discuss security, especially micro- segmentation,

succinctly summarizing communication patterns and

counterfactual reasoning in this paper.

We are in the early stages of building and deploying a sys-

tem that generates and analyzes cloud communication graphs.

In §3 we will describe a telemetry stream that is available in

three large public clouds today and our analytics system that

consumes the telemetry. Our goal here is to keep COGS low

and have zero impact on customer workloads.

Table 1 depicts a few example deployments and aspects of

the corresponding communication graphs. Portal is the web
portal for a large cloud (e.g., http://aws.amazon.com); we ana-

lyze all of the communication at one of the many geographi-

cally distributed clusters that serve web requests to the portal.

µServiceBench [13] is a publicly available benchmark that

mimics a set of micro-services running a shopping site. Here,

we use synthetic load generators and inject a wide-range of

attacks [15]. Note, this cluster has much more traffic between

VMs and so many more edges in the hourly IP-graph rela-

tive to the number of nodes. K8sPaas cluster is a production
kubernetes-as-a-service cluster; that is, customers can deploy

their helm charts and pods while the cloud provider manages

1cost of goods and services
28 core VM at Azure say
3based on a pricing analysis of Illumio [53] and others [27, 39, 70].

the cluster. Note, themanymoreVMs here and the correspond-

ingly larger graph sizes.We use this cluster as the default for all

our analyses. KQuery is a cluster that runs SQL-like queries on
(mostly) memory-resident datasets at a large cloud provider.

In §2, we describe our initial attempts at three kinds of

graph analyses. We list open issues. In some cases, while the

requirements and potential approaches are clear, we do not yet

have a full practical realization. Prior work, on social network

and product recommendation graphs, describes some simi-

lar graph analyses [65]. However, as we discuss further in §2,

cloud communication graphs present a sharp contrast because:

(a) one communication trace may be represented as many dif-

ferent communication graphs based on whether nodes should

be IPs, services or {IP,port} tuples for example and while prior

work can analyze a particular graph, choosing which graph

to construct requires networking insights and (b) the graph

analyses methods appear to require domain customization be-

cause different features are available in networking graphs and

the underlying phenomena that gives raise to the learnable

patterns is different.

To sum, our thesis is that complete and dynamic cloud

communication graphs can be feasibly constructed at scale and

in a cost-effective, private and secure manner. Having these

graphs uniquely enables some novel analyses and, importantly,

lets us build novel security primitives such as segmenting cloud

graphs to enhance security.

2 Graph Analyses

We discuss a few techniques that are uniquely enabled by com-

plete and dynamic communication graphs.

2.1 MicroSegmentation

Micro-segmentation refers to fine granular protection of re-

sources inside cloud subscriptions. Since a subscription can

have multiple VMs, databases and other resources, we aim

to mitigate the blast radius when any one of those resources

is breached. That is, we seek to limit which other resources

may become vulnerable due to the breach. Our approach is to

divide resources into, so-called, µsegments and author reach-

ability policies between the µsegments. A pair of resources

can communicate with each other only if explicitly allowed by

the policies; i.e., the default will be to deny [31, 37]. By doing

so, the blast radius of breaching a resource reduces to only

those that the resource must communicate with during nor-

mal operation. A few vendors have released µsegmentation

offerings [27, 39, 53, 70] and the market for µsegmentation

is estimated to be a few billion dollars in annual revenue and

growing at +20% year-over-year [26].

Micro-segmentation is challenging due to a few reasons.

Consider the (unsegmented) IP-level communication graphs

http://aws.amazon.com

Complete Communication Graphs HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

(a) K8s PaaS IP-graph (b) Portal IP-graph (c) µserviceBench IP-graph (d) KQuery IP-graph

Figure 2: Unsegmented IP-graphs for the three datasets in Table 1

(a) Simrank segmentation (b) Simrank++ segmentation (c) Conn.-weight. modularity (d) Byte-weighted modularity

Figure 3: Applying other segmentation strategies, inspired by prior work, on K8s PaaS’s IP-graph

for each of the three examined clusters in Figure 2.4 The state-

of-art invites a human administrator to manually tag each

node with a µsegment label. It is not apriori clear how well

a human would perform on this task. Worse, when the role

of a resource changes– for example, when pods in kubernetes

migrate or scale up or down [14] or when a software change

causes VMs to behave differently– the µsegment labels must

keep up-to-date.

Could an algorithm assist with µsegment labeling? Funda-

mentally, there are many fewer roles than resources in a cloud

setting because, for redundancy and scalability, it is quite com-

mon to have multiple resources play the same role. Moreover,

we find that the role of a resource can be inferred based on

its communication, such as which neighbors a resource com-

municates with and the nature of the conversation (e.g., the

time series and numbers of bytes, packets and connections

exchanged with each neighbor). Figure 1 shows the result of

a simple segmentation.5 In Figure 1, nodes that share a color

have the same role and can be placed into a µsegment.

Open issues: The auto-segmentation logic used above has

super-quadratic complexity. Furthermore, developer interviews

show that while the labels are a good start there are key mis-

takes. How can we improve accuracy and reduce cost? Intu-

itively, auto-segmentation is akin to the role inference problem

in graph mining literature [51] and Figure 3 shows the results

4IP-port graphs are at least one order of magnitude larger.
5We score each pair of nodes based on the overlap in their neighboring sets

(Jaccard score [35, 45]). Then, we cluster the clique where edges are weighted

by the overlap score using the Louvain method [33].

from other popular techniques. Comparing with Figure 1, the

results clearly differ. The reason is that, intuitively, modularity-

based clustering [33] groups nodes that exchange a lot of data

with each other but, in communication graphs, nodes with

the same role such as the front-end VMs may never talk to

each other. Other clustering metrics have similar downsides.

SimRank [54] is a recursive algorithm wherein the similarity

score for a pair of nodes is a weighted sum of the similarity

of the nodes’ neighbors. Uniquely, recursive techniques can

learn roles that are not immediately obvious based on the com-

munication of individual nodes. SimRank++ [28, 60] extends

SimRank to the case of weighted edges. Both SimRank and

SimRank++ have higher complexity than the simple segmenta-

tion above but, in our initial experiments, did not yield higher

quality results. Overall, we believe the auto-segmentation logic

that is best suited to cloud communication graphs remains an

open question due in part to the following concerns. (1)The un-

derlying phenomena that leads to role similarity in cloud com-

munication graphs – same code running in multiple resources

for redundancy and scalability – is not a consequence of hu-

man dynamics unlike the case of social graphs and product

recommendation graphs [51]. (2) Resources may havemultiple

roles, for e.g., a VMmay run multiple services. Thus, segment-

ing IP-port graphs may be more useful but these graphs can be

much larger than IP-graphs. (3) The ideal auto-segmentation

algorithmmay vary across subscriptions or as roles evolve over

time and so a learnt algorithm that adapts based on feedback

may yet outperform all static segmentations.

Setting aside how µsegments are labeled, enforcing reacha-

bility policies between µsegments imposes additional stress on

HotNets ’23, November 28–29, 2023, Cambridge, MA, USA S. K. Mani, K. Hsieh, et al.

0 100 200 300 400 500 600
0

100

200

300

400

500

600
10

6

10
5

10
4

10
3

10
2

10
1

10
0

(a) K8s PaaS

0 5 10 15 20 25 30
0

5

10

15

20

25

30

10
5

10
4

10
3

10
2

10
1

10
0

(b) µserviceBench

0 100 200 300 400 500
0

100

200

300

400

500

10
3

10
2

10
1

10
0

10
1

(c) Portal

Figure 4: For the datasets in Table 1, adjacency matrix representations of the bytes exchanged between IP addresses. The

matrix entries are byte counts normalized and color-coded in log scale.

network virtualization systems. Clouds today limit the num-

ber of rules that can execute on the path in and out of each

VM (e.g., no more than 103 rules at a VM) and naïvely un-

rolling reachability rules between µsegments into reachability

rules between IP addresses, which current clouds support, can

lead to rule explosion. Adding dynamic tags into packets and

extending the network virtualization layer to enforce policies

on tags is a potential solution. Tagsmay also help reduce churn

and lag when µsegment labels change.

Although today’s cloud providers only support reachability

policies, using higher order policies can lead to fewer false

positives and better outcomes. For example, suppose a code

change causes VMs in a µsegment to begin speaking with a

new service that they did not speak with before. A reachability

policy will flag this as a violation. However, noticing that all of

the VMs in the µsegment continue to exhibit similar behavior,

even though the behavior has changed, may avoid the false

positive. We call these similarity-based policies. Analogously,

proportionality-based policies, which consider the amount of

traffic between different pairs of µsegments, can distinguish

between changes that are explainable due to a flash-crowd (e.g.,

more traffic to the backend when more requests are incoming)

versus other changes (e.g., more traffic to the backend by itself).

It is not yet clear to us which kinds of policies are worthwhile

to use and efficient to implement.

2.2 Succinct Summaries

We find that cloud communication graphs are exceedingly

sparse. Using principal component analysis (PCA), we can

sparse transform a matrix by just using the first k eigen vec-

tors. That is, for a square matrixM, PCA computes matrices E
and D which represent the eigen vectors and eigen values on

the diagonal such that M = EDE⊺. Now, if M has n rows, let

Ek be the n × k matrix containing just the first k eigen vectors,

Dk be the k × k matrix with just the first k eigen values, then

we denote the k’th sparse transform as Mk = EkDkEk
⊺
. We

compute reconstruction error ReconErr(M ,Mk) as the normal-

ized absolute sum of entries inM −Mk . Clearly,Mn = M, that

is, using all eigen vectors will perfectly recover a matrix. How-

ever we find that many fewer eigen vectors suffice for a low

reconstruction error in the considered communication graphs.

For example, in the K8s PaaS dataset, using just k = 25 eigen
vectors (n > 500 in this case) leads to a less than 0.05 error.

This means that on average each entry in the reconstructed

matrix is within 5% of its true value.6

The adjacency matrices in Figure 4 show that cloud commu-

nication graphs exhibit some clear patterns. Rows and columns

are IP addresses and the color of thematrix entries, in log scale,

represent the amount of bytes that are exchanged. We call out

a few patterns:

● Chatty cliques: subsets of nodes that exchange large

amounts of data among each other.

● Hub and spoke: some nodes exchange a large amount

of data with many other nodes. Hubs are likely to be

control plane components such as job managers, k8s api

servers [14], cloud stores or telemetry sinks.

Similar patterns exist in graphs from different subscriptions

likely because these patterns arise fundamentally from soft-

ware practices.

Open issues: Beyond the simple PCA and visual analyses

above, we ask whether it may be possible to learn a generaliz-

able model to classify cloud communication patterns. That is,

a model pre-trained over many communication graphs which

a customer can apply off-the-shelf on their communication

graph to identify the canonical patterns in their network. A key

advantage from such a model could be to offer executive sum-

maries such as ‘80% of the bytes in your network are doing X’.

Such generalizable models exist for images (e.g., RESNET[50])

6Similar results hold when using independent components, e.g., FastICA [8],

instead of PCA’s eigen vectors.

Complete Communication Graphs HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

0 100 200 300 400 500 600
0

100

200

300

400

500

600
10

6

10
5

10
4

10
3

10
2

10
1

10
0

(a) Hour +1

0 100 200 300 400 500 600
0

100

200

300

400

500

600
10

6

10
5

10
4

10
3

10
2

10
1

10
0

(b) Hour +2

0 100 200 300 400 500 600
0

100

200

300

400

500

600
10

6

10
5

10
4

10
3

10
2

10
1

10
0

(c) Hour +3

Figure 5: Timelapse of bytes exchanged on the K8s PaaS
dataset; the matrices here represent communication in

three consecutive hours immediately after the hour shown

in Figure 4(a).

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of nodes

10
8

10
6

10
4

10
2

10
0

C
C

D
F

K8s PaaS
Portal
µserviceBench

Figure 6: Where to invest more capacity? This CCDF of

bytes exchanged in a communication graph versus the

number of nodes participating in the exchange shows that

a few nodes account for most of the traffic.

and text (e.g., BERT[44]) but we are unaware of any in the

networking context.

We ask whether it may be possible to convert such a sum-

marization model into an anomaly detector. That is, a model

that can capture the key patterns may also be able to identify

when the patterns change. Consider Figure 5 which shows

the matrices for three subsequent hours after the matrix in

Figure 4(a) on the K8s PaaS dataset. While there are some

changes– some bands shrink or grow in intensity and a few

appear only during some hours, many patterns are consistent.

How may we build such a general summarization model?

Using graphical neural network based auto-encoders is a pos-

sibility. Generalizing across clouds can be a challenge because

their graphs can have very different sizes and node degrees

and onemust quantize carefully because a generalizable model

takes fixed sized inputs [44, 50].

2.3 Counterfactual Analyses

Notice that the connection summaries can be converted into

distributions of flow sizes and inter-arrival times (quantized

to the frequency of summaries). Thus, the dataset enables rich

Time
Local Remote #Packets #Bytes

IP Port IP Port Sent Rcvd. Sent Rcvd.

Table 2: Schema of connection summaries.

Azure AWS GCP

Name NSG Flow Logs VPC Flow Logs

Agg. Intrvl 1 min 1 min 5s or higher

Content As illustrated in Table 2

Sampling N/A N/A 3% of Pkts, 50% of Flows

Price about 0.5$/GB to collect

Table 3:Details on available connection summaries at three

large cloud providers.

Figure 7: Illustrating how one can capture connection sum-

maries with zero impact to VMs in a public cloud.

Figure 8: An example analytics system architected as a

software-as-service (SaaS) that can adapt to load.

counterfactual reasoning. For example, [71] learns amathemat-

ical model that can offer flow completion time distributions

given flow size and arrival information. Figure 6 describes a

simpler analysis: where are the communication bottlenecks in

a cloud subscription? This analysis can show an administrator

where to invest more capacity (by changing the VM SKU).

As well, an admin can relocate VMs that exchange a lot of

data into the same availability zone or a proximity group to

improve performance [34, 38].

3 Low COGS telemetry, analytics

3.1 Telemetry Source

At three large cloud providers, we can collect connection sum-

maries periodically with minimal impact to customer work-

loads [9, 11, 18]. Tables 2 and 3 show the data format and some

salient details. Figure 7 describes a method to collect such

summaries with low impact; we are unaware of any prior de-

scription of how to obtain such telemetry.

The key idea, as shown in Figure 7, is to record connection

summaries on the programmable NICs that are directly at-

tached to all hosts in public clouds. These programmable NICs

serve various network functions today [4, 5, 12, 32, 57, 64].

Connection summaries can be recorded in smartNIC mem-

ory and an agent on the host can periodically pull and forward

summaries to a cloud store or a service endpoint. The size

of the logs and the memory footprint is proportional to the

number of concurrent flows. These cards already maintain

per-flow state [24, 32] and so recording a few counters is a

HotNets ’23, November 28–29, 2023, Cambridge, MA, USA S. K. Mani, K. Hsieh, et al.

small additional burden. The same functionality can also be

implemented in the software stacks that implement network

virtualization [43]. Some providers sample packets and flows

to further reduce cost [11]. The telemetry can be stored pri-

vately. and customers cannot tamper with collection which,

crucially, ensures that telemetry is usable even when VMs are

breached. Importantly, observe that there is little impact to

customers; the possible performance interference from up-

dating a few counters is negligible relative to all of the other

network function processing that happens in network virtual-

ization [24, 25, 43, 48].

Relative to capturing packet traces [21], logging in the ker-

nel [56, 66] and sampling packets on switches [22], themethod

in Figure 7 has a few advantages. To collect packet traces, the

network stack must copy packets and processing packets is

costly especially at NIC speeds going to 400Gbps. Packet pro-

cessing elements in switches typically do not have memory to

spare to record per-flow state [16, 17] and so, they sample pack-

ets and summarize at the control CPUs [22, 59]. Network stack

hooks such as eBPF are useful except that deploying agents on

every VM in a public cloud is daunting because customersmay

use different OS types and providers have limited control on

guest OSes. Even if such agents were deployed, their telemetry

can be tampered by malicious code in the VM and cannot be

relied upon during breaches.

Open Issues: The telemetry here is blind to application-level

information such as process name or service identity. While

such information is useful (e.g., to analyze inter-service com-

munication), it is not clear how to capture with low impact.

Also, pushing sketches into programmable NICs may be

needed to capture information that is absent in a connection

summary such as burst statistics.

3.2 Analytics System

Using systems that are available in most large public clouds

today, we ask if one can build an analytics system that can

analyze roughly 1000VMsworth of telemetry (e.g., connection

summaries at one minute granularity) using a handful of VMs

worth of resources? This is roughly a 0.5% surcharge, if you

will, and low COGS is crucial for practical viability.

The telemetry volume (e.g., #records/min in Table 1) can

be supported by streaming systems [36] or by using mini-

batches [2, 3, 6]. A key issue is to factor the graph analyses

in §2 into parallelizable in-memory execution plans and add

GPU support for the learnt components. Figure 8 sketches a

potential SaaS architecture.

As a case-study, consider generating communication graphs

from a live stream of connection summaries. Naïvely, this is

a group-by-aggregation query. That is, accumulate the byte,

packet, and connection counts between pairs of nodes. The

memory need is proportional to the number of node pairs

in the graph. As we saw in Figure 4, connectivity is sparse

but there may be many remote IPs. Also, IP-port graphs will

have more nodes. One potential mitigation is to focus on the

heavy hitters. That is, remote IPs and ephemeral ports that

do not individually account for a sizable share of traffic are

collapsed together. In fact, the graph sizes in Table 1 collapse

IPs contributing less than 0.1% of bytes, packets or connections

into one node in the IP-graph. With this approximation and

other salient changes, we can construct communication graphs

on subscriptions with 1000s of VMs in realtime using just a

few machines worth of resources.

Open Issues:While graph generation appears viable, can com-

plex analyses be factored appropriately to meet the COGS con-

straints? Could offloading the analyses into programmable

hardware on the network path help?

4 Related work

Our key contributions are as follows:

● analyses over network-wide time series of communica-

tion graphs and

● a low COGS and impact telemetry analytics system.

To our knowledge, both aspects are novel.While a large body of

prior work exists on temporal graphmining [63, 65], only a few

consider the graphs that arise in the context of communication

networks [61].We consider novel challenges in the networking

context, such as learning novel security policies and using

multi-faceted graphs, i.e., nodes being IPs, services or IP-port

pairs.

We already mentioned a few systems that analyze passively

collected network-wide telemetry [40, 56, 58, 66]. However,

they have yet to have a wide, sustained deployment or net

positive revenue. Moreover, PingMesh [49] uses active probes

to help detect performance problems on the network, whereas

MALT [62] organizes topology connectivity and configuration

information in a graphical format. Neithermeasures the actual

communication on the data path.

Extensive existing work examines packet traces from one or

a few carefully chosen collection points [29, 46, 52, 55, 61, 67].

However, it is unclear if these techniques will generalize or

scale to network-wide communication summaries.

5 Conclusion

Using connection level summaries that are available today

in public clouds, we argue that complete and dynamic cloud

communication graphs can be feasibly constructed at scale

and in a cost-effective, private, and secure manner. We also

described several novel analyses over these graphs. While gaps

remain, such analyses can be an important step towards novel

security primitives such as segmenting cloud graphs.

The use of production traces in this paper was governed by an
institutional privacy review.

Complete Communication Graphs HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

References

[1] Advanced persistent threats. https://www.cisa.gov/topics/

cyber-threats-and-advisories/advanced-persistent-threats.

[2] Amazon redshift. https://aws.amazon.com/redshift/.

[3] Apache spark. https://www.databricks.com/spark/about.

[4] AWS: Data Transfer Costs for Common Architectures. https://go.aws/

3cg5J3O.

[5] Azure: Bandwidth Pricing. https://bit.ly/3Cou81Z.

[6] Azure synapse analytics. https://learn.microsoft.com/en-us/azure/

synapse-analytics/.

[7] Cisco Adaptive Security Virtual Appliance (ASAv) Data Sheet. https:

//bit.ly/3UldTJq.

[8] Fast ica. https://scikit-learn.org/stable/modules/generated/sklearn.

decomposition.FastICA.html.

[9] Flow logging for network security groups. https:

//learn.microsoft.com/en-us/azure/network-watcher/

network-watcher-nsg-flow-logging-overview.

[10] FortiGate-VM on Amazon Web Services. https://bit.ly/3Bp5qwb.

[11] Gcp: Vpc flow logs. https://cloud.google.com/vpc/docs/flow-logs.

[12] Google Cloud: Bandwidth Pricing. https://bit.ly/3Cw83i9.

[13] Google cloud platform microservices demo. https://github.com/

GoogleCloudPlatform/microservices-demo.

[14] Horizontal pod autoscaling. https://kubernetes.io/docs/tasks/

run-application/horizontal-pod-autoscale/.

[15] Infection monkey - breach and attack simulation. https://www.akamai.

com/infectionmonkey/breach-and-attack-simulation.

[16] Intel tofino. https://intel.ly/3wxWT8w.

[17] Intel tofino 2. https://intel.ly/3QTeD6F.

[18] Logging ip traffic using vpc flow logs. https://docs.aws.amazon.com/

vpc/latest/userguide/flow-logs.html.

[19] A new walmart ‘cloud factory’ will accelerate digital innovation, boost

business efficiency. https://shorturl.at/amwHI.

[20] Palo Alto Networks VM-Series Firewall. https://docs.paloaltonetworks.

com/vm-series.

[21] tcpdump. http://ee.lbl.gov/tcpdump.tar.Z.

[22] Using netflow filtering or sampling to select the network traffic to track.

https://rb.gy/83mcu.

[23] What is an advanced persistent threat (apt)? https://www.cisco.com/c/

en/us/products/security/advanced-persistent-threat.html.

[24] Vfp: A virtual switch platform for host sdn in the public cloud. In NSDI,
2017.

[25] Azure accelerated networking: Smartnics in the public cloud. In NSDI,
2018.

[26] Microsegmentation - global strategic business report. https://www.

researchandmarkets.com/report/microsegmentation, 2023.

[27] Akamai. Akamai Guardicore Segmentation. https://www.akamai.com/

products/akamai-guardicore-segmentation.

[28] I. Antonellis, H. G. Molina, and C. C. Chang. Simrank++: Query rewrit-

ing through link analysis of the click graph. In VLDB Endowment, 2008.
[29] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. Maltz, and M. Zhang.

Towards Highly Reliable Enterprise Network Services via Inference of

Multi-level Dependencies. In SIGCOMM, 2007.

[30] J. Bailey and B. Jensen. Walmart and azure. https://shorturl.at/vMTY0.

[31] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, and S. Shenker. Off by

default! In HotNets, 2005.
[32] D. Bansal, G. DeGrace, R. Tewari, M. Zygmunt, J. Grantham, S. Gai,

M. Baldi, K. Doddapaneni, A. Selvarajan, A. Arumugam, B. Raman,

A.Gupta, S. Jain, D. Jagasia, E. Langlais, P. Srivastava, R.Hazarika, N.Mot-

wani, S. Tiwari, S. Grant, R. Chandra, and S. Kandula. Disaggregating

stateful network functions. In NSDI, 2023.

[33] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast

unfolding of communities in large networks, 2008.

[34] P. Bodík, I. Menache, M. Chowdhury, P. Mani, D. A. Maltz, and I. Stoica.

Surviving failures in bandwidth-constrained datacenters, 2012.

[35] A. Broder. On the resemblance and containment of documents. In

Proceedings of the Compression and Complexity of Sequences 1997. IEEE
Computer Society, 1997.

[36] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, et al. Apache

Flink: Stream and batch processing in a single engine. In ICDE, 2015.
[37] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker.

Ethane: Taking Control of the Enterprise. ACM SIGCOMM Computer
Communication Review, 37(4):1, Oct. 2007.

[38] N. M. M. K. Chowdhury and R. Boutaba. Network Virtualization : State

of the Art and Research Challenges. IEEE ComSoc, 2009.
[39] Cisco. Cisco Tetration. https://www.cisco.com/c/en_sg/products/

data-center-analytics/tetration-analytics/index.html.

[40] C. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, and O. Spatscheck. Gi-

gascope: High performance network monitoring with an sql interface.

In SIGMOD, 2002.
[41] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope: A

stream database for network applications. In SIGMOD, 2003.
[42] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk. The gigascope

stream database. IEEE Data Eng. Bull., 2003.
[43] M. Dalton et al. Andromeda: Performance, Isolation, and Velocity at

Scale in Cloud Network Virtualization. In NSDI, 2018.
[44] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of

deep bidirectional transformers for language understanding, 2019.

[45] O. Ertl. Superminhash – a new minwise hashing algorithm for jaccard

similarity estimation. https://arxiv.org/pdf/1706.05698.pdf.

[46] C. Estan, S. Savage, and G. Varghese. Automatically Inferring Patterns

of Resource Consumption in Network Traffic. In SIGCOMM, 2003.

[47] B. Evans. Walmart cio: We picked microsoft for huge cloud deal to

accelerate digital transformation. https://shorturl.at/aABI3.

[48] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,

S. Das, and A. Akella. Opennf: Enabling innovation in network function

control. In SIGCOMM, 2014.

[49] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu, V. Wang,

B. Pang, H. Chen, Z.-W. Lin, and V. Kurien. Pingmesh: A large-scale

system for data center network latency measurement and analysis. In

SIGCOMM, 2015.

[50] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition, 2015.

[51] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu, L. Akoglu,

D. Koutra, C. Faloutsos, and L. Li. Rolx: Structural role extraction &

mining in large graphs. In KDD, 2012.
[52] M. Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher, S. Singh, and

G. Varghese. Network monitoring using traffic dispersion graphs (tdgs).

In IMC, 2007.
[53] Illumio. Zero Trust: the security paradigm for the modern organization.

https://www.illumio.com/solutions/zero-trust.

[54] G. Jeh and J. Widom. Simrank: A measure of structural-context similar-

ity. In KDD, 2002.
[55] S. Kandula, R. Chandra, and D. Katabi. What’s Going On? Learning

Communication Rules in Edge Networks. In SIGCOMM, 2008.

[56] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The

Nature of Datacenter Traffic: Measurements & Analysis. In IMC, 2009.
[57] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,

I. Ganichev, J. Gross, P. Ingram, E. Jackson, A. Lambeth, R. Lenglet, S.-

H. Li, A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan, S. Shenker,

A. Shieh, J. Stribling, P. Thakkar, D. Wendlandt, A. Yip, and R. Zhang.

Network virtualization in multi-tenant datacenters. In NSDI, 2014.

https://www.cisa.gov/topics/cyber-threats-and-advisories/advanced-persistent-threats
https://www.cisa.gov/topics/cyber-threats-and-advisories/advanced-persistent-threats
https://aws.amazon.com/redshift/
https://www.databricks.com/spark/about
https://go.aws/3cg5J3O
https://go.aws/3cg5J3O
https://bit.ly/3Cou81Z
https://learn.microsoft.com/en-us/azure/synapse-analytics/
https://learn.microsoft.com/en-us/azure/synapse-analytics/
https://bit.ly/3UldTJq
https://bit.ly/3UldTJq
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html
https://learn.microsoft.com/en-us/azure/network-watcher/network-watcher-nsg-flow-logging-overview
https://learn.microsoft.com/en-us/azure/network-watcher/network-watcher-nsg-flow-logging-overview
https://learn.microsoft.com/en-us/azure/network-watcher/network-watcher-nsg-flow-logging-overview
https://bit.ly/3Bp5qwb
https://cloud.google.com/vpc/docs/flow-logs
https://bit.ly/3Cw83i9
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://www.akamai.com/infectionmonkey/breach-and-attack-simulation
https://www.akamai.com/infectionmonkey/breach-and-attack-simulation
https://intel.ly/3wxWT8w
https://intel.ly/3QTeD6F
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html
https://shorturl.at/amwHI
https://docs.paloaltonetworks.com/vm-series
https://docs.paloaltonetworks.com/vm-series
https://rb.gy/83mcu
https://www.cisco.com/c/en/us/products/security/advanced-persistent-threat.html
https://www.cisco.com/c/en/us/products/security/advanced-persistent-threat.html
https://www.researchandmarkets.com/report/microsegmentation
https://www.researchandmarkets.com/report/microsegmentation
https://www.akamai.com/products/akamai-guardicore-segmentation
https://www.akamai.com/products/akamai-guardicore-segmentation
https://shorturl.at/vMTY0
https://www.cisco.com/c/en_sg/products/data-center-analytics/tetration-analytics/index.html
https://www.cisco.com/c/en_sg/products/data-center-analytics/tetration-analytics/index.html
https://arxiv.org/pdf/1706.05698.pdf
https://shorturl.at/aABI3
https://www.illumio.com/solutions/zero-trust

HotNets ’23, November 28–29, 2023, Cambridge, MA, USA S. K. Mani, K. Hsieh, et al.

[58] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic

feature distributions. SIGCOMM CCR, 2005.
[59] Y. Li, R. Miao, C. Kim, and M. Yu. Flowradar: A better netflow for data

centers. In NSDI, 2016.
[60] D. Lizorkin, P. Velikhov, M. Grinev, and D. Turdakov. Accuracy esti-

mate and optimization techniques for simrank computation. In VLDB
Endowment, 2008.

[61] Y.Mirsky, T. Doitshman, Y. Elovici, andA. Shabtai. Kitsune: An ensemble

of autoencoders for online network intrusion detection. In NDSS, 2018.
[62] J. C. Mogul, D. Goricanec, M. Pool, A. Shaikh, D. Turk, B. Koley, and

X. Zhao. Experiences with modeling network topologies at multiple

levels of abstraction. In NSDI, 2020.
[63] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of

social representations. In KDD, 2014.
[64] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross,

A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado. The design

and implementation of open vSwitch. In NSDI, 2015.
[65] A. Rawashdeh and A. Ralescu. Similarity measure for social networks –

a brief survey. volume 1353, 2015.

[66] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside the social

network’s (datacenter) network. In SIGCOMM, 2015.

[67] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet Classification

Using Multidimensional Cutting. In ACM SIGCOMM 2003.
[68] Verizon. 2023 data breach investigations report. https://www.verizon.

com/business/resources/reports/dbir/.

[69] Verizon. Data breach investigations report: 2008 – 2022.

https://www.verizon.com/business/resources/reports/2022/dbir/

2022-data-breach-investigations-report-dbir.pdf.

[70] VMWare. VMware NSX. https://www.vmware.com/products/nsx.html.

[71] K. Zhao, P. Goyal, M. Alizadeh, and T. E. Anderson. Scalable tail latency

estimation for data center networks. In NSDI, 2023.

https://www.verizon.com/business/resources/reports/dbir/
https://www.verizon.com/business/resources/reports/dbir/
https://www.verizon.com/business/resources/reports/2022/dbir/2022-data-breach-investigations-report-dbir.pdf
https://www.verizon.com/business/resources/reports/2022/dbir/2022-data-breach-investigations-report-dbir.pdf
https://www.vmware.com/products/nsx.html

	1 Introduction
	2 Graph Analyses
	2.1 MicroSegmentation
	2.2 Succinct Summaries
	2.3 Counterfactual Analyses

	3 Low COGS telemetry, analytics
	3.1 Telemetry Source
	3.2 Analytics System

	4 Related work
	5 Conclusion
	References

