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ABSTRACT

In this paper, our primary objective is to showcase that the
application of machine learning techniques extends beyond
network protocol design. We aim to demonstrate that per-
formance assessment of network protocols, a vital aspect
of improving network infrastructures and developing better
protocol designs, can be modernized through the utilization
of machine learning. As a step towards this goal, we have
designed and introduced Mahak, the first tool that harnesses
active learning techniques to automate the performance assess-
ment of congestion control schemes. Mahak actively learns to
optimize the evaluation process of congestion control schemes
so that they can generate their performance maps over a de-
sired space without exhaustively testing them in every sce-
nario. Mahak treats schemes under the test as black boxes.
This protocol-agnostic aspect of Mahak enables users to di-
rectly assess the performance of the actual implementation
of a protocol instead of their over-simplified mathematical
models or simplified simulated versions.
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1 INTRODUCTION

Setting the Context: Assessing the performance of network
protocols is crucial in the field of computer networks as it
allows for the evaluation of their effectiveness, aids informed
decision-making for network operators, and drives advance-
ments in network and protocol design. By comparing different
protocol designs and observing their performance across a
wide range of scenarios, valuable insights can be gained, en-
abling the identification of optimal solutions. This process
empowers protocol fine-tuning, performance enhancement,
and the resolution of bottlenecks or vulnerabilities. Further-
more, observing protocol performance in diverse conditions
helps understand their real-world behavior and ensures relia-
bility and scalability.

1.1 Motivations

1. Covering Large Space Is Daunting & Time-Consuming:
Achieving a comprehensive assessment of network protocols
requires considering diverse conditions and scenarios. The
traditional approach involves manually sweeping through a
space of parameters and network conditions and evaluating
protocols for each setting. However, manually conducting this
assessment even for a single protocol is challenging, time-
consuming, and can depend on the evaluators’ expertise and
experience. Considering multiple performance metrics, net-
work configurations, and workload scenarios further increases
the complexity of the assessment task.

2. Simplified Representations Are not Enough: One general
approach to reducing the complexity of assessing network pro-
tocols is through the use of simulations. Simulations provide
a controlled environment where protocols can be evaluated
under various network conditions and scenarios. However,
a limitation of simulation-based assessments is the need for
simplifications and abstractions in representing the protocols
themselves. These simplifications can lead to a gap between
the simulated behavior and the real-world performance of the
protocols. The assessment may overlook certain intricacies
and nuances of the actual protocol implementation, which are
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critical in understanding its true behavior and performance.
Moreover, even with simulations, the issue with the vast eval-
uation space remains. Therefore, simulations, while valuable
for initial evaluations, are not sufficient in themselves.

These challenges motivated us to rethink a key question:
Can we efficiently and effectively assess the performance
of protocols/designs without exhaustively testing them over
the entire space or replacing them with simplified versions
(compromising accuracy)?

1.2 The Scope of Our Work & Contributions

To answer this key question, in this paper, we argue that the
network protocol and design assessment are required to be
modernized. Toward that end, we propose a novel automated
approach harnessing advanced machine learning techniques
and in particular, for the first time, we utilize active learning
(AL) in a networking context.

Internet Congestion Control: To that end, in this position
paper, we focus on an important family of network protocols,
Internet congestion control designs, and utilize it as a use
case to elaborate on our approach. The choice of Internet
congestion control as a use case comes from the fact that
despite being an old research area, it has remained one of the
most active and hot research topics in the network commu-
nity attracting various designs during the last four decades
(e.g., [3-7,9-13, 15-17, 19, 21-23, 25, 27, 29, 32, 38, 39]).
In particular, we have observed different CC designs pro-
posed to address congestion in certain scenarios, but after a
few years of either using them or experimenting with them,
in the end, their limitations and problems have raised to the
surface prompting the search for better ones [2, 39]. Thus, a
learning-based automated assessment approach can greatly
reduce these long design-assessment cycles, leading to the
development of more robust and high-performing protocols.
Mahak: We have designed and developed Mahak, a proof-
of-concept tool that embodies our approach and leverages
active learning techniques for assessing the performance of
CC schemes. The main objective of Mahak is to uncover
the performance of a given CC scheme across a wide range
of scenarios without exhaustively testing every scenario. In-
stead, Mahak automatically learns which scenarios to examine
so that it can effectively capture the scheme’s performance
across the entire space. In essence, Mahak dynamically learns
to adapt its test conditions to optimize the evaluation process
for a given CC scheme. However, the realization of such a tool
required addressing several practical challenges and design
complexities such as: (1) the protocol-agnostic requirement
of the design which enforces treating the CC protocol under
the test as a black box, (2) the high dimensionality of the test
space, and (3) the restriction of utilizing only a small amount
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of data to make an accurate map of the performance. Address-
ing these challenges, we make the following contributions in
this work:

e We demonstrate that the application of ML techniques
can extend beyond the network protocol design (the cur-
rent main focus in the community) and show that ML
can be harnessed to automate the assessment process
of the network protocol designs.

o To the best of our knowledge, Mahak is the first solution
to employ active learning in a networking context.

e Mahak can make the CC assessment process 25X faster
(Section 5.1). Utilizing Mahak, we obtained a perfor-
mance map of a few CC schemes leading to uncovering
some performance issues of them (Section 5.3).

e Mahak’s code [1] is publicly available to help and facil-
itate the development of more advanced active learning-
based tools and solutions.

2 RELATED WORK

There are different existing approaches to evaluate protocols.
Here, we briefly overview and compare them with Mahak.
Mathematical Modeling: Some use mathematical expres-
sions to understand protocol behavior, strengths, and weak-
nesses. For example, a previous study [37] focuses on math-
ematically modeling BBR to understand why it exhibits un-
fairness when BBR flows compete with loss-based schemes.
However, the approach of mathematically modeling proto-
cols is challenging (and usually requires over-simplifications)
even for a single particular heuristic scheme and cannot be
generalized to other ones. For example, deriving mathemat-
ical expressions for many recently proposed CC protocols
that employ deep reinforcement learning techniques (e.g., [6])
remains an open problem.

Formal Verification: Schemes in this category aim to prove
specific properties of protocols or provide counterexamples
(e.g., [8]). However, there are two main issues with this class.
First, presenting a counterexample alone is not sufficient for
evaluating the performance of a target protocol across an
entire space. Second, schemes in this class require a prior
mathematical expression of the protocol. For example, before
using CCAC [8], users are required to express the target CC
algorithm as a first-order logic formula. As mentioned before,
formulating a simple heuristic scheme can be difficult, let
alone formulating the actual final implementation of more
complicated protocols.

Stress Testing: Another category of works argues that by
subjecting protocols to stress tests, their flaws and limitations
can be identified. Designs in this group depend on effective
search algorithms to generate a scenario that reveals the poor
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performance of the target protocol (e.g., CC-Fuzz [30] em-
ploys a genetic search algorithm). However, counterexamples
alone are inadequate for evaluating the overall performance
of a protocol over an entire region. Moreover, search algo-
rithms (such as genetic algorithms) are susceptible to data
noise, necessitating simulations for both the network and the
target protocol to ensure identical outcomes across multiple
runs, limiting their scope of applicability.

Our work: Considering this landscape, Mahak stands out
due to two factors: (1) it is protocol-agnostic, i.e., it operates
without modeling the underlying protocol, making it appli-
cable even to assessing complicated protocols such as the
ones using complex machine learning techniques and enables
directly assessing the final real-world implementation of pro-
tocols without relying on simplified assumptions, and (2) it
aims to reveal the protocol’s performance across the entire
space, going beyond bug identification and exhaustive testing,
and without the need for experts identifying parts of the space
that are potentially important.

3 ACTIVE LEARNING OVERVIEW

In recent years, Deep Learning (DL) has revolutionized vari-
ous fields, ranging from computer vision and natural language
processing to speech recognition and autonomous systems.
DL models, with their ability to learn complex non-linear
patterns and representations from vast amounts of data, have

achieved remarkable performance in various tasks [18], [35] [31]

[20]. However, one of the critical challenges in training these
models is the need for large amounts of labeled data, which
can be costly and time-consuming to obtain.

Considering this landscape, active learning (AL) has emerged
as a promising approach to address the challenge of data
scarcity and efficient data annotation[34]. AL is a subset se-
lection strategy that actively selects the most informative sam-
ples from a large unlabeled dataset and requests annotations
from human experts. By iteratively selecting samples that are
expected to improve the model’s performance the most, AL
aims to optimize the use of labeled data, reducing the overall
annotation effort and cost. The importance of AL lies in its
ability to maximize the learning efficiency of models. Rather
than randomly selecting samples for annotation or relying
solely on fully labeled datasets, AL enables the models to
learn from a carefully curated subset of labeled examples. In
other words, the model not only can be boosted by training
over data but also encouraged to be curious about the data that
is trained on and actively attempt to choose better examples.
This targeted approach allows for more focused and effective
model training, leading to improved performance. Fig. 1 de-
picts the big picture of AL. In a nutshell, first, specific data
points from U, the set of all unlabeled data, are selected based
on an active query selection algorithm. Then, labels of the
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Figure 1: Active Learning Loop

chosen data points are queried from the oracle. In the next
step, the newly labeled data points are added to D, the pool of
labeled data points. Then, D is fed into the learning block to
improve the model. The cycle continues till either the system
reaches a predefined labeling cost/budget (a limitation on D)
or a predefined target accuracy for the model.

4 MAHAK: DESIGN AND COMPONENTS

Transforming Assessment Task to AL: The key to satisfying
our primary goal (uncovering the performance of a scheme
across a wide range of scenarios without exhaustively testing
it in every scenario) is to generate an accurate performance
model for the given protocol/design. With this model, we can
simply input the identifying factors of a scenario and obtain
the scheme’s performance without actually evaluating it over
that specific scenario. Viewing the assessment process from
this perspective and considering that <evaluating a scheme
in a scenario to know its performance> is just another form
of <querying an oracle to label data> (as it appears in AL
terminology), it becomes evident why active learning (AL) is
a natural fit for our context.

Mabhak utilizes AL to learn a supervised performance model
while operating within a limited budget for labeling data (read
it as imposing a limitation on the number of evaluated sce-
narios). Considering the AL terminology (see Section 3), the
unlabeled dataset U, is the set containing every possible com-
bination of network space parameters determined by the user
as space boundaries. On the other hand, the labeled dataset, D,
is a set containing the mentioned input features alongside the
performance of the target CC scheme (the label). That formu-
lates D as D = {u;, f(u;)} for u; € U. Mahak starts with an
empty set of D, adds values to D in each cycle, and terminates
when |D| reaches a given computation budget. Fig. 2 shows
the big picture of Mahak.

4.1 Mahak and Processing Inputs/Output

Output: Mahak’s output is a mapping from every point in the
space (determined by input features) to the estimated perfor-
mance of the scheme on that point.

Input Features: Mahak takes three sets of inputs from the
user: (1) space dimensions and boundaries, (2) the perfor-
mance metric, (3) the computation budget. Several features
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such as available throughput, minimum intrinsic round-trip
delay (mRTT), number of competing flows, stochastic loss,
changes in link bandwidth, etc. can impact a CC scheme’s
performance, thus determining different dimensions of the
evaluation landscape. In this proof-of-concept version, we
consider link capacity, mRTT (minimum round trip time),
buffer size, and bandwidth change ratio as the space input
features and their minimum and maximum values determin-
ing space boundaries. In other words, for each point u € U,
we have: u € R**. Mahak’s second input is the performance
metric. The performance metric can be linear (e.g., link uti-
lization) or non-linear (e.g., —log(delay)). The last input is
the computation budget which governs the limitations on the
number of actual evaluations (oracle queries).

Feature Processing: The first step in Mahak’s feature pro-
cessing block is to create multiple different linear/non-linear
features out of given input ones. Creating these features can
help and expedite the learning task. However, extra created
features combined with the original given ones can contain
overlapping information. So, this increase in dimensionality
can backfire and reduce the accuracy of the model. To handle
this, after feature engineering, we exploit the principal com-
ponents analysis (PCA) technique [36]. By transforming the
features into a new set of uncorrelated variables (principal
components), PCA helps to remove redundant or less infor-
mative features while retaining the most significant patterns
and variances. In short, Mahak utilizes PCA to identify a
lower-dimensional representation of the input features that
can capture the most important information. Later, this lower-
dimensional representation is used as a reduced set of features
for subsequent modeling.

4.2 Mahak’s AL Block

The Supervised Model: To address the design challenges and
achieve a performance map of the target protocol (f), Mahak
requires a learning model based on regression. The purpose of
this regression model is to learn the mapping from the input
network space to the performance of f. Since the performance
metric can be any function, Mahak’s learning model is defined
as regression instead of classification. Additionally, Mahak
faces the challenge of working with limited training data and
the need to provide a confidence score for predictions, which
is necessary for Active Query 3.

Parsa Pazhooheshy, Soheil Abbasloo, and Yashar Ganjali

Addressing these requirements, Mahak employs the Gauss-
ian Process Regressor (GPR) [33] in its learning block. GPR
not only serves as a powerful non-parametric regression model
but also provides uncertainty estimates alongside its predic-
tions for each data point. This uncertainty information be-
comes valuable for the active query block in selecting in-
stances for labeling. Furthermore, GPR demonstrates reliable
predictive capabilities even when there is limited labeled data,
aligning well with Mahak’s challenges.

GPR models the relationship between input features and
output variables using a Gaussian process, defined by a mean
and a covariance (or kernel) function, which gauges the sim-
ilarity between input points. Given a dataset D and a new
data point with feature u; and label d;, GPR estimates the
probability as: P(d;|x;, D) ~ N (p, 2).

The GPR model predicts using labeled examples, esti-

mating mean and covariance functions from observed data.
Key to GPR is the kernel function, with the RBF and ra-
tional quadratic kernel being popular choices. Mahak em-
ploys the RBF kernel [24], ideal for non-linear data pat-
terns. In the RBF kernel, the similarity between two points
u, and u, is gauged by the squared Euclidean distance:
K (uy, ) = exp(-Ls710),
The Active Query Selection: At the core of any AL-based
design lies an active query selection algorithm determining
which new points from the set U should be chosen and added
to the set D. The active query algorithm is the key component
that enables AL to achieve its objective of learning a mapping
with significantly fewer labeled samples compared to other
types of ML algorithms. Mahak utilizes uncertainty sampling
as its active query selection algorithm [26].

The fundamental idea behind uncertainty sampling is that
the most valuable examples for learning are those that the
ML model is least confident about. As a result, the AL cycle
focuses its efforts on gathering information about the unla-
beled instances that confuse the model, rather than querying
instances about which the model is already confident. In the
case of Mahak, which employs GPR as a probabilistic regres-
sion technique, each data point’s uncertainty is determined by
measuring the variance of the predicted distribution. Conse-
quently, in each iteration of Mahak, the uncertainty sampling
strategy selects an unlabeled instance u from the set U that the
GPR regression model is least confident about. After labeling
it, the pair {u, f(u)} is added to the set D, and the GPR model
is retrained using the updated D.

An Automated Oracle: This block is responsible for the
annotation of unlabeled data as shown in Fig 1. When the
active query block determines the next required setting to be
evaluated, the oracle needs to bring up the specified setting,
evaluate the protocol, and insert the labeled data to D. In
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other words, it takes u € U as the input, evaluates the perfor-
mance/label, f(u), and inserts d = (u, f(u)) to D. In the next
iteration, the updated D is utilized for GPR training. Here, Ma-
hak directly employs the actual (and not simulated/simplified)
implementation of the protocol to send traffic. This enables
Mahak to be protocol-agnostic and not only assess heuristic
CC schemes but also complicated ML-based ones. To cre-
ate the network, currently, Mahak, without loss of generality,
uses Mahimahi’s emulated links [28]. Algorithm 1 shows how
each block functions in Mahak.

Algorithm 1: Mahak Active Learning Algorithm

1 Initiate U = (uq,up,...,un) // The unlabeled
dataset as combination of all network

parameter features
2 Apply Feature Extraction and PCA on U
3 Initiate D =0 // The labeled dataset defined
as empty set at first
4 while Computation Budget not met do
5 Select an instance u; from U which the GPR is most
uncertain about // Uncertainty Sampling
6 Measure the performance (d;) of the selected instance
uj // Mahimahi Emulation
7 Add (uj,dj)to D // Update the labeled
dataset
8 Retrain the GPR model using D // Update the
model using the labeled dataset

9 Output the learned performance mapping by GPR

5 EVALUATION

To highlight the protocol-agnostic aspect of Mahak and the
fact that it treats the protocols as a black box, and does not
require any assumptions, simplification, or prior explicit math-
ematical models of them, we choose two CC schemes: BBR2
[12], and Orca [6]. BBR2 is a heuristic scheme, while Orca is
a state-of-the-art scheme utilizing complicated deep reinforce-
ment learning techniques. We used modAL [14] to implement
Mahak’s AL block.

During the evaluations, we use the following boundaries
([min, max]) for the input features: [4,100] ms for mRTT,
[10,20000] packets for the bottleneck buffer size, [10, 100]
Mbps for the link bandwidth, and [0.1X, 8X] for the change
ratio of the bandwidth.

5.1 Performance Model and Its Accuracy

We start the evaluations by demonstrating a sample perfor-
mance map (of a heuristic scheme, BBR2) obtained by Mahak
and elaborate on its accuracy. To quantify the model accu-
racy, we calculate the error between Mahak’s output and the
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Figure 3: One-dimensional visualization of the perfor-
mance map of BBR2 obtained by Mahak (left) and its
error (right)

Target CC | MAE | 95th %tile AE | RMSE Performance Metric

BBR2 0.02 | 0.09 0.04 Link Utilization

Orca 0.03 | 0.11 0.05 Link Utilization

BBR2 0.02 | 0.09 0.04 Queuing delay / mRTT

Orca 0.008 | 0.03 0.03 Queuing delay / mRTT

BBR2 0.02 | 0.07 0.04 Link Utilization / (Queuing delay/mRTT)
Orca 0.02 | 0.07 0.03  Link Utilization / (Queuing delay/mRTT)

Table 1: Mahak Assessment Error on CC Scheme

true values of the CC scheme’s performance across the entire
space. In this setting, we only permit Mahak to query about
4% of the total existing data points in the defined evaluation
space, U. In other words, the computation budget is set so that
|D| = 0.04 x |U|. To demonstrate the performance map in the
entire defined 4D space, we use visualization techniques. In
particular, utilizing PCA, we reduce the 4D space into a single
dimension. Note that this does not have any impact on the
reported error values. For this experiment, we give Mahak the
following non-linear performance metric: eui}fgﬁgﬁ‘g}?}‘mmﬂ .
Results are reported in Fig. 3. Considering the error graph
(right plot in Fig. 3), it can be confirmed that Mahak’s model
achieves a low error rate and therefore it has successfully
assessed the scheme’s performance. Utilizing the (original
4D) assessment map, designers can easily observe regions
where the tested CC scheme performs poorly.

Since Mahak utilizes a regression-based approach, to fur-
ther elaborate on its performance model accuracy, in the rest
of this section, we employ well-established regression met-
rics such as mean absolute error, and root mean square error.
Furthermore, we report the 95th percentile of absolute error,
AE, (|y; — ¢i|) to provide a better picture of the error statistics
of Mahak’s gained performance map. Table 1 reports these
errors for tested CC schemes and two linear performance met-
rics, the average link utilization and the average normalized
queuing delay, and one non-linear metric, (Queuigéigzgl‘g;’;‘mRTT) .
The low values of errors indicate that independent of different
performance metrics, Mahak successfully obtains the perfor-
mance map of the target CC algorithms across the space while
evaluating a small fraction of the scenarios (~4%).
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Figure 4: Performance vs. Budget

5.2 Impact of Computation Budget

In this section, we discuss how the computation budget in-
fluences Mahak’s performance. We contrast Mahak with two
baselines: nearest-neighbor (NN) interpolation and linear in-
terpolation. NN interpolation assigns the label of the closest
labeled data point to an unlabeled point, whereas linear in-
terpolation averages neighboring labels. Fig. 4 shows that
increasing Mahak’s computation budget decreases the RMSE
error. Notably, after covering 5% of the space, Mahak’s er-
ror becomes minimal, with further budget increases offering
slight improvements. This showcases Mahak’s effective ac-
tive learning in minimizing Oracle queries. On the other hand,
both interpolation methods have high error even at a 40% bud-
get, indicating that relying on uniformly (randomly) choosing
evaluation settings is insufficient.

5.3 Samples of Findings

One of the straightforward benefits of acquiring the perfor-
mance map of a protocol is that the users can easily observe
the settings where the protocol performs poorly. Here, utiliz-
ing the output of Mahak, for brevity, we only share two sam-
ples of the detected scenarios where CC schemes (a heuristic,
BBR2, and a DRL-based one, Orca) behave poorly.

BBR2: Using Mahak’s performance map for BBR2, users can
pinpoint areas where BBR2 underperforms. For example, the
map reveals that when link capacity decreases by a factor of
5 or more, combined with a low mRTT and a large bottleneck
link buffer, BBR2 experiences a notable increase in queuing
delay. Furthermore, the scheme struggles to quickly mitigate
this delay. Fig. 5 presents a sample from this region. For clar-
ity, we also display BBR2’s performance at a nearby point.
In Fig. 5, red and green curves represent BBR2’s behavior in
networks with mRTTs of 40ms and 4ms, respectively, both
with identical buffer sizes (8000 packets).

Orca: Mahak’s protocol-agnostic nature enables users to eval-
uate complex schemes like Orca. Using this, we identified an
area where Orca struggles, particularly displaying oscillations

o

Queuing delay (ms) Throughout (Mbps)

R

15 20 10 12 18 20

@

Time (s) Time (s)

Figure 5: High Delay Issue of BBR2  Figure 6: Orca’s Oscillatory Behavior

when link capacity drops over 10-fold. Fig.6 depicts a repre-
sentative point from this area. For clarity, Orca’s performance
in a nearby but different region is also presented. In Fig.5,
the red and green curves show Orca’s behavior in networks
with 20ms and 8ms mRTTs, both with the same link capacity,
variations, and buffer size.

Notice: Answering the question of what causes these perfor-
mance issues in different regions is beyond the scope of this
work. Mahak is designed as an assessment tool to uncover
the overall performance map of CC schemes, though hav-
ing this tool would greatly help protocol designers uncover
performance issues and facilitate improvement efforts.

6 DISCUSSION AND THE FINAL NOTE

Applying Mahak to Other Contexts Beyond CC: In this
paper we showed the application of Mahak for assessing
CC schemes, however, our approach can be utilized for the
assessment of other families of network protocols. This is
because Mahak is protocol-agnostic and treats protocols as
black boxes. By providing the desired input space features,
appropriate performance metrics and updating Oracle block,
Mahak’s application can be extended to other families of net-
work protocols. We leave similar upgrades to apply Mahak
beyond CC for future work.

Final Note: In this work, one of our main goals is to demon-
strate that the use of machine learning techniques is not lim-
ited to the design of network protocols. In fact, we aim to
illustrate that the network protocol assessment, a primary
requirement for improving our network infrastructures and
developing better network protocol designs, can be modern-
ized by utilizing machine learning techniques. To that end,
we introduced Mahak, the first tool employing active learning
techniques to automate the CC performance assessment task.
Mabhak is only a first step toward the goal of fully automating
the network protocol performance assessment. We hope that it
can stimulate further discussions and inspire the development
of more advanced automated assessment tools in the future.
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