Enhancing Network Management Using Code
Generated by Large Language Models

Sathiya Kumaran Mani®
Trevor Eberl® Eliran Azulai®
$ Microsoft

Abstract

Analyzing network topologies and communication graphs
is essential in modern network management. However, the
lack of a cohesive approach results in a steep learning curve,
increased errors, and inefficiencies. In this paper, we present
a novel approach that enables natural-language-based net-
work management experiences, leveraging large language
models (LLMs) to generate task-specific code from natu-
ral language queries. This method addresses the challenges
of explainability, scalability, and privacy by allowing net-
work operators to inspect the generated code, removing
the need to share network data with LLMs, and focusing on
application-specific requests combined with program synthe-
sis techniques. We develop and evaluate a prototype system
using benchmark applications, demonstrating high accuracy,
cost-effectiveness, and potential for further improvements
using complementary program synthesis techniques.

CCS Concepts
» Networks — Network management;

Keywords

Network management; Large language model; Program synthe-
sis; Natural language processing; Graph manipulation; Communi-
cation graphs; Network lifecycle management

1 Introduction

A critical aspect of contemporary network management in-
volves analyzing and performing actions on network topolo-
gies and communication graphs for tasks such as capacity
planning [39], configuration analysis [5, 17], and traffic anal-
ysis [24, 25, 60]. For instance, network operators may pose
capacity planning questions, such as “What is the most cost-
efficient way to double the network bandwidth between

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HotNets "23, November 28-29, 2023, Cambridge, MA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.

ACM ISBN 979-8-4007-0415-4/23/11...$15.00
https://doi.org/10.1145/3626111.3628183

Yajie Zhou®"
Ido Frizler®
"University of Maryland

Kevin Hsieh® Santiago Segarra®*
Ranveer Chandra® Srikanth Kandula®
*Rice University

these two data centers?” using network topology data. Simi-
larly, they may ask diagnostic questions like, “What is the
number of hops for data transmission between these two
nodes?” using communication graphs. Network operators to-
day rely on an array of tools and domain-specific languages
(DSLs) for these operations [17, 39]. A unified approach holds
significant potential to reduce the learning curve and mini-
mize errors and inefficiencies in manual operations.

The recent advancements in large language models (LLMs)
[1, 6, 12, 46, 53] provide a valuable opportunity to carry out
network management tasks using natural language. LLMs
have demonstrated exceptional proficiency in interpreting
human language and providing high-quality answers across
various domains [16, 33, 50, 54]. The capabilities of LLMs can
potentially bridge the gap between diverse tools and DSLs,
leading to a more cohesive and user-friendly approach to
handling network-related questions and tasks.

Unfortunately, while numerous network management op-
erations can be modeled as graph analysis or manipulation
tasks, no existing systems facilitate graph manipulation us-
ing natural language. Asking LLMs to directly manipulate
network topologies introduces three fundamental challenges:
explainability, scalability, and privacy. First, explaining the
output of LLMs and enabling them to reason about complex
problems remain unsolved issues [59]. Even state-of-the-art
LLMs suffer from problems such as hallucinations [35] and
arithmetic errors [7, 13]. This makes it hard to assess LLMs’
methods and answers. Second, LLMs are constrained by lim-
ited token window sizes [57], which restrict their capacity to
process extensive network topologies and communication
graphs. For example, modern LLMs such as Bard [20], Chat-
GPT [44], and GPT-4 [46] permit only 2k to 32k tokens in
their prompts, which can only accommodate small network
topologies with tens of nodes and hundreds of edges. Third,
network data may contain personally identifiable informa-
tion (PII), such as IP addresses [55], raising privacy concerns
when transferring this information to LLMs for processing.
Addressing these challenges is crucial to integrate LLMs in
network management tasks.

Vision and Techniques. We present a novel approach to
enhance network management by leveraging LLMs to create
task-specific code for graph analysis and manipulation, which
facilitates a natural-language-based network administration

https://doi.org/10.1145/3626111.3628183

HotNets "23, November 28-29, 2023, Cambridge, MA, USA

S. K. Mani, Y. Zhou, et al.

Figure 1: An example of how a natural-language-based network management system generates and executes a
program in response to a network operator’s query: “Assign a unique color for each /16 IP address prefix”. The
system displays the LLM-generated code and the updated communication graph.

experience. Figure 1 depicts how an example system gen-
erates and executes LLM-produced code in response to a
network operator’s natural language query. This approach
tackles the explainability challenge by allowing network op-
erators to examine the LLM-generated code, enabling them
to comprehend the underlying logic that fulfills the query.
Additionally, it delegates computation to program execu-
tion engines, thereby minimizing arithmetic inaccuracies
and LLM-induced hallucinations. Furthermore, this approach
overcomes scalability and privacy issues by removing the
need to share network data with LLMs.

The primary technical challenge lies in generating high-
quality code to accomplish network management tasks. Al-
though LLMs have shown remarkable capabilities in general
code generation [2, 7, 33], they lack an understanding of
domain and application specific requirements. To tackle this
challenge, we propose a novel framework that combines
application-specific requests with general program synthesis
techniques to create customized code for graph manipulation
tasks in network management. Our architecture divides code
generation into two components: (1) an application-specific
element that provides context, instructions, or plugins, which
enhance the LLMs’ comprehension of network structures and
terminology, and (2) a code generation element that lever-
ages suitable libraries and program synthesis techniques
[2, 9-11, 48, 49]. This architecture fosters independent in-
novation of the distinct components, and our preliminary
study indicates substantial code quality improvements.
Implementation and Evaluation. We design a prototype
system that allows network operators to submit natural-
language queries to network topologies and communication
graphs (Figure 1). To assess effectiveness, we establish a
benchmark, NeMoEval, consisting of two applications that
can be modeled as graph manipulation: (1) network traffic
analysis using communication graphs [24, 25, 60], and (2)

network lifecycle management based on Multi-Abstraction-

Layer Topology representation (MALT) [39]. To assess gen-

eralizability, we evaluate three code generation approaches

(SQL [14], pandas [41], and NetworkX [15]) and four dis-

tinct LLMs [10, 20, 44, 46]. Our preliminary results show

that our system produces high-quality code. Utilizing the

NetworkX-based approach, we attain average code correct-

ness (i.e., code with correct functionality for the query) of

63% and 56% across all tasks for the four LLMs (up to 88% and

78% with GPT-4) for network traffic analysis and network

lifecycle management, respectively. In comparison, the straw-

man baseline, which inputs the graph data into LLMs, only
reaches an average correctness of 23% for the traffic analysis
application. Our method significantly improves the average
correctness by 45%, making it a more viable option. Addition-
ally, we demonstrate that adding complementary program
synthesis methods could further enhance code quality. Fi-
nally, we demonstrate that our approach is cost-effective,
with an average expense of $0.1 per task, and the LLM cost
stays constant regardless of network sizes. We release NeMo-

Evall, our benchmark and datasets, to foster further research.

Contributions. We make the following contributions:

e Towards enabling natural-language-based network admin-
istration experience, we introduce a novel approach that
uses LLMs to generate code for graph manipulation tasks.
This work is, to the best of our knowledge, the first to
investigate the usage of LLMs for graph manipulation and
network management.

o We develop and release a benchmark that encompasses
two network administration applications: network traffic
analysis and network lifecycle management.

o We evaluate these applications with three code generation
techniques and four distinct LLMs to validate our approach
for generating high-quality code for graph manipulation.

!https://github.com/microsoft/NeMoEval

https://github.com/microsoft/NeMoEval

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Graph Analysis and Manipulation in Network Management
	2.2 LLMs and Program Synthesis

	3 System Framework
	4 Implementation and Evaluation
	4.1 Benchmark
	4.2 Experimental Setup
	4.3 Code Quality
	4.4 Case Study on Potential Improvement
	4.5 Cost and Scalability Analysis

	5 Discussion and Conclusion
	References

