
Physical Deployability Matters
Jeffrey C. Mogul

Google
John Wilkes

Google

Abstract
While many network research papers address issues of de-
ployability, with a few exceptions, this has been limited to
protocol compatibility or switch-resource constraints, such
as flow table sizes. We argue that good network designs must
also consider the costs and complexities of deploying the
design within the constraints of the physical environment in
a datacenter: physical deployability. Traditional metrics of
network “goodness” do not account for these costs and con-
straints, which might explain why some otherwise attractive
designs have not been deployed in real-world datacenters.
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1 Introduction
Networking researchers have long talked about “deploya-
bility,” either asserting that their novel designs are easy to
deploy into existing networks, or arguing whether deploy-
ability should or should not be a criterion for reviewing
papers, or declaring that a clean-slate design is preferable to
trying to accommodate existing practice.
What has not received as much attention from the re-

search community is the physical deployability of a datacen-
ter network design: is a design feasible to deploy within the
constraints of the physical environment in a datacenter, at
scale and at reasonable cost? We argue that this is a valid
and necessary criterion for judging network designs, that
it can be made at least somewhat rigorous, and that there
are both solved and challenging unsolved problems for the
networking research community to understand.
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We focus on datacenter networks, although physical-
deployability issues certainly affect wireless networks [35]
and WANs.
We explore whether deployability considerations might

explain the non-deployment of otherwise attractive designs,
such as expander graphs, in real-world datacenters. We also
discuss technologies and techniques that would simplify
physical deployment, andwe speculate about the possibilities
for devising well-specified objectives and metrics that could
guide future research.
Designers of datacenter networks care about time-to-

deploy, repair and maintenance processes, evolvability, and
other non-functional factors. Physical deployability signifi-
cantly affects all of these; network designs that fail to explic-
itly address physical deployability can be hard to assess.
What’s the best way to measure and improve physical

deployability?We don’t claim to have a full solution to either
(likely there isn’t a single “solution”). Instead, we challenge
researchers to broaden their scope of “deployability” and
how to address it.

Context: Google’s networks are larger than those that
academic researchers can directly study, and thanmost enter-
prise networks. Therefore, our focus on large-scale deploy-
ment challenges, and on automated processes, might seem
irrelevant to some readers. However, many research papers
describing novel network designs do focus on scalability;
we argue that a design that scales only on paper, and not in
physical reality, is not truly scalable. We hope to expand, not
reduce, the range of worth research topics.

We believe that many of these issues will inevitably afflict
smaller networks, if they haven’t already.

2 What is “physical deployability,” and
why does it matter?

Traditional “deployability” discussions have focused on
protocol-level concerns: can this packet format traverse the
entire network path successfully [40, 51]? do these routing
protocols have compatible metrics, and will their implemen-
tations avoid pathologies like loops and black holes? can
secure routing or naming mechanisms be deployed incre-
mentally with any benefits [31]? will deploying this novel
congestion-control algorithm cause harm to other flows [52]?
will a new mechanism or a larger scale fit into existing hard-
ware tables [54]? Concerns about deployability of new mech-
anisms inside switches have motivated OpenFlow [33]1 and
P4 [8], both of which have led to many publications.
1The paper states “Today [2008], there is almost no practical way to experi-
ment with new network protocols (e.g., new routing protocols, or alterna-
tives to IP) in sufficiently realistic settings (e.g., at scale carrying real traffic)
to gain the confidence needed for their widespread deployment.”
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In contrast, with “physical deployability” we focus on
interactions between network equipment (switches, cables, con-
nectors, etc.) and the physical world: where do things fit? how
do we get things in the right places at the right times? can
humans manipulate these parts without undue toil, without
harm to themselves or to the equipment, and without errors?
what if we want robots to do the work instead?

For example, a perhaps apocryphal story depicted in the
movie “Hidden Figures” relates that in 1961, NASA’s IBM
7090 was too big to fit through the doorway [25]. Even today,
that constraint limits how many network-equipment racks
can be conjoined and pre-cabled off-site.

In large-scale datacenters, physical processes (even if car-
ried out by humans) are managed by complex automation
systems, which plan the placement and connectivity of com-
puting equipment, including networking equipment; order
the correct materials (e.g., cables pre-built to proper lengths);
instruct the humans or robots where and when to place and
connect equipment; and validate that everything is in its
proper place. These automated systems embed a variety of
assumptions about equipment, cables, and their interfaces
with the physical world, and so are not infinitely capable.

Physical deployability also depends on whether exist-
ing automation can handle a novel or modified design, or
whether it can easily be reconfigured without extensive soft-
ware engineering. Notably, physical-automation software
can be difficult to test, because testing with real components
is expensive, while simulations of physical reality are often
too imprecise to detect minor mistakes (such as an attempt
to run a network cable through a space that is just a little too
small to accommodate the safe bending radius of the cable).

This is not a “rigorous definition of deployability,” as one
reviewer requested. We’re not sure how to construct that, or
if it’s even possible, but we think that could itself be worthy
of further work.

Internally, we use metrics such as “time to deploy” (hours
of effort), cost to deploy, and “first-pass yield” (i.e., what
fraction of deployed switches or links actually work without
further repair). But even time-to-deploy is hard to define,
depending on how much parallelism is possible and how one
decides when a task is finished. And researchers without
hyperscale networks to play with will need proxy metrics.

2.1 Post-deployment activities

Closely tied to physical deployments are three other pro-
cesses: repairs, expansion, and decommissioning (“decom”).
Large datacenters must support in-service repairs – you can-
not shut off the entire network if a switch or cable fails –
and the feasibility and risk of in-service repairs depends on
the network design. For example, if one port on a multi-port
line-card fails, the whole card needs to be replaced, requiring
all of the other ports on the card to be drained. Does the
network design tolerate this kind of correlated downtime?
And just as deployment is automated, so is the repair pro-
cess: automated tools must reliably determine which parts

need replacing, dispatch a human operator to the right loca-
tion with correct instructions, trigger drains only during the
smallest possible window, and take remedial actions after a
part is replaced (e.g., updating MAC addresses; re-installing
firmware).
Many datacenter owners initially install a moderate

amount of server and switch capacity, and then incremen-
tally deploy more via “expansion” processes. Expanding a
live network has both costs and risks, which have been ad-
dressed by prior work. For example, Zhao et al. optimized
the expansion process for a Clos network [56]. Jellyfish [47]
and Xpander [50] set expandability as a fundamental ar-
chitectural goal. The FatClique paper [55] offered physical-
deployment metrics, but only in the context of expansions.
It’s often necessary to partially decommission network

equipment in a datacenter. (Decommissioning an entire dat-
acenter is conceptually much easier, but rarely necessary
or desirable.) We decommission switches and other equip-
ment when they reach the end of their support lifetime (e.g.,
the vendor no longer provides security updates) or because
they are functionally obsolete or fully depreciated, and we
want to replace them. Physically removing switches or, es-
pecially, cables from a running network is risky – one might
accidentally remove the wrong thing, or damage something
nearby. Therefore, when we must add cables, to support
higher bandwidths or port counts, we seldom remove old
ones. Instead, we provision enough space in cable trays for
several generations.
It is surprisingly hard to automate a decom procedure,

because it can be hard to know for sure what cannot be
removed. (E.g., we can only remove a cable bundle once
none of the affected ports are still in service, and none are
planned to be in service soon.)

2.2 Supply chain
Physical deployability also intersects with supply-chain chal-
lenges. For example, if the network design (including switch
stack and SDN controllers) support fungible hardware (the
ability to replace one part with another, without other con-
sequences), then a supply-chain problem at one vendor can
be resolved by buying compatible parts from another. (AWS
has stated that fungibility is a fundamental principle in their
network designs [10], and Meta uses the same switch chassis
in all layers of their datacenter design, with a second vendor
to complement their own switch design [4].) A desire for
fungibility might mean not taking advantage, in a network
design, of special features only available from one vendor.
(Many prefer Ethernet over InifiniBand because the latter
lacks multiple vendors with interoperable products [43]).
Datacenter operators also must protect the physical in-

tegrity of network equipment against malicious actors. Be-
cause network switches and SDN controller machines are
physical items that travel along a supply chain, they are
inherently vulnerable to security threats during the jour-
ney. Supply-chain attacks that modify hardware have been
alleged [11]; attacks that remotely modify flash have been
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substantiated [17, 18, 30, 42], and these could just as easily
happen along the supply chain. Post-deployment physical at-
tacks can also be carried out by malicious insiders (including
adding “sniffers” on unencrypted links, or adding rogue NICs
or linecards). To protect against physical attacks requires
support for tamper-resistance and continuous auditing of
hardware and firmware.

2.3 Automated physical deployment
Why do we care so much about automated physical deploy-
ment? Even when human operators do all of the physical
work, we can save a lot of time by automating all of the
preparatory work, and automating the planning of operator
actions so that they don’t have to waste time (e.g., repeat-
edly walking from one place to another, or getting in each
other’s way). When physical deployment is slow, it strands
much-more-expensive machine capacity (a machine without
a network connection is “stranded” capital). An extra 5 min-
utes per thing adds up quickly when you have to install 10k
things (that would be about 1 week of added time).
Slow deployment also makes network capacity planning

harder, because demand forecasts become inaccurate over
relatively short timescales. If we install too little capacity,
machines are stranded; if we install too much, it wastes
money. Fungibility also helps here, by avoiding deployment
delays when a part needs to be substituted.

3 What makes it hard?
Most network research, and much of the initial design phases
for real networks, takes place at a level of abstraction that
conceals a large set of constraints imposed by physical de-
ployment. Abstraction is unquestionably necessary, but the
hidden constraints mean that designs that look appealing on
paper can turn out to be infeasible. This can force complex
tradeoffs between preserving abstract-network properties
(e.g., support for a range of traffic matrices or reliability in
the face of switch and link failures) and respecting those con-
straints. Before we discuss how to cope with that paradox,
in §5, we first look at some of the constraints.

Broadly, physical constraints fall into a few categories:

• Physical feasibility: will things actually fit into the
available space and power? Will a design work with
easily-obtainable parts?

• Human factors: can deployment and repairs be done
with reasonable levels of human effort? without too
many errors? and without exposing humans to harm?

• Operational challenges: will we be able to keep the
network running reliably?

• Support for evolution: will we be able to change the
network, possibly in radical ways, without having to
rip it out entirely? or even while it is in active service?

• Financial: can we meet the other constraints only by
spending a lot of money?

Since this paper itself is subject to page-count constraints,
here we discuss just some of the specific constraints.

3.1 Physical constraints
Especially as link rates increase, constraints on the cabling
between network ports become more challenging. The phys-
ical extent of large-scale datacenters exacerbates this: longer
cables bring more problems. One can get higher bandwidths
across longer distances with optical connections, but opti-
cal transceivers are power-hungry and quite expensive (and
perhaps less reliable than electrical connections).

Therefore, large-scale high-speed networks often mix cop-
per cables (cheaper, but infeasible except at short distances)
and optical fiber cables (expensive, but can span hundreds of
meters or more). This leads to complex optimization problem,
since some network topologies gain shorter cable runs (on
average) at the cost of more switch hops (and thus somewhat
more latency). Mudigonda et al. [37] presented algorithms
for this optimization problem. Agarwal et al. [1] extended
that to consider how cables run through trays between racks,
but left for future work the problem of accounting for the
plenum capacities of the racks.

Higher-speed copper cables also tend to be thicker, to pre-
serve signal integrity. Amazon reported [10] that the 2.5m
cables they used within switch racks went from a 6.7mm out-
side diameter (OD) for 100Gbps to an 11mm OD for 400Gbps.
This makes them much stiffer, and their cross-sectional area
increases by 2.7X. Such cables are much harder (or impossi-
ble?) to fit into a rack full of switches (they report using 256
cables in a rack).2 Therefore, they switched to active electri-
cal cables, decreasing the cable thickness while still being
cheaper and more reliable than optical intra-rack cabling.

Viable cable lengths can also be reduced by the insertion
losses from patch panels and optical circuit switches (e.g.,
0.5dB to 1.0dB in Telescent’s switches [49]). This conflicts
with some of the benefits of inserting patch panels or OCSs
to mitigate other deployment issues (see §4.1).

Meta has also described how they use multiple approaches
to cabling in response to various physical constraints [14].
Some papers have proposed using free-space optics [23]

or 60GHz wireless links [57] within datacenters. While these
avoid the physical challenges of cables, these too suffer from
real-world issues. Free-space optics require unobstructed
paths between racks, which is hard to guarantee; at higher
speeds, they also might expose human eyes to damage.
60GHz wireless links probably cannot be packed tightly
enough to entirely replace large bundles of fibers.
Cable installation can be tedious, especially on the data-

center floor, which is not the best work environment. Singh
el al. report savings of almost 40% (capex + opex) and weeks
of delay by using regular, pre-constructed bundles of ca-
bles [44].
For the same reason, intra-rack cables are often pre-

installed before a rack full of switches is delivered. In some
cases, it can be helpful to pre-cable a conjoined pair of racks
(representing an atomic unit of network capacity). However,
this can conflict with floor-space constraints limiting a row to

2A thicket of cables can also impair airflow in a rack of switches.
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an odd number of racks – thus an installation with an even
number of racks leaves valuable space unoccupied. (Also,
double-wide racks don’t always fit through doors.)

Since many things with localized extent can go wrong in
datacenters (clumsy humans, cable cuts, small fires, etc.) we
avoid physical single points of failure (SPOFs) in longer inter-
rack cable runs. Maintaining full physical-path diversity adds
complexity to fiber routing.

3.2 Human constraints
Things are always changing in a large datacenter; a colleague
observed that these are “active construction sites.” This level
of activity poses both a risk to equipment (cables can be
inadvertently or accidentally disturbed) and to humans.

Most networking research does not account for human in-
teractions with in-deployment or in-service network equip-
ment. Real designs must consider safety (e.g., equipment
weight, hot surfaces, electrical shock, eyesight risk from
high-powered optics, and hearing risk from noisy fans), and
how many people at a time can work on one rack.

Human workers rely on a mixture of training and automa-
tion (to tell them what to do next, and to verify that it was
done correctly). A network design that is hard to explain in
training materials, or to the software engineers developing
automation, is likely to suffer from more outages or longer
deployment times. Not enough attention has been paid to
good user interfaces, especially those that synchronize steps
between human tasks and automated ones. (For example, an
SDN control plane should avoid routing traffic through racks
where a human is actively making changes – but should
resume using those paths as soon as they are stable.)

3.3 Operational constraints
Physical components of networks fail relatively often at scale,
especially when one considers not just switch failures, but
also NIC failures, cabling disruptions, and power-distribution
failures [16, 19, 45].3 Thus, network operators must plan for
frequent post-deployment physical operations, and this has
implications for network design.
While many network data-plane and control-plane de-

signs are good at rapidly detecting and routing around fail-
ures, and getting better at root-causing failures to specific
components [28, 41] mitigation techniques generally cannot
tolerate large numbers of concurrent failures. Therefore, net-
work availability depends on mean time to repair (MTTR),
an inherently physical problem.

One tradeoff to make, during network design, is the size of
a physical unit of repair (i.e., what part of the network needs
to be “drained” of traffic during the repair). For example,
while using higher switch radixes supports lower hop-count
designs, that also means that one switch repair takes more
ports out of service, even if only one port has failed.
Repairs usually rely on spare parts, and supply-chain is-

sues motivate parts fungibility: the ability to replace one
3We note that published data on failure rates in datacenter networks, espe-
cially including non-switch components, appears to be scarce.

part with a slightly different one (e.g., from a different ven-
dor). Fungibility implies a need to design a network without
depending on the best available parts, but rather the second-
best. This could, for example, reduce the allowable length
for a cable.

Low MTTR depends on good automation, to guide repair
operations and validate the results before returning links
and switches to service. A network design that abstracts
too many physical details conceals physical-world failure
domains (e.g., shared power feeds). Exposing the abstract-
to-physical mapping via well-designed representations (see
§5.3) can help automated systems manage repairs appropri-
ately (and also manage supply-chain fungibility).

3.4 Evolution constraints
Some datacenter networks, especially at small to medium
scales, are fully designed before installation. However, there
are significant advantages to being able to evolve a design in-
place. For example, one can incorporate newer technologies
as they become available, for higher bandwidth or lower cost
(and for lower power consumption). Or, one can adapt the
topology to shifting traffic demands, such as those induced
by large-scale machine learning.
In-place evolution leads to heterogeneity, often in ways

that are hard to predict during the initial design. For exam-
ple, a network might end up incorporating switches with
multiple radixes, or different line rates. Ideally, then, a net-
work design should support heterogeneity; Curtis et al. de-
scribed how to do this for Clos networks [12]. Poutievski et
al. describe how routing traffic via an intermediate “transit
block” can avoid having to add low-speed ports on high-
speed switches [39]. Singla et al. incorporate heterogeneous
link speeds into their upper-bounds analysis [46].
Datacenter networks can also outlive the useful service

lifetime of components like switches, especially if a vendor
ceases to support a switch. Replacing a component with a
much newer one, while often necessary or advantageous, can
create a cascade of other issues. For example, when replacing
an SDN controller machine, the newer machine might not
support the older NIC, requiring a port-speed upgrade at a
connected switch, and possibly cabling changes as well.

(We distinguish evolution from expansion, the one aspect of
deployability that has been widely discussed [47, 50, 55, 56].)

Evolutionary pain can come from fundamental challenges
(e.g., scaling link speeds beyond the ability of copper cables
to carry signals between racks) or contingent ones – “this is
how we’ve always done things” or “our automation software
made too many assumptions.” While the latter might be
viewed as self-inflicted, they are also inevitable; a network
design aimed at a long service lifetime probably needs to
account for them.

3.5 Financial constraints
Although large scale datacenter networks are much less ex-
pensive than the machines they connect [24], they are not
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cheap, and that leads to pressure to reduce their costs, in-
cluding how expensive they are to deploy.
One result is the desire to deploy the network incremen-

tally, to avoid paying depreciation on unused capital equip-
ment, to defer decisions about how much capacity is needed,
and to allow that capacity demand to be fulfilled by faster,
cheaper technology as it becomes available. In turn, that
requires that the network be able to handle multiple design
variations simultaneously – and the use of heterogeneous
port counts and line rates complicates the network design
problem [46].

A network that can be upgraded, added to, and (partially)
decommissioned while it is in use, needs software tool-
ing to support near-arbitrary deployment sequences, and a
great deal of attention to safety: the connectivity that net-
works provide is somewhat antithetical to the traditional
approaches that use isolation to reduce the blast radius of
an error or fault.

Over time, incrementally-deployed networks can accumu-
late elements from multiple technology generations, and it is
rarely cost-effective at scale to replace or upgrade computers
just because the network designers want that. That increases
the overall system’s complexity, and can act as a drag on
engineering development velocity, as well as how fast and
cheaply the network can evolve.

4 Case studies
We include three case studies to illustrate some of the issues
raised in this paper.

4.1 Indirection helps
Some prior work has argued for “flat” [26, 29] datacenter
topologies, where ToRs are directly connected to each other,
rather than through a hierarchy (as in a Clos or leaf-spine
network). This reduces path lengths, leading to lower intrin-
sic latency, and perhaps less congestion. However, Marty et
al. found that directly connecting ToRs, as is the case with
a pure flattened butterfly topology, was operationally chal-
lenging, because racks are often added or removed, which
impacted network operations [32]. The performance benefits
of flat networks might not outweigh their operational costs.

Indirection also helps at the upper levels of Clos networks.
Zhao et al. described how using a layer of patch panels be-
tween the aggregation blocks and spine blocks in a large Clos
made it a lot easier to expand the network incrementally,
because the topology can be expanded or modified “with-
out walking around the data center floor or requiring the
addition or removal of existing fiber” [56].
Poutievski et al. showed that replacing these patch pan-

els with a relatively slow optical circuit switch (OCS) not
only further eases expansions, but also supports frequent
changes to the capacity between aggregation blocks, to re-
spond to changing and uneven inter-block traffic demands.
(In real networks, inter-rack and inter-block demands are
often persistently and highly non-uniform; networks need
the flexibility to cope with time-varying non-uniformity.)

4.2 Why aren’t expanders in wide use?

Papers describing expander-graph datacenter networks, such
as Jellyfish [47], Slim Fly [7], and Xpander [50], have shown
that these networks outperformClos and leaf-spine networks
in theoretical and simulation analysis. However, we have
not found any descriptions of such networks being deployed
in commercial practice. Why not?
We suspect (although this would be hard to prove!) that

physical-deployability concerns limit the practical attrac-
tiveness of expander graphs. Jellyfish seems to deter the
pre-placement of intra-datacenter fiber between potential
switch locations, which is a significant contributor to deploy-
ment efficiency. It can be challenging to compute the lengths
and bundling for pre-deployed fiber, and Jellyfish’s use of
regular random graphs makes that “highly non-trivial” [50].
The Xpander and FatClique![55] papers indeed discuss

physical deployment issues, especially cabling complexity.
Both assert that unlike Jellyfish, they allow effective cable
bundling. However, while frequent and rapid incremental
addition of machine racks is a financial necessity (§3.5),
Xpander requires as many as 𝑑/2 links to be rewired each
time a 𝑑-port ToR is added (or removed). (It is also unclear
whether Xpander supports mixing ToRs of several radixes,
as might be necessary in a long-lived network.)
Non-physical reasons can discourage use of expander-

graph networks. Eight years passed between the Jellyfish
paper and when Harsh et al. described “the first implementa-
tion of a routing scheme on standard hardware for expanders
or flat networks in general” [26]. They also demonstrated
that there are “flat topologies (other than expanders) that
outperform leaf-spine networks” at moderate scales.
Singla et al. proposed changing the connectivity of

VL2 [20] so that instead of connecting ToRs only to aggrega-
tion switches, they distribute ToR connections among both
aggregation and core switches, and find that this significantly
increases the number of ToRs supported by a given net-
work size [46]. However, they do not consider the physical-
deployability constraints that would make this difficult; e.g.,
the increased length of some ToR uplink cables might force
the use of more-expensive optics, and might complicate the
use of pre-assembled fiber bundles. (Google reported similar
issues with the Aquila design [15].)
A “fear factor” may also deter enterprise deployments of

novel network designs; the lack of such deployments does
not inherently prove that expander graphs are hard to deploy.
In fact, given the attractive theoretical properties of expander
and flat graphs, we expect further research will find a way
to preserve these properties (in part) while resolving the
physical-deployment challenges. Google’s “evolved” Jupiter
design [39] replaces spine blocks with a reconfigurable ex-
pander graph between aggregation blocks, while keeping a
traditional Clos hierarchy at lower layers.
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4.3 Design changes to live networks
Google’s original Jupiter [44] used a set of aggregation blocks
fully connected to a set of spine blocks (each block composed
of packet switches), connected by an OCS layer (see §4.1).

More recently, we developed a modified Jupiter design, in
which aggregation blocks are directly connected via the OCS
layer; this avoids the considerable cost of the spine blocks,
although it does require a more complex control plane [39].

To convert the existing Jupiters from fat-trees to the direct-
connect design, technicians must change how fibers connect
to OCS units (i.e., disconnect the fibers to spine blocks and
add connections to aggregation blocks). To do this in a live
network, we temporarily drain traffic from each OCS rack,
then technicians perform the complex task of moving a lot
of fibers without breaking or mis-connecting any of them,
and then we un-drain the rack. This process takes multiple
hours of human labor per rack, across many racks.

We draw two lessons from this experience. First, the useful
lifetime of a network can exceed the lifetime of its original de-
sign; indirection made it much easier to “redesign” a live net-
work. Second, an SDN control plane can domore than update
flow tables; it can also coordinate between demand forecasts,
availability requirements, manual operations segmented into
low-impact chunks, the necessary drains/undrains, and au-
tomated testing for wiring errors.

5 What could make things easier?
Between existing experience and some speculation about
the future, we see several broad categories of innovations,
and areas for further research, that would make physical
deployment easier in datacenter networks:

• Technical innovations: new or improved technologies,
both hardware and software.

• Process innovations: better ways to organize deploy-
ment processes.

• “Digital twins”: per Wikipedia, “a digital representa-
tion of an intended or actual real-world physical prod-
uct, system, or process (a physical twin) that serves as
the effectively indistinguishable digital counterpart of
it for practical purposes, such as simulation, integra-
tion, testing, monitoring, and maintenance” [53]. The
term was introduced by Grieves [22].

5.1 Technical innovations
Several existing or potential technical innovations poten-
tially can make deployment easier and less error-prone.

For example, while a lot research has covered designs and
uses for high-speed optical circuit switches (e.g., [6, 34]),
these have not become commercially available. On the other
hand, various companies sell relatively slow OCSes [9, 49],
and (as mentioned in §4.1), Poutievski et al. showed how
these can be used to enable both topology engineering and
faster incremental deployment [39].
Zhao et al. described algorithms to compute a minimal-

effort plan to update patch panels in a Clos [56], an NP-
complete problem.

Some vendors offer “active” or “intelligent” patch pan-
els [3, 27], which monitor the status of patch-panel connec-
tions and can assist with remote or automated diagnosis of
faults. However, these are more expensive than passive patch
panels, and possibly vulnerable to software bugs.

5.2 Process innovations
Our experience has been that deploying new designs into a
datacenter network is much easier if they are substantially
similar to prior designs, and whenwe can easily tell how they
do vary. This is especially true for supporting new designs
in deployment-automation software. But defining “substan-
tially similar” has proved challenging, because (1) seemingly
minor changes can create major deployment headaches, (2)
designs can vary in a large number of dimensions, and (3)
the range of potential designs is large.

We initially hoped to be able to define a multi-dimensional
“capability envelope,” representing the variability that our
automation software could handle without changes, but that
effort stalled due to the number of dimensions, and the many
“dimensions” that could not be represented using simple met-
rics such as length, weight, or line speed.
Instead, we have some initial experience that by moving

knowledge about a design out of automation code, and into a
declarative data representation, we can at least detect out-of-
envelope designs because we cannot represent them without
schema changes. Our work on using declarative, structural
models of networks [36] to support change management [2]
has sometimes helped us spot hard-to-support network de-
signs because we had no existing way to model them. We
made these discoveries much earlier than if we had had to
study our (imperative) software to deduce where the prob-
lems would lie. However, this migration of knowledge from
code to data is slow and sometimes difficult to get right.

5.3 Digital twins
The later we detect a problem with either a new product
being introduced to our networks, or with a new installa-
tion of, or change to, an existing product, the harder it is to
clean up the mess. When we discover problems late, often
we have made changes to the physical world that are slow
and expensive to unwind, especially without causing more
problems (see the discussion of “decom” in §2.1).

The digital-twin concept has seen widespread use in many
industries [21], but relatively little use in networking, even
though (as this paper describes) there are plenty of opportu-
nities to apply it – especially for simulating physical-world
operations before we commit to a new design or to a planned
deployment. Our goal, towards which we have made just a
little progress, is to be able to rapidly test whether an abstract
design violates physical-world constraints. In our experience,
the costs to remediate mistakes increase dramatically if we
only discover them late in these processes.
Digital-twin approaches are not easy to introduce, since

they depend on accurate and detailed “multi-physics” mod-
eling spanning network design, physical characteristics of
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network (and other) equipment, power, cooling, and the
spaces where equipment is deployed. Ideally, these would
be automatically derived from high-level (abstract) specifica-
tions whenever possible. To be complete, we would also need
(possibly simplified) models of human (or robot) capabilities.

One barrier to creation of a comprehensive digital twin is
that much of the necessary data exists in a variety of ad hoc,
poorly-documented, and ambiguous formats – spreadsheets,
CAD drawings, proprietary design systems, etc. Based on our
experience with network modeling, it is possible to migrate
from legacy representations to well-curated ones, but it’s
also hard to create future-proof taxonomies.
Another barrier is that existing data is often incomplete

or wrong. We would greatly benefit from new methods to
validate such data, perhaps by inferring design rules that
were never formally stated (analogous to prior work on bug-
finding [13]). But that cannot fix mundane errors such as
recording the wrong position for a rack (which means that
another rack might not fit where it is intended); that will
require better techniques for measuring the physical world.
Modeling multiple aspects in isolated representations is

not sufficient. Grieves highlights the value of a “Unified
Repository [...] that will link the two products together.” [22]
In our experience, without rigorously standardized defini-
tions and identification systems, such linkage falls back onto
heuristics, which often cause errors and are hard to maintain.
So, while pieces of the representational universe exist (e.g.,
MALT for network structure [36], Brick for the structure of
buildings [5]), today these remain isolated islands.
We would also need multi-physics simulation engines –

not to simulate how packets or routing updates propagate
through a network, but rather to simulate how network
equipment fits into 3D space (including details such as how
cables are routed between racks). Many of these simulators
already exist for various industries; integrating these with
models of network structures (e.g., to know the connections
between switches, or to know which switches are vulnerable
to common-mode failures) would be a crucial step.

As noted in §2.1, we must also support decom. Our expe-
rience is that a multi-dimensional “twin” is especially useful
here, to ensure that physical removal of components from a
live network does not inadvertently cause an outage. Testing
a decom process on a real deployment is especially challeng-
ing, because of this risk. Testing on a twin, while it cannot
provide perfect coverage, would be much safer and cheaper.
We do formal and informal postmortems of deployment

mistakes and delays. Almost all of these could have been
averted if we could do multi-layer digital-twin dry runs.

5.4 Defining metrics
The interactions between network designs and physical de-
ployment issues are complex. Designers, and especially re-
searchers without access to large datacenters, would benefit
from well-defined metrics and objectives for evaluating pro-
posed designs. Also, given that many network-design deci-
sions are complex enough to require ILP or similar solvers,

expressing physical-deployability goals via metrics enables
these solver-based approaches.

Another value of deployability metrics is that they might
reduce fears about adopting novel designs. If one can pre-
dict that a new design will not create major deployability
problems, network operators might be more open to it.
In §5.2 we described “capability envelopes” as a possible

objective; we still believe that these could be developed, at
least for some dimensions.

Zhang et al. defined several metrics for “lifecycle manage-
ment complexity,” including the number of re-wiring steps
for an expansion, and the number of re-wired links per patch
panel (see also [56]). To those, one might add locality metrics
(e.g., number of patch panels touched).

One might also define “diversity-support” metrics; e.g.,
the number of different link speeds or switch radixes that
can be included in one network without severe problems.

We also need to represent the tradeoff between day-1 costs
and longer-term costs, since a hard-to-evolve design might
be sufficiently cheaper up-front to merit its use.

Unfortunately, because we cannot always anticipate how
future evolution in network designs will affect deployability,
it seems impossible to define a closed set of deployability
metrics; there will always be room for newwork in this area.

6 Other prior work
Several previous publications (but relatively few in the past
decade) have at least touched on the interactions between
physical deployment issues and network design.
Facebook’s Robotron paper [48] focuses on the deploy-

ment of network-device configuration, and does not discuss
physical deployment or repairs. However, the paper does dis-
cuss the “FBNet” representation, which describes (inter alia)
the relationship between physical components of a router
or switch, and abstract entities such as BGP sessions.

Andreyev et al. discuss howMeta reduces space and power
requirements while scaling up their datacenter network [4].

Popa et al. compared various datacenter topologies based
on various costs, including an estimated “labor cost” for
running cables [38], based on “discussions with operators
that suggested the dominant expense in cabling is due to
the human cost of manually wiring equipment.” However,
they apparently did not consider the use of pre-built cable
bundles, which subsequently in Singh et al. was reported to
significantly decrease cost and installation time [44].
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