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Abstract
Current network functions build heavily on fixed programmed
rules and lack capacity to support more expressive learning
models, e.g. brain-inspired Cognitive computational models
using neuromorphic computations. The major reason for this
shortcoming is the huge energy consumption and limitation in
expressiveness by the underlying TCAM-based digital packet
processors. In this research, we show that recent emerging
technologies from the analog domain have a high potential
in supporting network functions with energy efficiency and
more expressiveness, so called cognitive functions. We pro-
pose an analog packet processing architecture building on
a novel technology named Memristors. We develop a novel
analog match-action memory called Probabilistic Content-
Addressable Memory (pCAM) for supporting deterministic
and probabilistic match functions. We develop the program-
ming abstractions and show the support of pCAM for an
active queue management-based analog network function.
The analysis over an experimental dataset of a memristor chip
showed only 0.01 fJ/bit/cell of energy consumption for cor-
responding analog computations which is 50 times less than
digital computations.

CCS Concepts
• Networks → In-network processing; Network protocol
design; • Hardware → Emerging architectures; Network-
ing hardware; Impact on the environment.
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1 Introduction
The Internet relies heavily on programmable network func-
tions, like congestion control [6], load balancing [32], traf-
fic analysis [45, 47, 51] or packet scheduling [61] in or-
der to establish communication links and deliver services
across the network. Despite line-rate performance, the pro-
gramming models of network functions are still based upon
fixed programmed rules and cannot support more expressive
learning models, like brain-inspired Cognitive models us-
ing neuromorphic computations [9, 49]. The major reasons
for this shortcoming are the huge energy consumption and
limited match-action possibilities in the underlying Ternary
Content-Addressable Memory (TCAM)-based packet proces-
sors [20, 24]. The continuous data movements between the
storage and computational units consume significant amount
of energy, e.g., upto 90% for TCAM [23, 41](Figure 1). More-
over, TCAM supports only digital outputs (match or mis-
match) without any possibility of computing an analog output
(partial match) required for cognitive models. These short-
comings require the use of novel technologies that can support
analog computations with colocalized computation and stor-
age, and one such technology is the Memristor [48, 57].

A memristor is a non-volatile, nanoscale and programmable
component with colocalized computation and storage. In this
research, we show that memristor-based components allow
for a transformation of the traditional TCAM-based digi-
tal match-action process to an analog match-action process
through the design of a Probabilistic Content-Addressable
Memory (pCAM). The analog match-action process can be
programmed for both digital (deterministic) and analog (prob-
abilistic) outputs based upon the closeness of the match pro-
cess for incoming search query against the locally stored
policies. The analog match-action process can use the analog
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Figure 1: Energy savings by colocalizing computation and
storage in analog computations vs digital computations.

features for network functions building on cognitive models,
referred as cognitive network functions, to compute an analog
output. For example, the analog Active Queue Management
(AQM) network function can incorporate the higher-order
derivatives of sojourn times and buffer sizes in order to com-
pute an analog Packet Drop Probability (PDP).

Enabling the transition from the digital to analog in-network
computations requires an understanding of the underlying
memristor-based analog match-action process. It motivates
the first research question, “How can analog in-network com-
putations be used for supporting cognitive network functions
at packet processors?”. It requires an understanding of the
packet processing pipeline for supporting analog computa-
tions considering the precision requirements of various net-
work functions. This leads to the next research question, “How
can the memristor-based analog components be integrated in
the current digital packet processing architectures?”. More-
over, the programming abstractions and analysis of energy
consumption are still limited to the network functions build-
ing on digital computations. It motivates the last research
question, “What would be the programming abstractions and
energy efficiency gains for analog network functions?”. It
requires the proof of concept for a baseline network function,
like AQM, by using a real-world memristor dataset.

Contributions and Research Findings. In this research,
we make the pioneer effort in supporting cognitive network
functions through memristor-based analog in-network com-
putations. Our major contributions are as follows; (1) Propo-
sition of a novel analog match-action process over pCAM to
support analog computations in packet processors, (2) Devel-
opment of an analog packet processing architecture for sup-
porting energy-efficient cognitive network functions, (3) De-
velopment of the programming abstractions for a base-line
analog network function, i.e., AQM, in packet processors,
(4) Proof-of-concept (i.e., AQM) for packet processors by
using the dataset of a Nb-doped SrTiO3 memristor chip, and
estimation of the energy efficiency and performance gains for
analog packet processors. The Nb-doped SrTiO3 memristor
lowered energy consumption by a factor of 50 compared to
digital packet processing. The analysis over an AQM-based
network function showed an efficient queue management by
keeping the packet delays within the programmed latency

bounds due to the use of analog higher-order derivatives of
sojourn times and buffer sizes.

Paper Organization. Sec-2 presents the limitations of TCAMs
and introduces the memristors. The research questions have
been discussed in Sec-3. The proposed analog packet pro-
cessing is presented in Sec-4. The proof-of-concept for an
AQM-based function and performance analysis have been
shown in Sec-5 and Sec-6, respectively. Sec-7 summarizes
the related work, and Sec-8 concludes the paper.

2 From Digital to Analog Technology
Traditional in-network functions build on the TCAM architec-
ture for enabling line-rate packet processing. In this section,
we refer to limitations and explain how memristor-based ana-
log technology can help alleviate these shortcomings.

Limitations of TCAMs. The high-end packet processors
rely on TCAMs for matching packet headers against rules
defining network policies in a single clock cycle. Despite line-
rate performance, TCAM consumes huge amount of energy
due to the continuous data movements between the compu-
tational and storage units. Moreover, TCAM offers limited
amount of space due to its digital storage and processing.
TCAM is programmable in the digital domain only and there
is no way to express probable matches, e.g., a match with a
given probability. This, however, is crucial when dealing with
analog functions. The major reason for these limitations is
the strong reliance on the traditional transistor-based technol-
ogy in TCAM. This technology gives remarkable precision,
but it is volatile, large scale in size and requires separate
computational and storage units for in-network computations.

Memristors. Memristors are non-volatile and nanoscale
energy-efficient components which can be programmed to
store analog data (i.e., network policies) in form of a state 𝑆 ,
mostly represented as a physical property Resistance [7, 8].
Built upon the principles of in-memory computing [25, 50],
the read/search operation can supply inputs (i.e., incoming
packet header fields) to these memristors in order to receive
an output which is a function of 𝑆 . Unlike the transistor-based
components, memristor is the only component which can pro-
vide different states against the same analog input depending
upon the programmed initial state, as shown in Figure 2. The
application of an analog input (in Computation-1) can yield
either 𝑆1

ℎ1
or 𝑆1

𝑙1
depending upon the programmed initial state

𝑆11 or 𝑆1𝑚 . Moreover, reprogramming the initial states to new
analog states (𝑆𝑛1 or 𝑆𝑛𝑚) can generate a new state machine as
shown in Computation-n. The input/output response of the
memristor is shown in the function 𝐴𝑛𝑎𝑙𝑜𝑔𝐶𝑜𝑚𝑝𝑢𝑡𝑒 ().

1 f u n c t i o n AnalogCompute ( ) {
2 𝑂𝑢𝑡𝑝𝑢𝑡𝐴𝑛𝑎𝑙𝑜𝑔 = 𝑆

𝑦
𝑥 × 𝐼𝑛𝑝𝑢𝑡𝐴𝑛𝑎𝑙𝑜𝑔

3 ∀𝑦 ∈ [1, 𝑛] \ \ “𝑛” s t a t e machines ,
4 ∀𝑥 ∈ [1,𝑚] \ \ “𝑚” s t a t e s i n s i d e a s t a t e machine }
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Figure 2: The analog state machine of the memristor.
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Figure 3: Taxonomy of packet processing architectures.

3 Problem Statement & Research Questions
Our research focuses on the given research problem;

“Given the huge energy requirement in using brain-inspired
cognitive models inside traditional network functions, how
can analog computations be integrated and support packet
processors to become more energy efficient?”

The use of memristor-based analog computations requires
an understanding of the match-action process, and the inte-
gration and programmability inside packet processors since
it resembles a fundamentally new and different technology
(Figure 3) [5, 18, 34].
Research Question-1
How can analog in-network computations support cognitive
network functions at the packet processors?

In this research, we study the use of analog computations
for modeling the match-action process in the analog domain.
A typical match process takes the packet header fields of the
input packet and calculates the difference between the input
and the stored contents, called as Hamming distance. The use
of digital computations severely limits the Hamming distance
calculation because the TCAMs round the match results to
the nearest logic level. The TCAM output is always discrete,
i.e. a match or mismatch. There is no possibility to express
a partial match. Contrary, an analog match-action process
can enable programmability of the digital logic levels and
support an additional range of analog logic levels. For exam-
ple, for a stored policy of 2.5 V, the programmer can specify

the range of deterministic matches i.e., Match(logic-1): [2.4-
2.6] V, Mismatch(logic-0): [0-1.5] V, and probable matches
i.e., analog (0-1): (1.5-2.4) V. The analog match-action pro-
cess supports cognitive functions by providing diverse analog
outputs (probable matches) in addition to the digital outputs
for identifying the closely matching stored policies for an
incoming query with zero matches.

Research Question-2
How can memristor-based analog components be integrated
in the current packet processing architectures?

The incorporation of memristor-based components in the
current packet processing architectures is a two step pro-
cess; (1) Development of an analog match-action memory,
(2) Integration of the analog match-action memory into the
packet processing architecture. The traditional TCAM mem-
ory supports only digital inputs and outputs. Building on
prior findings [30, 40], we propose the development of a pro-
grammable memristor-based pCAM memory for supporting
the digital and analog outputs at the packet processors. In the
next step, pCAM can be integrated into the current packet pro-
cessing architecture. However, the match output can lose its
precision depending upon the line losses, signal strength and
interference from the neighboring components. It requires an
understanding of the network functions depending upon their
precision requirements. For example, network functions like
IP lookup and IP firewall have high thresholds for precision
than the network functions like AQM, traffic analysis, etc.
Hence, an understanding of the packet processing pipeline is
required in order to integrate the digital and analog compo-
nents (TCAMs and pCAMs) for various network functions.

Research Question-3
What are the programming abstractions and energy effi-
ciency gains for analog network functions, like AQM?

The programming of analog network functions requires
a novel programming abstraction due to the use of analog
hardware technology i.e., memristors. All prior network de-
vices like switches, FPGAs, etc. allow the programmability
of the network function at the application layer and leave
the mapping of hardware resources to the underlying com-
piler resulting in resource mapping and energy efficiency
issues [22, 37, 55]. However, the analog hardware can allow
the programmer to specify the hardware function from the
application layer for efficient mapping of network resources,
and making colocalized algorithms with limited data move-
ments between the different computational units. It requires
an elaborate study on the energy consumption of these compu-
tations for real-world memristors in order to verify the energy
efficiency claims (shown below) for network functions [3].
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Figure 4: Abstract working operation of (a) pCAM, and (b) pCAM-based analog match-action process.
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“Analog systems.. use 10,000 times less power
than comparable digital systems.” C. Mead (1990)[35]

“Energy dissipation.. The factor-of-1000 opportunity requires us
to make algorithms more local, so that we do not have to ship

the data all over the place.” C. Mead (2022)[36]

4 Proposed Analog Match-Action Processing
In this section, we present the proposed analog packet pro-
cessing architecture building upon a novel pCAM memory.

Proposed Memristor-based pCAM. An analog computa-
tion is characterized by enabling the use of continuous logic
levels instead of the discrete logic levels. Memristors have
shown the support of analog computations in the Content-
Addressable Memory (CAM) at a circuit level [14, 28, 29, 31,
56]. Building on [30, 40, 44], we propose an analog match-
action process on top of an analog pCAM memory. The role
of pCAM is to take the input queries in form of analog sig-
nals and compute the probability of a match between stored
and supplied contents. A typical match process inside a sin-
gle pCAM cell maps the analog input to a maximum output
(𝑝𝑚𝑎𝑥 ) for a match, minimum output (𝑝𝑚𝑖𝑛) for a mismatch
and in between the maximum and minimum outputs for a
probable match based upon the programmed parameters, as
shown in Figure 4(a). The programmable parameters 𝑀1-𝑀4

specify five different regions with deterministic and proba-
bilistic matches, and output is defined by the slope function 𝑆𝑎
and 𝑆𝑏 for probabilistic matches. For multistage match-action
process, multiple pCAM cells can be combined in series to
obtain the product of deterministic and probabilistic matches
at the output, as shown in Figure 4(b).

Proposed Packet Processing Architecture. The proposed
memristor-based analog packet processing architecture for
supporting cognitive network functions is shown in Figure 5.
It uses the pCAM-based match-action memory for provid-
ing both deterministic and probabilistic matches. The digital
domain enables high precision, however, lacks expressive-
ness, while the analog domain enables energy-efficient analog
computations at the cost of precision. In both domains, mem-
ristors play a significant role to reduce the energy footprint.
For example, prior researches [42, 43, 46] demonstrated high
energy savings for memristor-based TCAMs.

Network functions building over cognitive models, like
AQM, load balancing, etc., require probabilistic and determin-
istic matches, and can be offloaded to the pCAM-based analog
computational components. The splitting of network func-
tions into the digital and analog domains requires a cognitive
network controller. The controller programs the memristor-
based pCAMs and TCAMs based upon the requirements of
the network functions. The proposed architecture contains the
ingress and egress queues for acting as packet buffers, and
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Figure 6: pCAM-based analog AQM for the memristor-based cognitive traffic manager.

memristor-based storage for storing actions. It also contains a
parser to extract the required packet header fields and forward
them to the respective analog and digital computational units.

5 Proof of Concept: Analog AQM
Network systems use AQM algorithms, like CODEL [38],
RED [10] or PIE [39] in order to keep an optimal queue
size by selectively dropping packets. This allows counteract-
ing problems like Bufferbloat, congestion, buffer overflows
and unfairness [1, 60]. AQM algorithms can be implemented
inside match-action tables [21]. This, however, comes at a
significant cost of energy and system resources [26, 27].

pCAM-based AQM. The analog match-action process
makes it possible to support line-rate queue management
at lower energy cost in packet processors, as shown in Fig-
ure 6. The proposed AQM collects the statistics of sojourn
time and buffer size. Later, it computes additional features,
like first, second and third-order derivatives of sojourn time
and buffer size, in-order to estimate the network congestion.
The additional features are computed by the analog compo-
nents [52, 63]. The first-order derivative gives an insight into
the rate of increase of sojourn time and buffer size. Based
upon the increase, high priority traffic gets lower drop proba-
bility as compared to the low priority traffic. The second-order
derivative provides an insight into the change of first-order de-
rivative for accurate PDP estimation and adaptation of AQM
parameters. The third-order derivative provides information
about the bursty periods of the network traffic. The collected
features are passed through a series of pCAM-based process-
ing stages which contain the programmed feature ranges. The
final output of pCAMs is the PDP for AQM.

Programming Abstractions. pCAM-based AQM can be
programmed by specification of the eight pCAM programmable
parameters (prog_pCAM(), Figure 4(a)). It’s possible to spec-
ify the I/O response, and controller can map it to prog_pCAM()
by using the function pCAM(). The processing pipeline is en-
listed in the function AQM(). The analog match-action table,
analogAQM(), incorporates the read, action and output. The
output is the raw analog voltage, and it can be used directly
(like PDP for AQM) or indirectly by fetching the stored ac-
tions related to the given output. For AQM, action updates

the pCAM parameters 𝑀1-𝑀4, 𝑆𝑎 , 𝑆𝑏 , 𝑝𝑚𝑎𝑥 and 𝑝𝑚𝑖𝑛 through
function update_pCAM().

1 f u n c t i o n prog_pCAM ( ) {
2 program ( M1 , M2 , M3 , M4 , Sa , Sb , pmax , pmin ) ; }

1 f u n c t i o n pCAM( i n p u t , o u t p u t ) {
2 i f ( i n p u t ≤ M1 | | i n p u t ≥ M4 )
3 o u t p u t =pmin ;
4 e l s e i f i n p u t > M3
5 o u t p u t =Sb ( i n p u t ) + (M4pmax − M3pmin )/(M4 − M3 ) ;
6 e l s e i f i n p u t < M2
7 o u t p u t =Sa ( i n p u t ) + (M2pmin − M1pmax )/(M2 − M1 ) ;
8 e l s e
9 o u t p u t =pmax ; }

1 f u n c t i o n AQM( ) {
2 drop = p i p e l i n e {
3 pCAM( s o j o u r n _ t i m e ) , / / S tage −1
4 pCAM( d / d t ( s o j o u r n _ t i m e ) ) , / / S tage −2
5 . . .
6 pCAM( d3 / d t 3 ( b u f f e r _ s i z e ) ) }} / / S tage −n

1 t a b l e analogAQM{
2 r e a d {
3 s o j o u r n _ t i m e ;
4 d / d t ( s o j o u r n _ t i m e ) ;
5 . . .
6 d3 / d t 3 ( b u f f e r _ s i z e ) ; }
7 o u t p u t {
8 AQM( ) ; }
9 a c t i o n {

10 update_pCAM ( ) ; } }

1 a c t i o n update_pCAM ( id , p a r a m e t e r [ 1 : 8 ] ) {
2 s e t _ f i e l d ( prog_pCAM . s o j o u r n _ t i m e , M[ 1 : 8 ] ) ;
3 s e t _ f i e l d ( prog_pCAM . d / d t ( s o j o u r n _ t i m e ) , M[ 1 : 8 ] ) ;
4 . . .
5 s e t _ f i e l d ( prog_pCAM . d3 / d t 3 ( b u f f e r _ s i z e ) , M[ 1 : 8 ] ) ; }

6 Preliminary Results
In this section, we analyze the energy consumption and queue
management of the analog AQM network function.

Energy Consumption. The energy analysis of the pCAM-
based AQM was conducted by using real world dataset of Nb-
doped SrTiO3 memristor chip [12, 13]. The analysis showed
that pCAM has maximum power consumption of 0.16 nJ/bit/-
cell. However, pCAM also provides a range of states which
show very low energy consumption. The lowest energy con-
sumption states require only about 0.01 fJ/bit/cell of energy.
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Figure 7: Analog AQM outputs for the memristor dataset.

Figure 8: Queue management by using the analog AQM.

The major reason for this low energy consumption is the use
of analog memristive states and colocalization of the com-
putation and storage inside the memristor. In comparison to
state-of-the-art digital computations, the analog computations
proved to be at least 50 times more energy efficient (Table 1).

Queue Management. The analog output of the pCAM-
based AQM for the memristor dataset is shown in Figure 7.
The PDP ranges from 0 to 1 depending upon the analog input
(sojourn time and buffer size) mapped to hardware voltages
(DACs [58])). The performance of pCAM-based AQM was
analyzed by simulating the network queues with the Poisson
distributed network flows, as shown in Figure 8. pCAM has
been programmed to maintain an average delay of 20 ms with
a maximum deviation of 10 ms. The results show that the
packet delays keep increasing sharply without AQM. How-
ever, the use of pCAM-based AQM can manage the conges-
tion by observing the rate of change of packet delays and
selectively dropping the packets based upon the congestion.

7 Literature Review
The support of cognitive computational models is a funda-
mental requirement of packet processors. Saleh et al. [46]
have shown the self-learning capabilities and energy savings
for network functions by using memristor-based cognitive
models in packet processors. In [64], Zulfiqar et al. highlight
the throughput and latency compromises by continuous data
movements between the data plane and control plane. The

Table 1: Performance comparison of Transistors(T)/ Mem-
ristors(M)-based Digital(D)/Analog(A) computations.

Researches [2] [19] [42] [33] [11] [4] [62] [59] pCAM
Computation (D/A) D D D D D D D D A
Technology (T/M) T T M M M M M M M

Latency (ns) 1 1.9 1 0.29 0.18 1 2.3 8 1
Energy (fJ/bit) 0.58 1.98 1-16 1.04 1.2 2.15 3 7.4 0.01

authors suggest the development of a match-compute abstrac-
tion for line-rate network functions in the data plane. Shrivas-
tav [53, 54] showed the limited match-action possibilities in
packet processors. The author proposed multi-dimensional
match-action tables and stateful multi-pipeline packet proces-
sors for supporting more expressive network functions.

Memristors have shown improvements in energy savings,
space and throughput for the digital packet processing due to
the non-volatility and nanoscale size [42, 43]. The network
functions, like regular expression matching, showed an im-
provement in throughput by 12 times (upto 47.2 Gbps) by us-
ing memristor-based TCAMs instead of the FPGAs [15–17].
Considering the resource scarcity issues, recent researches [14,
28–31, 40, 56] have focused on the development of ana-
log CAMs and differential CAMs to support deterministic
matches for functions like decision trees. These researches
have shown huge savings in space (upto 18 times) and energy
(upto 10 times) by moving to the memristor-based analog
computations. However, memristors have not been used for
deterministic and probabilistic matches at packet processors.

8 Conclusion and Future Work
In this paper, we presented the use of a novel memristor-based
analog technology for supporting cognitive network func-
tions inside packet processors. We proposed an analog packet
processing architecture built upon a novel memristor-based
analog pCAM memory, and developed the programming ab-
stractions for a baseline AQM-based network function. The
energy analysis of the analog computations based upon the
experimental dataset of Nb-doped SrTiO3 memristor showed
only 0.01 fJ/bit/cell of energy consumption. In future, we
would focus on the understanding of (1) precision and diver-
sity of the analog match-action process including modeling
of non-linear match functions in the data plane; (2) cognitive
models deployment, e.g., neuromorphic computations, for
self-learning line-rate network functions in the data plane.
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