
Enhancing Network Management Using Code
Generated by Large Language Models

Sathiya Kumaran Mani§ Yajie Zhou§† Kevin Hsieh§ Santiago Segarra§★
Trevor Eberl§ Eliran Azulai§ Ido Frizler§ Ranveer Chandra§ Srikanth Kandula§

§Microsoft †University of Maryland ★Rice University

Abstract
Analyzing network topologies and communication graphs
is essential in modern network management. However, the
lack of a cohesive approach results in a steep learning curve,
increased errors, and inefficiencies. In this paper, we present
a novel approach that enables natural-language-based net-
work management experiences, leveraging large language
models (LLMs) to generate task-specific code from natu-
ral language queries. This method addresses the challenges
of explainability, scalability, and privacy by allowing net-
work operators to inspect the generated code, removing
the need to share network data with LLMs, and focusing on
application-specific requests combined with program synthe-
sis techniques. We develop and evaluate a prototype system
using benchmark applications, demonstrating high accuracy,
cost-effectiveness, and potential for further improvements
using complementary program synthesis techniques.
CCS Concepts

• Networks → Network management;

Keywords
Network management; Large language model; Program synthe-

sis; Natural language processing; Graph manipulation; Communi-
cation graphs; Network lifecycle management

1 Introduction
A critical aspect of contemporary network management in-
volves analyzing and performing actions on network topolo-
gies and communication graphs for tasks such as capacity
planning [39], configuration analysis [5, 17], and traffic anal-
ysis [24, 25, 60]. For instance, network operators may pose
capacity planning questions, such as “What is the most cost-
efficient way to double the network bandwidth between

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HotNets ’23, November 28–29, 2023, Cambridge, MA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 979-8-4007-0415-4/23/11. . . $15.00
https://doi.org/10.1145/3626111.3628183

these two data centers?” using network topology data. Simi-
larly, they may ask diagnostic questions like, “What is the
number of hops for data transmission between these two
nodes?” using communication graphs. Network operators to-
day rely on an array of tools and domain-specific languages
(DSLs) for these operations [17, 39]. A unified approach holds
significant potential to reduce the learning curve and mini-
mize errors and inefficiencies in manual operations.

The recent advancements in large language models (LLMs)
[1, 6, 12, 46, 53] provide a valuable opportunity to carry out
network management tasks using natural language. LLMs
have demonstrated exceptional proficiency in interpreting
human language and providing high-quality answers across
various domains [16, 33, 50, 54]. The capabilities of LLMs can
potentially bridge the gap between diverse tools and DSLs,
leading to a more cohesive and user-friendly approach to
handling network-related questions and tasks.

Unfortunately, while numerous network management op-
erations can be modeled as graph analysis or manipulation
tasks, no existing systems facilitate graph manipulation us-
ing natural language. Asking LLMs to directly manipulate
network topologies introduces three fundamental challenges:
explainability, scalability, and privacy. First, explaining the
output of LLMs and enabling them to reason about complex
problems remain unsolved issues [59]. Even state-of-the-art
LLMs suffer from problems such as hallucinations [35] and
arithmetic errors [7, 13]. This makes it hard to assess LLMs’
methods and answers. Second, LLMs are constrained by lim-
ited token window sizes [57], which restrict their capacity to
process extensive network topologies and communication
graphs. For example, modern LLMs such as Bard [20], Chat-
GPT [44], and GPT-4 [46] permit only 2k to 32k tokens in
their prompts, which can only accommodate small network
topologies with tens of nodes and hundreds of edges. Third,
network data may contain personally identifiable informa-
tion (PII), such as IP addresses [55], raising privacy concerns
when transferring this information to LLMs for processing.
Addressing these challenges is crucial to integrate LLMs in
network management tasks.
Vision and Techniques. We present a novel approach to
enhance network management by leveraging LLMs to create
task-specific code for graph analysis and manipulation, which
facilitates a natural-language-based network administration

https://doi.org/10.1145/3626111.3628183


HotNets ’23, November 28–29, 2023, Cambridge, MA, USA S. K. Mani, Y. Zhou, et al.

Original communication graph Updated communication graph 

Figure 1: An example of how a natural-language-based network management system generates and executes a
program in response to a network operator’s query: “Assign a unique color for each /16 IP address prefix”. The
system displays the LLM-generated code and the updated communication graph.

experience. Figure 1 depicts how an example system gen-
erates and executes LLM-produced code in response to a
network operator’s natural language query. This approach
tackles the explainability challenge by allowing network op-
erators to examine the LLM-generated code, enabling them
to comprehend the underlying logic that fulfills the query.
Additionally, it delegates computation to program execu-
tion engines, thereby minimizing arithmetic inaccuracies
and LLM-induced hallucinations. Furthermore, this approach
overcomes scalability and privacy issues by removing the
need to share network data with LLMs.
The primary technical challenge lies in generating high-

quality code to accomplish network management tasks. Al-
though LLMs have shown remarkable capabilities in general
code generation [2, 7, 33], they lack an understanding of
domain and application specific requirements. To tackle this
challenge, we propose a novel framework that combines
application-specific requests with general program synthesis
techniques to create customized code for graph manipulation
tasks in network management. Our architecture divides code
generation into two components: (1) an application-specific
element that provides context, instructions, or plugins, which
enhance the LLMs’ comprehension of network structures and
terminology, and (2) a code generation element that lever-
ages suitable libraries and program synthesis techniques
[2, 9–11, 48, 49]. This architecture fosters independent in-
novation of the distinct components, and our preliminary
study indicates substantial code quality improvements.
Implementation and Evaluation. We design a prototype
system that allows network operators to submit natural-
language queries to network topologies and communication
graphs (Figure 1). To assess effectiveness, we establish a
benchmark, NeMoEval, consisting of two applications that
can be modeled as graph manipulation: (1) network traffic
analysis using communication graphs [24, 25, 60], and (2)

network lifecycle management based on Multi-Abstraction-
Layer Topology representation (MALT) [39]. To assess gen-
eralizability, we evaluate three code generation approaches
(SQL [14], pandas [41], and NetworkX [15]) and four dis-
tinct LLMs [10, 20, 44, 46]. Our preliminary results show
that our system produces high-quality code. Utilizing the
NetworkX-based approach, we attain average code correct-
ness (i.e., code with correct functionality for the query) of
63% and 56% across all tasks for the four LLMs (up to 88% and
78% with GPT-4) for network traffic analysis and network
lifecyclemanagement, respectively. In comparison, the straw-
man baseline, which inputs the graph data into LLMs, only
reaches an average correctness of 23% for the traffic analysis
application. Our method significantly improves the average
correctness by 45%, making it a more viable option. Addition-
ally, we demonstrate that adding complementary program
synthesis methods could further enhance code quality. Fi-
nally, we demonstrate that our approach is cost-effective,
with an average expense of $0.1 per task, and the LLM cost
stays constant regardless of network sizes. We releaseNeMo-
Eval1, our benchmark and datasets, to foster further research.
Contributions. We make the following contributions:
• Towards enabling natural-language-based network admin-
istration experience, we introduce a novel approach that
uses LLMs to generate code for graph manipulation tasks.
This work is, to the best of our knowledge, the first to
investigate the usage of LLMs for graph manipulation and
network management.

• We develop and release a benchmark that encompasses
two network administration applications: network traffic
analysis and network lifecycle management.

• We evaluate these applications with three code generation
techniques and four distinct LLMs to validate our approach
for generating high-quality code for graph manipulation.

1https://github.com/microsoft/NeMoEval

https://github.com/microsoft/NeMoEval


Network Management Using LLM-Generated Code HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

2 Preliminaries
We examine graph analysis and manipulation’s role in net-
work management, and discuss recent LLM advances and
their potential application to network management.

2.1 Graph Analysis and Manipulation in
Network Management

Network management involves tasks such as network plan-
ning, monitoring, configuration, and troubleshooting. As
networks expand in size and complexity, these tasks become
progressively more challenging. For instance, network opera-
tors are required to configure and monitor numerous devices
to enforce intricate policies and ensure proper functional-
ity. Numerous operations can be modeled as graph analysis
and manipulation for network topologies or communication
graphs. Two examples are described below.
Network Traffic Analysis. Network operators analyze traf-
fic to identify bottlenecks, congestion, and underused re-
sources, as well as for traffic classification. A valuable rep-
resentation in traffic analysis is traffic dispersion graphs
(TDGs) [25] or communication graphs [19], in which nodes
represent network components like routers, switches, or de-
vices, and edges symbolize the connections or paths between
these components (e.g., Figure 1). These graphs offer a visual
representation of data packet paths, facilitating a compre-
hensive understanding of traffic patterns. Network operators
typically utilize these graphs in two ways: (1) examining
these graphs to understand the network’s current state for
network performance optimization [25], traffic classification
[52], and anomaly detection [29], and (2) manipulating the
nodes and edges to simulate the impact of their actions on
the network’s performance and reliability [30].
Network Lifecycle Management. Managing a network’s
lifecycle involves phases like capacity planning, topology
design, deployment, and diagnostics. Most operations require
precise topology representations at various abstraction levels
and the manipulation of topology to achieve the desired
network state [39]. For example, network operators may
employ a high-level topology to plan the network’s capacity
and explore alternatives to increase bandwidth between two
data centers. Similarly, network engineers may use a low-
level topology to determine the location of a specific network
device and its connections to other devices.

Hence, graph analysis and manipulation are crucial parts
of network management. A unified interface for these tasks
has the potential to significantly simplify the process, saving
network operators considerable time and effort.

2.2 LLMs and Program Synthesis
Automated program generation based on natural language,
also known as program synthesis, has been a long-standing
research challenge [3, 23, 34]. Until recently, program syn-
thesis had primarily been limited to specific domains, such

as string processing [22], programs based on input-output
examples [4], and database queries (e.g., [26, 28, 31]). In con-
trast, general program synthesis was considered to be out of
reach [2]. The breakthrough emerged with the advancement
of LLMs [6, 10, 18, 20, 32, 46], which are trained on extensive
corpora of text from the internet and massive code reposito-
ries such as GitHub. LLMs have demonstrated remarkable
proficiency in learning the relationship between natural lan-
guage and code, achieving state-of-the-art performance in
domain-specific tasks such as natural language to database
query [40, 51], as well as human-level performance in tasks
like programming competitions [33] and mock technical
interviews [7]. Recently, these advancements have led to ex-
perimental plugins designed to solve mathematical problems
and perform data analysis through code generation [43].

The recent breakthrough in program synthesis using LLMs
has ignited a surge of research aimed at advancing the state
of the art in this field. These techniques can generally be
classified into three approaches: (1) code selection, which
involves generating multiple samples with LLMs and choos-
ing the best one based on the consistency of execution re-
sults [48] or auto-generated test cases [9]; (2) few-shot ex-
amples, which supply LLMs with several examples of the
target program’s input-output behavior [2]; and (3) feedback
and self-reflection, which incorporates a feedback or rein-
forcement learning outer loop to help LLMs learn from their
errors [8, 11, 49]. These advanced techniques continue to ex-
pand the horizons of program synthesis, empowering LLMs
to generate more complex and accurate programs.

As Section 1 discusses, LLM-generated code can tackle ex-
plainability, scalability, and privacy challenges in LLM-based
network management. However, our initial study shows that
merely applying existing approaches is inadequate for net-
work management tasks, as existing techniques do not com-
prehend the domain and application specific requirements.
The key technical challenge lies in harnessing advancements
in LLMs and general program synthesis to develop a unified
interface to accomplish network management tasks, which
forms the design requirements for our proposed solution.

3 System Framework
We present a novel general framework to enhance network
management by utilizing LLMs to generate task-specific code.
Our framework is based on two insights. First, we can trans-
formmany network management operations into graph anal-
ysis and manipulation tasks (Section 2.1), which allows for a
unified design and a more focused task for code generation.
Second, we can separate prompt generation into two aspects:
domain-specific requirements and general program synthe-
sis. By combining the strengths of domain specialization
with advances in program synthesis techniques (Section 2.2),
we can generate high-quality code for network management
tasks. Figure 2 illustrates our system framework.



HotNets ’23, November 28–29, 2023, Cambridge, MA, USA S. K. Mani, Y. Zhou, et al.

Application 
Prompt 

Generator

Generated codeExtract code 
& Validate

Raw data or logs

User query

Application

Application and 
Graph description

Execution
sandbox

Complete 
prompt

Sync state

Format 
output

Chosen LLM

1

Graphs

Code-Gen 
Prompt 

Generator

2 3 4

5
6

UX interface

Application Wrapper

Figure 2: A general framework for network manage-
ment systems using LLM-generated code

Our framework consists of an application wrapper ( 1 in
Figure 2) that uses domain-specific knowledge, such as the
definitions of nodes and edges, to transform the application
data into a graph representation. This information, together
with user queries in natural language, is processed by an
application prompt generator ( 2 ) to create a task-specific
prompt, which can be generated with templates and query
contexts. Subsequently, the task-specific prompt is combined
with a general code-gen prompt generator ( 3 ) to instruct
the LLM ( 4 ) to produce code. The generated code utilizes
plugins and libraries to respond to user’s queries in the con-
structed graph. An execution sandbox ( 5 ) executes code
on the graph representation of the network. The code and
its results are displayed on a UX interface ( 6 ). If the user
approves, the UX sends the updated graph to the application
wrapper ( 1 ) to modify the network state and record the
input/output for future prompt enhancements [2, 11, 49]. We
describe the key components below.
ApplicationWrapper ( 1 ). The application wrapper offers
context-specific information related to the network manage-
ment application and the network itself. For instance, the
Multi-Abstraction-Layer Topology representation (MALT)
wrapper[39] can extract the graph of entities and relation-
ships from the underlying data, describing entities (e.g., packet
switches, control points, etc.) and relationships (e.g., contains,
controls, etc.) in natural language. This information assists
LLMs in comprehending the network management applica-
tion and the graph data structure. Additionally, the applica-
tion wrapper can provide application-specific plugins [42]
or code libraries to make LLM tasks more straightforward.
Application Prompt Generator ( 2 ). The purpose of the
application prompt generator is to accept both the user
query and the information from the application wrapper
as input, and then generate a prompt specifically tailored
to the query and task for the LLM. To achieve this, the
prompt generator can utilize a range of static and dynamic
techniques[37, 56, 58]. For instance, when working with
MALT, the prompt generator can dynamically select relevant

Golden answer 
Selector

Evaluation  
& analysis

LLM generated code 
execution

Golden code 
execution

Our Prototype

User 
query

Figure 3: Benchmark design

entities and relationships based on the user query, and then
populate a prompt template with the contextual information.
Our framework is designed to offer flexibility regarding the
code-gen prompt generator ( 3 ) and LLMs ( 4 ), enabling
the use of various techniques for different applications.
Execution Sandbox ( 5 ). As highlighted in previous re-
search [10], it is crucial to have a secure environment to
run the code generated by LLMs. The execution sandbox
can be established using virtualization or containerization
techniques, ensuring limited access to program libraries and
system calls. Additionally, this module provides a chance to
enhance the security of both code and system by validating
network invariants or examining output formats.

4 Implementation and Evaluation
4.1 Benchmark
We design a benchmark, NeMoEval, to evaluate LLM-based
networkmanagement systems. As Figure 3 illustrates,NeMo-
Eval consists of three main components:
Golden Answer Selector. For each input user query, we
create a “golden answer” which contains the expected correct
code functionality with the help of human experts. These
verified answers, stored in a selector’s dictionary file, act as
the ground truth to evaluate LLM-generated code.
Results Evaluator. The system executes the LLM-generated
code on network data in the sandbox, comparing outcomes
(e.g., an updated graph or the output information) with the
golden answer’s executed results.
Results Logger. To analyze the LLM’s performance and
improvement potential, we log each query’s results, includ-
ing the LLM-generated code, the golden answer, and the
comparison. We also record any code execution errors.

4.2 Experimental Setup
Applications and Queries. We implement and evaluate
two applications as described in Section 2.1:
• Network Traffic Analysis. We generate synthetic communi-
cation graphs with varying numbers of nodes and edges.
Each edge represents communication between two nodes
with weights in bytes, connections, and packets. By curat-
ing trial queries from product users, we develop 24 queries
encompassing tasks such as topology analysis, information
computation, and graph manipulation.



Network Management Using LLM-Generated Code HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

Table 1: User query examples. See all queries in NeMoEval.
Complexity level Traffic Analysis MALT

Easy Add a label app:prodution to nodes with address prefix 15.76 List all ports that are contained by packet switch ju1.a1.m1.s2c1.
Medium Assign a unique color for each /16 IP address prefix. Find the first and the second largest Chassis by capacity.
Hard Calculate total byte weight on each node, cluster them into 5 groups. Remove packet switch P1 from Chassis 4, balance the capacity afterward.

• Network Lifecycle Management.We convert the example
MALT dataset [21] to a directed graph with 5493 nodes
and 6424 edges. Each node represents one or more types
in a network, such as packet switches, chassis, and ports,
with different node types containing various attributes.
Directed edges encapsulate relationships between devices,
like control or containment associations. Based on the ex-
amples in the MALT paper [39], we develop 9 network
management queries that consist of operational manage-
ment, WAN capacity planning, and topology design.
Queries are grouped into three levels (“Easy”, “Medium”,

and “Hard”) based on the complexity of their golden answers.
Table 1 displays an example query from each category due to
page limits. The release of NeMoEval1 contains the complete
list of queries and their respective golden answers.
LLMs.We study four leading LLMs: GPT-4 [46], GPT-3 [6],
Text-davinci-003 [45], and Google Bard [20]. We also test two
open LLMs, StarCoder [32] and InCoder [18], but omit their
results due to their inconsistency. We will report on them
once they are stabilized. We set the temperature of OpenAI
LLMs to 0 for uniform output across trials. Since we cannot
change the temperature of Google Bard, we send each query
five times and calculate the average passing probability [10].
Approaches.We implement three code generation methods
for LLMs using well-established data/graph libraries with
numerous public code examples for LLMs to learn from.
• NetworkX.We represent the network data as aNetworkX [15]
graph, which offers flexible APIs for efficient manipulation
and analysis of network graphs.

• Pandas. We represent the network data using two pan-
das [41] dataframes: a node dataframe, which stores node
indices and attributes, and an edge dataframe, which en-
capsulates the link information among nodes through an
edge list. Pandas provides many built-in data manipulation
techniques, such as filtering, sorting, and grouping.

• SQL. We represent the network data as databases queried
through SQL [14], consisting of a table for nodes and an-
other for edges. The schemas are similar to those in pandas.
Recent work has demonstrated that LLMs are capable of
generating SQL with state-of-the-art accuracy [40, 51].

We also evaluate an alternative baseline (strawman) that di-
rectly feeds the original network graph data in JSON format
to LLMs and requests them to address the query. However,
owing to the token limitations on LLMs, we limit our evalua-
tion of this approach to synthetic graphs for network traffic
analysis, where data size can be controlled.

Table 2: Accuracy Summary for Both Applications
Traffic Analysis MALT

Strawman SQL Pandas NetworkX SQL Pandas NetworkX
GPT-4 0.29 0.50 0.38 0.88 0.11 0.56 0.78

GPT-3 0.25 0.13 0.25 0.46 0.11 0.33 0.44

text-davinci-003 0.21 0.29 0.29 0.58 0.11 0.22 0.56

Google Bard 0.25 0.21 0.25 0.59 0.11 0.33 0.44

Table 3: Breakdown for Trafic Analysis
Strawman SQL Pandas NetworkX

E(8)/M(8)/H(8) E(8)/M(8)/H(8) E(8)/M(8)/H(8) E(8)/M(8)/H(8)
GPT-4 0.50/0.38/0.0 0.75/0.50/0.25 0.50/0.50/0.13 1.0/0.88/0.75
GPT-3 0.38/0.38/0.0 0.25/0.13/0.0 0.50/0.25/0.0 0.63/0.50/0.25
text-davinci-003 0.38/0.25/0.0 0.63/0.25/0.0 0.63/0.25/0.0 1.0/0.63/0.13
Google Bard 0.50/0.25/0.0 0.38/0.25/0.0 0.50/0.13/0.13 0.88/0.50/0.38

Table 4: Breakdown for MALT
SQL Pandas NetworkX

E(3)/M(3)/H(3) E(3)/M(3)/H(3) E(3)/M(3)/H(3)
GPT-4 0.33/0.0/0.0 0.67/0.67/0.33 1.0/1.0/0.33
GPT-3 0.33/0.0/0.0 0.67/0.33/0.0 0.67/0.67/0.0
text-davinci-003 0.33/0.0/0.0 0.33/0.33/0.0 0.67/0.67/0.33
Google Bard 0.33/0.0/0.0 0.67/0.33/0.0 0.67/0.33/0.33

4.3 Code Quality
Table 2 summarizes the code correctness results. We observe
three key points. First, utilizing LLMs for generating code in
network management significantly outperforms the straw-
man baseline in both applications, as the generated code
reduces arithmetic errors and LLM hallucinations. Second,
employing a graph library (NetworkX) greatly enhances code
accuracy compared to pandas and SQL, as LLMs can directly
map natural-language graph operations to NetworkX’s graph
manipulation APIs, which simplifies the generated code. This
trend is consistent across all four LLMs. Finally, pairing Net-
workX with the state-of-the-art GPT-4 model produces the
best results (88% and 78%, respectively), making it a promis-
ing strategy for network management code generation.

To understand the impact of task difficulty, we break down
the accuracy results in Tables 3 and 4. We observe that the ac-
curacy of LLM-generated code decreases as task complexity
increases. This trend is consistent across all LLMs and ap-
proaches, with the performance disparities becoming more
pronounced for network lifecycle management (Table 4).
Our analysis of the LLM-generated code reveals that the

complex relationships in the MALT dataset make LLMs more
prone to errors in challenging tasks, and future research



HotNets ’23, November 28–29, 2023, Cambridge, MA, USA S. K. Mani, Y. Zhou, et al.

Table 5: Error Type Summary of LLM Generated Code
LLM’s error type (NetworkX) Traffic Analysis (36) MALT (17)
Syntax error 9 0
Imaginary graph attributes 9 1
Imaginary files/function arguments 3 2
Arguments error 7 8
Operation error 4 2
Wrong calculation logic 2 3
Graphs are not identical 2 1

Table 6: Improvement Cases with Bard on MALT
Bard + Pass@1 Bard + Pass@5 Bard + Self-debug

NetworkX 0.44 1.0 0.67

should focus on improving LLMs’ ability to handle complex
network management tasks.

4.4 Case Study on Potential Improvement
For the NetworkX approach across all four LLMs, there are
36 failures out of 96 tests (24× 4) for network traffic analysis
and 17 failures out of 36 tests (9 × 4) for network lifecycle
management, respectively. Table 5 summarizes the error
types. More than half of the errors are associated with syntax
errors or imaginary (non-existent) attributes. We conduct
a case study to see whether using complementary program
synthesis techniques (Section 2.2) could correct these errors.
We assess two techniques: (1) pass@k [10], where the

LLM is queried 𝑘 times with the same question, and it is
deemed successful if at least one of the answers is correct.
This method reduces errors arising from the LLM’s inherent
randomness and can be combined with code selection tech-
niques [9, 10, 48] for improved results; (2) self-debug [11],
which involves providing the error message back to the LLM
and encouraging it to correct the previous response.

We carry out a case study using the Bard model and three
unsuccessful network lifecycle queries with the NetworkX
approach. Table 6 shows that both pass@k (𝑘 = 5) and self-
debug significantly enhance code quality, resulting in im-
provements of 100% and 67%, respectively. These results
indicate that applying complementary techniques has con-
siderable potential for further improving the accuracy of
LLM-generated code in network management applications.

4.5 Cost and Scalability Analysis
We examine the LLM cost utilizing GPT-4 pricing on Azure
[36] for the network traffic analysis application. Figure 4a
reveals that strawman is three times costlier than our method
for a small graph with 80 nodes and edges. As the graph size
expands (Figure 4b), the gap between the two approaches
grows, with the strawman approach surpassing the LLM’s
token limit for a moderate graph containing 150 nodes and
edges. Conversely, our method has a small cost (∼$0.1 per
query) that remains unaffected by graph size increases.

(a) LLM cost per query (80
nodes and edges)

(b) Cost analysis on graph
size

Figure 4: Cost and scalability Analysis

5 Discussion and Conclusion
Recent advancements in LLMs have paved the way for new
opportunities in network management. We introduce a sys-
tem framework that leverages LLMs to create task-specific
code for graphmanipulation, tackling issues of explainability,
scalability, and privacy. While our prototype and prelimi-
nary study indicate the potential of this method, many open
questions remain in this nascent area of research.
CodeQuality forComplexTasks.As our evaluation shows,
the LLM-generated code is highly accurate for easy and
medium tasks; however, the accuracy decreases for complex
tasks. This is partially due to the LLMs being trained on a
general code corpus without specific network management
knowledge. An open question is how to develop domain-
specific program synthesis techniques capable of generating
high-quality code for complex network management tasks,
such as decomposing the task into simpler sub-tasks [56], in-
corporating application-specific plugins [42], or fine-tuning
the model with application-specific code examples.
Code Comprehension and Validation. Ensuring correct-
ness and understanding LLM-generated code can be chal-
lenging for network operators. While general approaches
like LLM-generated test cases [9] and code explanation [38]
exist, they are insufficient for complex tasks. Developing
robust, application-specific methods to aid comprehension
and validation is a crucial challenge.
Expanding Benchmarks and Applications. Extending
our current benchmark to cover more network management
tasks raises questions about broader effectiveness and appli-
cability to other applications, such as network failure diag-
nosis [27, 47] and configuration verification [5, 17]. Address-
ing these challenges requires exploring new network state
representation, code generation strategies, and application-
specific libraries and plugins.
In conclusion, we introduce a general framework to use

LLMs in network management, presenting a new frontier
for simplifying network operators’ tasks. We hope that our
work, alongwith our benchmarks and datasets, will stimulate
continued exploration in this field.



Network Management Using LLM-Generated Code HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

References
[1] Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry

Lepikhin, Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige
Bailey, Zhifeng Chen, Eric Chu, Jonathan H. Clark, Laurent El Shafey,
Yanping Huang, Kathy Meier-Hellstern, Gaurav Mishra, Erica Moreira,
Mark Omernick, Kevin Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao,
Yuanzhong Xu, Yujing Zhang, Gustavo Hernández Ábrego, Junwhan
Ahn, Jacob Austin, Paul Barham, Jan A. Botha, James Bradbury, Sid-
dhartha Brahma, Kevin Brooks, Michele Catasta, Yong Cheng, Colin
Cherry, Christopher A. Choquette-Choo, Aakanksha Chowdhery, Clé-
ment Crepy, Shachi Dave, Mostafa Dehghani, Sunipa Dev, Jacob Devlin,
Mark Díaz, Nan Du, Ethan Dyer, Vladimir Feinberg, Fangxiaoyu Feng,
Vlad Fienber, Markus Freitag, Xavier Garcia, Sebastian Gehrmann,
Lucas Gonzalez, and et al. 2023. PaLM 2 Technical Report. CoRR
abs/2305.10403 (2023).

[2] Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Hen-
ryk Michalewski, David Dohan, Ellen Jiang, Carrie J. Cai, Michael
Terry, Quoc V. Le, and Charles Sutton. 2021. Program Synthesis with
Large Language Models. CoRR abs/2108.07732 (2021).

[3] John W. Backus, Robert J. Beeber, Sheldon Best, Richard Goldberg,
Lois M. Haibt, Harlan L. Herrick, Robert A. Nelson, David Sayre, Pe-
ter B. Sheridan, H. Stern, Irving Ziller, Robert A. Hughes, and R. Nutt.
1957. The FORTRAN automatic coding system. In The 1957 western
joint computer conference: Techniques for reliability (IRE-AIEE-ACM).

[4] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian
Nowozin, and Daniel Tarlow. 2017. DeepCoder: Learning to Write
Programs. In Proceedings of 5th International Conference on Learning
Representations (ICLR).

[5] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017.
A General Approach to Network Configuration Verification. In Pro-
ceedings of the Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM).

[6] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-
Shot Learners. In Advances in Neural Information Processing Systems
(NeurIPS).

[7] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes
Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li,
Scott M. Lundberg, Harsha Nori, Hamid Palangi, Marco Túlio Ribeiro,
and Yi Zhang. 2023. Sparks of Artificial General Intelligence: Early
experiments with GPT-4. CoRR abs/2303.12712 (2023).

[8] Angelica Chen, Jérémy Scheurer, Tomasz Korbak, Jon Ander Campos,
Jun Shern Chan, Samuel R. Bowman, Kyunghyun Cho, and Ethan
Perez. 2023. Improving Code Generation by Training with Natural
Language Feedback. CoRR abs/2303.16749 (2023).

[9] Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-
Guang Lou, and Weizhu Chen. 2022. CodeT: Code Generation with
Generated Tests. CoRR abs/2207.10397 (2022).

[10] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé
de Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri Burda,
Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power,
Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet,
Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,
Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin,

Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, An-
drew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, EvanMorikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish,
Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large Lan-
guage Models Trained on Code. CoRR abs/2107.03374 (2021).

[11] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. 2023.
Teaching Large Language Models to Self-Debug. CoRR abs/2304.05128
(2023).

[12] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma,
Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi
Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du,
Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael
Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya,
Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne
Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiri-
donov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,
Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov,
Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern,
Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. 2022. PaLM:
Scaling Language Modeling with Pathways. CoRR abs/2204.02311
(2022).

[13] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Hee-
woo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton,
Reiichiro Nakano, Christopher Hesse, and John Schulman. 2021. Train-
ing Verifiers to Solve Math Word Problems. CoRR abs/2110.14168
(2021).

[14] Chris J Date. 1989. A Guide to the SQL Standard. Addison-Wesley
Longman Publishing Co., Inc.

[15] NetworkX Developers. NetworkX: Network Analysis in Python. https:
//networkx.org/, Retrieved on 2023-02.

[16] Tyna Eloundou, SamManning, Pamela Mishkin, and Daniel Rock. 2023.
GPTs are GPTs: An Early Look at the Labor Market Impact Potential
of Large Language Models. CoRR abs/2303.10130 (2023).

[17] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh
Govindan, Ratul Mahajan, and Todd D. Millstein. 2015. A General Ap-
proach to Network Configuration Analysis. In 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI).

[18] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace,
Freda Shi, Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike
Lewis. 2022. InCoder: A Generative Model for Code Infilling and
Synthesis. CoRR abs/2204.05999 (2022).

[19] Eduard Glatz, Stelios Mavromatidis, Bernhard Ager, and Xenofontas A.
Dimitropoulos. 2014. Visualizing big network traffic data using fre-
quent pattern mining and hypergraphs. Computing 96, 1 (2014), 27–38.

[20] Google. Google Bard. https://bard.google.com/, Retrieved on 2023-06.
[21] Google. MALT example models. https://github.com/google/

malt-example-models, Retrieved on 2023-06.
[22] Sumit Gulwani. 2011. Automating string processing in spreadsheets

using input-output examples. In Proceedings of the 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL).

[23] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program
Synthesis. Found. Trends Program. Lang. 4, 1-2 (2017).

[24] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer
Rexford, and Walter Willinger. 2018. Sonata: query-driven streaming
network telemetry. In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM).

https://networkx.org/
https://networkx.org/
https://bard.google.com/
https://github.com/google/malt-example-models
https://github.com/google/malt-example-models


HotNets ’23, November 28–29, 2023, Cambridge, MA, USA S. K. Mani, Y. Zhou, et al.

[25] Marios Iliofotou, Prashanth Pappu, Michalis Faloutsos, Michael Mitzen-
macher, Sumeet Singh, and George Varghese. 2007. Network monitor-
ing using traffic dispersion graphs (TDGs). In Proceedings of the 7th
ACM SIGCOMM Internet Measurement Conference (IMC).

[26] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy,
and Luke Zettlemoyer. 2017. Learning a Neural Semantic Parser from
User Feedback. In Proceedings of the 55th Annual Meeting of the Associ-
ation for Computational Linguistics (ACL).

[27] Srikanth Kandula, Dina Katabi, and Jean-Philippe Vasseur. 2005. Shrink:
a tool for failure diagnosis in IP networks. In Proceedings of the 1st
Annual ACM Workshop on Mining Network Data (MineNet).

[28] Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee.
2020. Natural language to SQL: Where are we today? Proc. VLDB
Endow. 13, 10 (2020).

[29] Do Quoc Le, Taeyoel Jeong, H. Eduardo Roman, and James Won-Ki
Hong. 2011. Traffic dispersion graph based anomaly detection. In
Proceedings of the Symposium on Information and Communication Tech-
nology (SoICT).

[30] Sihyung Lee, Kyriaki Levanti, and Hyong S. Kim. 2014. Network
monitoring: Present and future. Comput. Networks 65 (2014).

[31] Fei Li and H. V. Jagadish. 2014. Constructing an Interactive Natural
Language Interface for Relational Databases. Proc. VLDB Endow. 8, 1
(2014).

[32] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, De-
nis Kocetkov, Chenghao Mou, Marc Marone, Christopher Akiki, Jia
Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier,
João Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade,
Armel Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, Ben-
jamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy
V, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco
Zocca, Manan Dey, Zhihan Zhang, Nour Moustafa-Fahmy, Urvashi
Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee,
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf,
Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, Car-
olyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz
Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von
Werra, and Harm de Vries. 2023. StarCoder: may the source be with
you! CoRR abs/2305.06161 (2023).

[33] Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian
Schrittwieser, Rémi Leblond, Tom Eccles, James Keeling, Felix Gi-
meno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien de
Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Jo-
hannesWelbl, Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J.
Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Fre-
itas, Koray Kavukcuoglu, and Oriol Vinyals. 2022. Competition-Level
Code Generation with AlphaCode. CoRR abs/2203.07814 (2022).

[34] Zohar Manna and Richard J. Waldinger. 1971. Toward Automatic
Program Synthesis. Commun. ACM 14, 3 (1971).

[35] JoshuaMaynez, Shashi Narayan, Bernd Bohnet, and Ryan T. McDonald.
2020. On Faithfulness and Factuality in Abstractive Summarization.
In Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics (ACL).

[36] Microsoft. Azure OpenAI Service pricing. https://azure.microsoft.com/
en-us/pricing/details/cognitive-services/openai-service/, Retrieved on
2023-06.

[37] Microsoft. A guidance language for controlling large language models.
https://github.com/microsoft/guidance, Retrieved on 2023-06.

[38] Microsoft. Introducing GitHub Copilot X. https://github.com/features/
preview/copilot-x, Retrieved on 2023-06.

[39] Jeffrey C. Mogul, Drago Goricanec, Martin Pool, Anees Shaikh, Dou-
glas Turk, Bikash Koley, and Xiaoxue Zhao. 2020. Experiences with
Modeling Network Topologies at Multiple Levels of Abstraction. In
USENIX Symposium on Networked Systems Design and Implementation
(NSDI).

[40] Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov, Wen-tau Yih,
Sida I. Wang, and Xi Victoria Lin. 2023. LEVER: Learning to Verify
Language-to-Code Generation with Execution. CoRR abs/2302.08468
(2023).

[41] NumFOCUS. pandas. https://pandas.pydata.org/, Retrieved on 2023-
06.

[42] OpenAI. ChatGPT plugins. https://openai.com/blog/chatgpt-plugins,
Retrieved on 2023-05.

[43] OpenAI. Code interpreter. https://openai.com/blog/
chatgpt-plugins-code-interpreter, Retrieved on 2023-08.

[44] OpenAI. Introducing ChatGPT. https://openai.com/blog/chatgpt,
Retrieved on 2023-02.

[45] OpenAI. OpenAI models. https://platform.openai.com/docs/models/
overview, Retrieved on 2023-06.

[46] OpenAI. 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023).
[47] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C. Snoeren. 2017.

Passive Realtime Datacenter Fault Detection and Localization. In
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI).

[48] Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke Zettlemoyer,
and Sida I. Wang. 2022. Natural Language to Code Translation with
Execution. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP).

[49] Noah Shinn, Federico Cassano, Beck Labash, AshwinGopinath, Karthik
Narasimhan, and Shunyu Yao. 2023. Reflexion: Language Agents with
Verbal Reinforcement Learning. CoRR abs/2303.11366 (2023).

[50] Karan Singhal, Shekoofeh Azizi, Tao Tu, S. Sara Mahdavi, Jason Wei,
Hyung Won Chung, Nathan Scales, Ajay Kumar Tanwani, Heather
Cole-Lewis, Stephen Pfohl, Perry Payne,Martin Seneviratne, Paul Gam-
ble, Chris Kelly, Nathaneal Schärli, Aakanksha Chowdhery, Philip An-
drew Mansfield, Blaise Agüera y Arcas, Dale R. Webster, Gregory S.
Corrado, Yossi Matias, Katherine Chou, Juraj Gottweis, Nenad Toma-
sev, Yun Liu, Alvin Rajkomar, Joelle K. Barral, Christopher Semturs,
Alan Karthikesalingam, and Vivek Natarajan. 2022. Large Language
Models Encode Clinical Knowledge. CoRR abs/2212.13138 (2022).

[51] Ruoxi Sun, Sercan Ö. Arik, Hootan Nakhost, Hanjun Dai, Rajarishi
Sinha, Pengcheng Yin, and Tomas Pfister. 2023. SQL-PaLM: Im-
proved Large Language Model Adaptation for Text-to-SQL. CoRR
abs/2306.00739 (2023).

[52] Hamid Tahaei, Firdaus Afifi, Adeleh Asemi, Faiz Zaki, and Nor Badrul
Anuar. 2020. The rise of traffic classification in IoT networks: A survey.
J. Netw. Comput. Appl. 154 (2020), 102538.

[53] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric
Hambro, Faisal Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. LLaMA: Open and Efficient
Foundation Language Models. CoRR abs/2302.13971 (2023).

[54] Immanuel Trummer. 2022. CodexDB: Synthesizing Code for Query
Processing from Natural Language Instructions using GPT-3 Codex.
Proc. VLDB Endow. 15, 11 (2022).

[55] European Union. General Data Protection Regulation (GDPR). https:
//commission.europa.eu/law/law-topic/data-protection_en, Retrieved
on 2023-04.

[56] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian
Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2022. Chain-
of-Thought Prompting Elicits Reasoning in Large Language Models.
In Advances in Neural Information Processing Systems (NeurIPS).

https://azure.microsoft.com/en-us/pricing/details/cognitive-services/openai-service/
https://azure.microsoft.com/en-us/pricing/details/cognitive-services/openai-service/
https://github.com/microsoft/guidance
https://github.com/features/preview/copilot-x
https://github.com/features/preview/copilot-x
https://pandas.pydata.org/
https://openai.com/blog/chatgpt-plugins
https://openai.com/blog/chatgpt-plugins-code-interpreter
https://openai.com/blog/chatgpt-plugins-code-interpreter
https://openai.com/blog/chatgpt
https://platform.openai.com/docs/models/overview
https://platform.openai.com/docs/models/overview
https://commission.europa.eu/law/law-topic/data-protection_en
https://commission.europa.eu/law/law-topic/data-protection_en


Network Management Using LLM-Generated Code HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

[57] Jules White, Sam Hays, Quchen Fu, Jesse Spencer-Smith, and Dou-
glas C. Schmidt. 2023. ChatGPT Prompt Patterns for Improving Code
Quality, Refactoring, Requirements Elicitation, and Software Design.
CoRR abs/2303.07839 (2023).

[58] Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. 2022. Auto-
matic Chain of Thought Prompting in Large Language Models. CoRR
abs/2210.03493 (2022).

[59] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang,
Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong,
Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun
Nie, and Ji-Rong Wen. 2023. A Survey of Large Language Models.
CoRR abs/2303.18223 (2023).

[60] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao, Shi Bai, Bo Li,
Zhilong Zheng, Lingjun Zhu, Zhen Shen, Yongqing Xi, Pengcheng
Zhang, Dennis Cai, Ming Zhang, and Mingwei Xu. 2020. Flow Event
Telemetry on Programmable Data Plane. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM).


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Graph Analysis and Manipulation in Network Management
	2.2 LLMs and Program Synthesis

	3 System Framework
	4 Implementation and Evaluation
	4.1 Benchmark
	4.2 Experimental Setup
	4.3 Code Quality
	4.4 Case Study on Potential Improvement
	4.5 Cost and Scalability Analysis

	5 Discussion and Conclusion
	References

