Toward Reproducing Network Research Results Using
Large Language Models

Qiao Xiang®, Yuling Lin*, Mingjun Fang*, Bang Huang®, Siyong Huang*,
Ridi Wen*, Franck Le', Linghe Kong®, Jiwu Shu*®
*Xiamen University, "TTBM Research, ¢ Shanghai Jiao Tong University, °Minjiang University

ABSTRACT

Reproducing research results is important for the network-
ing community. The current best practice typically resorts
to: (1) looking for publicly available prototypes; (2) contact-
ing the authors to get a private prototype; or (3) manually
implementing a prototype following the description of the
publication. However, most published network research does
not have public prototypes and private ones are hard to
get. As such, most reproducing efforts are spent on manual
implementation based on the publications, which is both
time and labor consuming and error-prone. In this paper, we
boldly propose reproducing network research results using
the emerging large language models (LLMs). We first prove
its feasibility with a small-scale experiment, in which four
students with essential networking knowledge each repro-
duces a different networking system published in prominent
conferences and journals by prompt engineering ChatGPT.
We report our observations and lessons and discuss future
open research questions of this proposal.

CCS CONCEPTS

« Networks — Network performance evaluation; .
Computing methodologies — Machine learning;

KEYWORDS

Networking systems, Large language models

ACM Reference Format:

Qiao Xiang, Yuling Lin, Mingjun Fang, Bang Huang, Siyong Huang,
Ridi Wen, Franck Le, Linghe Kong, Jiwu Shu. 2023. Toward Repro-
ducing Network Research Results Using Large Language Models.
In The 22nd ACM Workshop on Hot Topics in Networks (HotNets °23),
November 28-29, 2023, Cambridge, MA, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3626111.3628189

1 INTRODUCTION

Reproducing network research results have both signifi-
cant education and research values. For education, it com-
pletes students’ learning process on computer networks with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HotNets "23, November 28-29, 2023, Cambridge, MA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.

ACM ISBN 979-8-4007-0415-4/23/11...$15.00
https://doi.org/10.1145/3626111.3628189

lecture attendance and textbook reading, in accordance with
the usual process of science study worldwide, e.g., educators
at Stanford University assign reproduction projects in their
networking classes [37]. For research, it ensures the results
are accurate and trustworthy, gives researchers a hands-on
opportunity to understand the pros and cons of these results,
and motivates more innovations, e.g., IMC 2023 introduces a
replicability track for submissions that aims to reproduce or
replicate results previously published at IMC [11].

The best practice for people to reproduce a published
network research typically involves one of three approaches.
First, rerun a publicly available prototype provided by the
authors (e.g., [38]) or other people who implement it based
on the publication (e.g., [43]). Second, if no public prototype
is available, people may contact the authors to ask for a
private prototype. Third, if no prototype is available, people
need to manually implement one following the publication.
The best practice to reproduce network research results
has limitations. All three approaches in the best practice
are limited for various reasons. First, not much published re-
search comes with a publicly available prototype. Our study
shows that even in prominent networking conferences such
as SIGCOMM and NSDI, only a small number of papers pro-
vide publicly available prototypes from the authors. From
2013 to 2022, only 32% and 29% of papers in SIGCOMM
and NSDI, respectively, provide open-source prototypes. Al-
though some non-authors implement prototypes and release
them to the public [8], the number of such prototypes is
even smaller. Second, the authors sometimes are reluctant
to share a private prototype for various reasons (e.g., patent
filing, commercial product, policy, and security).

As such, without ready-made prototypes, the dominant
way for people to reproduce the results of a published net-
working paper is to manually implement its proposed design.
Although this "getting-hands-dirty" approach provides peo-
ple precious experience in understanding the details of the
paper, in particular the pros and cons of the proposed design,
the whole process is both time and labor consuming and
error-prone. In the long run, it is unsustainable because net-
work research results are becoming more and more complex.
If people are spending more time trying to reproduce the
published results, they will have less time for critical think-
ing and innovation. One may think this is not a unique issue
for the networking community, but a prevalent one for the
whole computer science discipline. However, the situation is
more severe for networking research. For example, based on
our private conversations with several research groups and

https://doi.org/10.1145/3626111.3628189
https://doi.org/10.1145/3626111.3628189

HotNets ’23, November 28-29, 2023, Cambridge, MA, USA

results from a reproduction class [37], it may take a fresh
graduate student one week to reproduce a machine learning
paper by manual implementation, but one or two months to
reproduce a networking paper.

Proposal: reproducing network research results using
large language models (LLMs). In this position paper, we
make a bold proposal to reproduce network research re-
sults by prompt engineering the emerging LLMs. Such a
proposal, if built successfully, can benefit the networking
community from multiple perspectives, including (1) sub-
stantially simplifying the reproduction process, (2) deepen
our understanding of network research results and help effi-
ciently identify their missing details and potential vulnera-
bilities (e.g., hyper-parameters and corner-case errors) and
(3) motivating innovations to improve published research.
It could even help improve the peering review process of
networking conferences [30], partially realizing the vision
of a SIGCOMM April Fools’ Day email in 2016 [1].

Our proposal is backed by the recent success of apply-
ing LLMs to both general [7, 26, 28, 34, 41, 42] and domain-
specific code intelligence tasks [18, 24, 40] as evidences. For
general programming, Copilot [7] can provide effective code
completion suggestions. ChatGPT [9] can complete and de-
bug simple coding tasks when given proper prompts. Rah-
mani et al. [28] integrate LLM and content-based synthesis to
enable multi-modal program synthesis. For domain-specific
programming, in particular the network domain, SAGE [40]
uses the logical form of natural-language sentences to iden-
tify ambiguities in RFCs and automatically generate RFC-
compliant code. NAssim [18] uses an LLM to parse network
device manuals and generate corresponding configurations
for devices. They both focus on well-formatted inputs with
a limited range of topics (i.e, RFC and manuals).

In this paper, we go beyond to take a first step to thor-
oughly investigate the feasibility and challenges of reproduc-
ing network research results by prompt engineering LLMs.
A preliminary experiment (§3). We conduct a small-scale
experiment, where we choose four networking systems pub-
lished in prominent networking conferences and journals [14,
38, 43, 45] and ask four students with essential knowledge
of networking to each reproduce one system by prompt en-
gineering the free ChatGPT [9], a publicly available chatbot
built on GPT-3.5, a representative LLM [6].

The results verify the feasibility of our proposal, i.e., each
student successfully reproduces the system assigned to her
/ him via ChatGPT. Their correctness is validated by com-
paring the results of small-scale test cases with those of
the corresponding open-source prototype. The efficiency is
evaluated using large-scale datasets. Results show that their
efficiency is similar to that of their open-source prototypes.

We learn several lessons from the experiment on how to
use LLMs to reproduce networking research results more effi-
ciently. First, provide LLMs with separate, modular prompts
to build different components of a system and then put them
together, rather than provide monolithic prompts to build the

Xiang et al.

Number (SIGCOMM)
Number (NSDI)
= Percentage (SIGCOMM)
= Percentage (NSDI)

w
(4

N w
4] =]

N

(=}
B
o

=

w
w
(=]

Number of Open-Source Papers
w &

N

o o

Percentage of Open-Source Papers (%)

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Figure 1: Statistics of SIGCOMM and NSDI papers with an
open-source prototype from the authors (2013 - 2022).
whole system. Second, ask LLMs to implement components
with pseudocode first to avoid unnecessary data type and
structure changes later. Third, data preprocessing is impor-
tant to reproduction, but is often missed in the paper. We also
learn some guidelines for debugging LLM-generated code,
including sending error messages / error test cases to LLMs,
and specifying the correct logic in more detailed prompts.
Open research questions (§4). We identify several key
open research questions regarding LLM-assisted network
research results reproduction and elaborate on opportunities
to tackle them. They include: (1) how to handle the diversity
of these results (2) how to design a (semi-) automatic prompt
engineering framework to reproduce these results? (3) how
to identify and handle the missing details and vulnerabilities
of these results? (4) how to develop a domain-specific LLM
for network research reproduction? (5) how to use LLMs to
discover optimization opportunities for these results? (6) how
to apply this approach of reproduction to promote computer
networking education and research?

2 BACKGROUND AND MOTIVATION

We conduct a study on network research reproduction in
two prominent network conferences (§2.1) and elaborate on
the motivation of our proposal with a simple example (§2.2).

2.1 Background

A statistical study on network research results repro-
duction. We collect the full research papers in SIGCOMM
and NSDI of the past 10 years (i.e., 2013 - 2022). For each
paper, we collect: (1) whether the proposed system is open-
sourced by the authors; (2) how many other systems are
compared in the evaluation; (3) how many of them are open-
source prototypes; and (4) how many of them are repro-
duced by the authors of the proposed system. We do not
differentiate publicly available and private prototypes be-
cause it is hard to collect this information. Figure 1 plots the
open-source statistics of SIGCOMM and NSDL. In total, only
32%/29%/31% of SIGCOMM/NSDI/both papers in the past 10
years release open-source prototypes.

Figure 2 plots the statistics of the number of systems-in-
comparisons of each paper and how many of them require
manual implementation. We observe that the authors spend
substantial efforts to manually implement the systems of
others. 59.68% of papers compare with at least two other

Reproduce Network Research Results Using LLMs

HotNets *23, November 28-29, 2023, Cambridge, MA, USA

N ;
£ 0.9 Number of def run_server():
3 0.8 1 9.68% Systems-in-Comparison host = '"127.0.0.1"
@ 0.7 |49.20% 39:68% Number of port = 12345
wn | === Manually Reproduced
t 0.6 - Systems-in-Comparison server_socket = socket.socket(socket.AF_INET,
» 0.5+~ socket.SOCK_STREAM)
g 0.4- : server_socket.bind((host, port))
[) : 26.65% server_socket.listen(1)
5031 _,_
ﬁ 0.2 : 1 print("Server is running...")
[
Q 0.1 1 b round_number = 1
a 0.0 e
0123456 7 8 91011121314151617 while True:

Number of Systems

Figure 2: Statistics of the number of compared systems and
manually reproduced ones of each paper.
systems. On average, the authors of each paper have to man-
ually reproduce 2.29 systems. 49.20% / 26.65% of the papers
have to manually reproduce at least one / two other systems.
Existing reproduction approaches are insufficient. Our
study indicates that although there is a universal need in the
community to reproduce network research results, the most
dominant way to do so is still manual implementation by fol-
lowing the publication. Although it would provide people
with precious hands-on experiences to better understand
the published network research results, it is time and labor-
consuming and error-prone. It is unsustainable because net-
work research results, in particular the system ones, are
becoming more and more complex. The more time people
spend on network research results reproduction, the less
time they are left with for critical thinking and innovation.
2.2 Reproducing Using LLMs: Motivation

Inspired by the recent success of LLMs in code intelligence
tasks (e.g., code completion [7], debug [9, 41, 42], and syn-
thesis [28, 40]), we propose to prompt engineering of the
emerging LLMs to reproduce network research results. As
a motivating example, we let three fresh graduate students
majoring in computer science interact with free ChatGPT to
each develop (1) a UDP server and client that interact to play
rock-paper-scissors, (2) an ns-3 simulation of a chain topol-
ogy with 4 switches and 2 hosts, and (3) an L3 forwarding
P4 program, respectively. All three students finished their
assignments in less than 12 prompts. For example, after only
four prompts with a total of 159 words, ChatGPT generates
the correct program for both the UDP server and client, with
a total of 93 lines of code (LoC) in Python. Figure 3 shows
two snippets of the generated program. These three simple
examples show that an LLM can implement network pro-
grams and give us the confidence to experiment with more
complex network research results.
3 A PRELIMINARY EXPERIMENT

We conduct a small-scale experiment of four participants
in summer 2023 to study the feasibility of our proposal.
3.1 Methodology
Participants with basic computer science knowledge.
The four participants (referred to as A to D) are students
from three research universities in China. A is a first-year
master’s student majoring in computer science, with a focus

client_socket, addr = server_socket.accept()
print("Connected to", addr)

while True:
client_message =
client_socket.recv(1024).decode('utf-8")

def run_client():
host '127.0.0.1"
port 12345

client_socket = socket.socket(socket.AF_INET,
socket.SOCK_STREAM)
client_socket.connect ((host, port))

print("Connected to the server.")

while True:
guess = input("Enter your guess (P/R/S for
paper/rock/scissors, or D to disconnect): ")
guess = validate_input(guess)

Figure 3: Code snippets of a UDP server and client playing
rock-paper-scissors generated by ChatGPT.

on interpretable machine learning. The other three are se-
nior undergraduates who would start their master’s program
in computer science in fall 2023. During undergraduate, A,
B, and C major in computer science, and D majors in infor-
mation and computing science. They all have basic English
skills and received basic training in computer science.
Choosing which systems to reproduce. We focus on four
systems, two traffic engineering (TE) systems (NCFlow [14]
and Arrow [45]) and two data plane verification (DPV) sys-
tems (AP [38] and APKeep [43]). All of them are published in
top-tier conferences and journals (i.e., SIGCOMM, NSDI, and
ToN). We choose them for three reasons. First, they are all
software systems that can be reproduced in general-purpose
programming languages (e.g., Java and Python). Existing
LLMs may understand and generate programs in these lan-
guages better than those in domain-specific programming
languages (e.g., P4 and Verilog). Second, they all run in a
centralized controller, which has a simpler architecture and
is easier for LLMs to understand than distributed systems
(e.g., BGP and Paxos). Third, the papers describing them pro-
vide clearly structured details of the systems (i.e., modular
components, workflow, definitions, formulations, and pseu-
docode), making it easier for participants to understand the
systems and design proper prompts to interact with LLMs.
Experiment procedure. We mimic the reproduction project
in Stanford University CS244 [37]. Each participant is as-
signed one different aforementioned system and asked to

HotNets ’23, November 28-29, 2023, Cambridge, MA, USA

i Number of All
350 L] Prompts

N
)

T
°
>

)

0] Number of Prompts P=]

‘g. 300 for Debugging ‘x’
] Number of Total 1.6

g 250 * Words in All Prompf g

4 (<]

5 200 1.2 H

- Y

150 o

é 0.8

5 1001 _g

3

4

501

‘
°
)

o B
A (NCFlow) B (Arrow) C (APKeep) D (AP)
. Participant (System)
Figure 4: The number of prompts used by four participants.

reproduce it using free ChatGPT in a 25-day period during
spare time. They can choose Java or Python for reproducing.
They are not allowed to write the implementation code them-
selves or manually modify the code generated by ChatGPT,
nor to copy the prompts of others. They can write their own
tests and are encouraged to discuss with other people about
the details of the papers and how to interact with ChatGPT.
We meet with them online every three to five days to discuss
their progress. We do not answer any questions about what
specific prompts they should use, but provide them with
suggestions from a system designer’s perspective. They can
also ask questions about the papers, but they do not do so.
Validating the reproduction. Participants validate their
reproduction by comparing it with the corresponding open-
source prototypes Three systems have open-source proto-
types from authors [3-5] and the fourth has a non-author
one [8] that is validated in [20]. Each participant uses small-
scale tests to examine the correctness of their reproduction.
If the output is inconsistent with that of the open-source
prototype, she / he manually analyzes the root cause and
interacts with ChatGPT to fix the errors. The participant
then evaluates its performance on large-scale datasets and
compares it with that of the open-source prototype.

3.2 Results

Reproducing network research results via LLMs is fea-
sible. All four participants successfully reproduced their
assigned systems. We confirm that all the code are generated
by ChatGPT by examining their code and log [15]. Some
prompts are based on the pseudocode in the papers. The
correctness is validated by comparing them with the open-
source prototypes in small-scale tests. Figure 4 shows the
number of prompts and words each participant used during
reproducing. Figure 5 compares the LoC of the reproduced
and open-source prototypes. We next present findings on
their performance by using the datasets in the original papers.
Participant A: reproducing NCFlow with high accuracy
and performance. A evaluates the performance of repro-
duced NCFlow in 13 TE instances from [14]. The reproduced
NCFlow computes the objective function value with a maxi-
mal of 3.51% difference from the open-source prototype and
a maximal end-to-end computation latency of 6.4 seconds.
Although the latency is up to 111x higher, it is due to the
choice of LP solvers between two implementations (i.e., the
reproduced one uses Pulp [10] and the open-source one uses

Xiang et al.
51 Open-Source Prototype
4 I Reproduced Prototype
Ms
X 3
g2
-
| i
Lol Bl

A (NCFlow) B (Arrow) C (APKeep)
Participant (System)
Figure 5: The LoC of open-source / reproduced prototypes.

D (AP)

Gurobi [2]). The LoC of the reproduced prototype is only
17% of that of the open-source one. This is because the open-
source prototype has a large portion of code for formatting
and parsing the irregular inputs of datasets.

Participant B: reproducing Arrow with low accuracy
due to inaccurate prompts. B evaluates the reproduced
Arrow in two TE instances from [45]. The computed objec-
tive function has an up to 30% difference from that of the
open-source prototype. Originally, we thought the root cause
was the inconsistency between the paper description and the
open-source implementation of the restorable tunnel. After
we posted our original results to arXiv [36], the authors of
Arrow [45] reached out and helped us confirm that the real
reason is the inaccurate prompts B sent to ChatGPT, which
causes ChatGPT to set the traffic demands and the bounds
of some decision variables in the optimization problem to
incorrect values. We apologize for our misanalysis and thank
the authors of Arrow for pointing it out and helping us fix it.
Participant C: reproducing APKeep accurately with
comparable latency. C compares the reproduced APKeep
with a non-author open-source prototype on four real topol-
ogy datasets to verify loop-free, blackhole-free reachability.
In all cases, both prototypes compute the same number of
atomic predicates and have approximately the same latency.
Both use JDD [33] for binary decision diagram operations
and have approximately the same number of LoC.
Participant D: reproducing AP accurately but with worse
performance due to the choice of different BDD li-
braries and missing details in the paper. D compares
the reproduced AP with the open-source one on three real-
topology datasets to verify loop-free, blackhole-free reacha-
bility. Although both compute the same number of atomic
predicates and verification results, the reproduced AP has
a substantially worse latency: (1) up to 20x longer time to
compute predicates and (2) up to 10*x longer time to ver-
ify reachability). The root cause of the former is the use of
JavaBDD, a library with a worse performance of BDD opera-
tions than JDD. The root cause of the latter is the missing
details of the reachability verification algorithm in the paper.
The paper only gives the algorithm on given a path, how to
find the predicates reaching d from s. It does not describe
how to efficiently find all the predicates reaching d from s
from any path (e.g., the authors use a selective BFS traversal
in their open-source prototype). Because D is not a computer

Reproduce Network Research Results Using LLMs HotNets *23, November 28-29, 2023, Cambridge, MA, USA

Algorithm 1: IdentifyChangesInsert(r, X) if (r.getPrio() > rule.getPrio()) {

rule.setHit (bddEngine. diff

if (r.getPriority () > rule.getPriority()) {
ff

Input: r: the newly inserted rule; & : the list of existing rules, int newHit = bddEngine. di

. B rule . getHit r.getHit 5 rule . getHit r.getHit H
S()rfcd by decreasing priorities. : : T(JddEngti;ne X del(()ef"(ru%e X gell(i)it) i)) S; g 0, g 0))s
Output: C: the set of changes due to the insertion of rule r. rule . setHit (newHit) ;
1 C+{} } int inter = bddEngine.and(r.getHit(),
2 rhit — r.match; if (r.getPriority () < rule.getPriority()) { rule. getHit());
f Sy 'd int intersection = bddEngine.and if (r.getPrio() < rule.getPrio()) {
3 foreach v’ € R do (r.getHit(), rule.getHit()); r.setHit (bddEngine. diff
4 if #/.prio > r.prio and r’.hit A r.hit # @ then int newHit = bddEngine. diff (r.getHit(), intersection); (r.getHit(), inter));
N | rhit « rhit A=~ hit; bddEngine . deRef (r. getHit ()); if (inter !'= BDDEngine.BDDFalse
r.setHit (newHit) ; && r.getPort() != rule.getPort())
6 if ¥/.prio < r.prio and ¥’ .hit A r.hit # 0 then if (intersection != BDDEngine.BDDFalse && r.getOutPort() !=
7 if r/.port # r.port then N rule-gztd(iutPonh()) { fhangesadd(m‘w C:l;mge
;) . N changes.a new Change inter , r.getPort(),
8 L ¢ Cv{(shit Ar hit, i’ port,r.port) }; (intersection ,r.getOutPort (), rule.getOutPort())): rule. getPort ())):} else
9 hit v hit A=r.hit; } else {
bddEngine . deRef(intersection); bddEngine . deRef (inter);
10 Insert r into R ; }

1 return C;

}

(a) Pseudocode in [43].

(b) Manually implemented code [5].

(c) ChatGPT-generated code.

Figure 6: The pseudocode, manually implemented code and ChatGPT-implemented code of APKeep to identify all behavior

changes caused by a rule insertion.

science major and unfamiliar with the exponential complex-
ity of path enumeration, D decides to use the algorithm in
the paper as a building block to enumerate all the paths
from s to d and check the reachable predicates for each path,
leading to a much higher verification latency. It could be
avoided by stating the use of selective BFS traversal in the
paper. We later discuss how we may integrate LLM-assisted
reproduction and formal methods to identify such issues.

3.3 Lessons

After the experiment, we interview the participants to
gather their experience and summarize several lessons.
Asking LLMs to implement a system component by
component, not the whole system all at once. In the
beginning, all participants tried to send ChatGPT prompts
like "implement XX that works in the following steps XXX".
ChatGPT does not respond well to such monolithic prompts.
As such, they switch to a top-down approach, which divides
the system into components, and for each component, sends
ChatGPT more detailed modular prompts in sequence to
implement, debug and test it. This allows them to reproduce
the system successfully. It shows that ChatGPT’s capability
of understanding system design and implementing it is still
limited to small systems and components.
Implementing components with pseudocode first. In a
paper, the part closest to the real code is its pseudocode (Fig-
ure 6). As such, it would be ideal if ChatGPT could receive it
as a prompt to generate the code using it as a basis. However,
suppose we first ask ChatGPT to implement the components
without pseudocode. When asking it to implement the com-
ponents with pseudocode later, the generated code often
requires substantial changes to data types and structures
in the previously generated ones. It is because ChatGPT
implements components described by text-based prompts
differently from the ones described by pseudocode-based
prompts, leading to interoperability issues. Two students
find that implementing components with pseudocode first
allows ChatGPT to stabilize the key data types and struc-
tures and avoid changing them when implementing other
components. As such, we plan to design a pseudocode-like
intermediate representation for all components of a system to
improve the efficiency of LLM-assisted reproduction.
Data preprocessing is important to the system, but not
to the research paper. Because how to preprocess data

is usually not provided by the research paper, participants
have to look into the datasets and send ChatGPT data format-
related prompts based on their understanding. Thus a generic
and automatic data preprocessing solution is another key
for improving the efficiency of LLM-assisted reproduction.

Three guidelines for debugging. First, data type bugs can
be fixed by sending the error messages to ChatGPT. They
can also be avoided by explicitly specifying key variables’
data types and structures or at least describing their needed
operations and properties in prompts. Second, for simple
logic bugs, sending the test causing them to ChatGPT can be
an effective approach to repair them. Third, for more complex
logic bugs, we can repair them by specifying the correct logic
in more detailed, sometimes step-by-step, prompts.

4 OPEN RESEARCH QUESTIONS
Handling the diversity of published network research.
This diversity comes from two folds. First, network research
papers have very diverse content and level of detail. For ex-
ample, SIGCOMM and NSDI papers are usually very system-
heavy, while other venues (e.g., INFOCOM) focus more on
the analytical side. Reproducing them may require different
ways of processing and digesting them. Second, network-
ing is an area with many topics (e.g., network architecture,
programmable hardware, and distributed systems. Reproduc-
ing papers on different topics may require different ways
of prompt engineering. Previous studies focus on a limited
range of topics and use well-formatted input [18, 40]. They
may not apply to the broader context of network research.
One direction to tackle this issue is a unified prompt en-
gineering framework for reproducing network research re-
sults [16, 35]. One design is to follow the top-down approach
of system development with the following steps: (1) describe
to the LLM the key components of the system, (2) describe
how components interact and ask the LLM to define the
interfaces, (3) provide the LLM with the details of each com-
ponent to generate the code, (4) test and debug the LLM-
implemented component, (5) repeat (3) and (4) for each com-
ponent, and (6) test and debug the complete system.
Improving the efficiency of reproducing via (semi-)
automatic prompt engineering LLMs. Although man-
ual prompt engineering is beneficial for people to better
understand the details of published research results, the ef-
ficiency of reproducing can be substantially improved by

HotNets ’23, November 28-29, 2023, Cambridge, MA, USA

(semi-) automatic prompt engineering [46]. We plan to fo-
cus on automating the aforementioned unified prompt en-
gineering framework. Given a network research paper, our
initial design involves (1) using an LLM for natural language
(e.g., ChatPDF [12]) to understand the paper and extract
its architectures, key components, and workflow, (2) trans-
forming the extracted information into multi-modal prompts
(e.g., logic predicates, pseudocode, examples, and test cases)
for the overall architecture and each component, (3) send-
ing the prompts for components to an LLM for coding (e.g.,
FlashGPT3 [34]) to generate, test and debug codes for each
component, and (4) sending the prompts for architecture to
piece different components into a complete system.
Handling missing details and vulnerabilities in pub-
lished network research. Due to the space and time limit,
the authors may have to omit non-essential technical de-
tails in their published research. Such missing details pose
additional challenges for reproducing these results, e.g., the
experience of participant D in our experiment (§3.2). Pub-
lished network research may also have vulnerabilities, such
as inaccurate descriptions of designs and examples (e.g., [20])
and hard-to-tune hyper-parameters (e.g., [43]). They make it
challenging for LLMs to reproduce the results correctly (e.g.,
sending an incorrect example to LLMs). one way to handle
these is to encourage the authors to be more thorough during
proofreading and provide an appendix on non-essential de-
tails and hyper-parameters. Another way is to write papers
in a better-structured format (e.g., RFC or system manual).

We may also resort to formal methods (e.g., [17, 29]) for
these issues. We could verify and analyze the workflow and
algorithms extracted from the paper by either human efforts
or the LLMs to search for such issues [40, 44]. If a paper has
an open-source prototype, we may comparatively analyze it
and the LLM-reproduced one to examine their functionality
and performance discrepancy using modular checking [32].
Building domain-specific LLMs for network research
reproduction. Such LLMs can substantially improve the
scope and efficiency of LLM-assisted network research re-
production. In our experiment, participants reproduce cen-
tralized software systems using ChatGPT, a chatbot built on
a general-purpose LLM. However, many network research
results propose hardware systems [31], hardware-software
co-design systems [22] and distributed systems [27]. Not only
are they more complex, some of them also require domain
specific languages (e.g., P4 and Verilog) that are very different
from general programming languages (e.g., Java). General-
purpose LLMs may have difficulty reproducing them.

We propose to specifically build a network research re-
production LLM by using network research materials (e.g.,
papers, codes, and RFCs on various network research topics)
as training data. Early evidence supporting the feasibility of
such an LLM is the recent success of programming-oriented
LLMs [7, 18, 24, 26, 28, 34, 40-42] in providing code com-
pletion suggestions, identifying and fixing bugs, and repro-
ducing RFCs. One key challenge is the availability of data.

Xiang et al.

Although there are huge amounts of network traffic data [24],
there is substantially less network research code available.
One way to tackle this is to integrate data augmentation and
static analysis to produce more network research code.
Discovering innovation opportunities from reproduc-
ing networking research results. LLM-assisted network-
ing research reproduction could help reveal innovation op-
portunities. First, it could deepen researchers’ understanding
on published research results, helping organize their intellec-
tual and critical thinking. Second, analyzing the reproduced
prototype using automatic program analysis [39, 44] could
expose bottlenecks of the proposed design, leading to system
optimization opportunities. Third, although a long shot, it
is theoretically feasible to build a deep learning model with
open-source and reproduced prototypes of network research
as datasets to predict networking innovations, similar to the
recent building of AlphaFold [23] in the area of biology. In-
terpretable Al could be an important tool [21, 25] given their
capability to extract logic behind system behaviors.
Promoting computer networking education and re-
search. In the era where Al is the predominant computer
science research area, reproducing network research results
using LLMs could motivate their interest in networking edu-
cation and research. First, by interacting with LLMs they get
both hands-on experience with the latest Al breakthrough
and the opportunity to understand the classic and latest net-
work research results. As such, it is useful for students to
strengthen their career skills in both computer networks
and Al Second, as discussed earlier, this process could help
students discover innovation opportunities in networking
research. Third, it fits into the competency-building model
of the recent computer science education paradigm [13, 19].
Fourth, LLM-assisted network research results reproduction
could help improve the peering review process of prominent
networking conferences [30]. One may recall an April Fools’
Day SIGCOMM email in 2016 saying that SIGCOMM will in-
troduce Al to automate the paper review process. Although
we believe that this email is still too "forward-looking", our
proposal would be an interesting trial to automate part of
the review process.

LLM-assisted network research reproduction, in particular
a (semi-)automatic framework, also has a negative impact:
students may misuse it to finish projects. How to walk the
fine line between leveraging LLMs-assisted reproduction to
promote networking education and research and misusing
it is an important question for both academia and industry.
Acknowledgments. We are extremely grateful for the anonymous
HotNets reviewers for their wonderful feedback. We thank the au-
thors of Arrow [45] for their help. Qiao Xiang, Yuling Lin, Mingjun
Fang, Bang Huang, Siyong Huang, and Ridi Wen are supported in
part by the National Key R&D Program of China 2022YFB2901502,
NSFC Award 62172345, Open Research Projects of Zhejiang Lab
2022QA0AB05, MOE China 2021FNA02008, and NSF-Fujian-China
2022J01004. This work raises no ethical issue.

Reproduce Network Research Results Using LLMs

REFERENCES

[1] 2016. SIGCOMM to use Deep Learning for Paper Selec-
tion,An Email from SIGCOMM Mailing List on April 1.
https://sigcomm.org/about/mailing-lists/. (2016).

[2] 2018. Gurobi. https://www.gurobi.com. (2018).

[3] 2020. Open-source Prototype of
https://github.com/netcontract/ncflow. (2020).

[4] 2021. Open-source Prototype of ARROW. https://github.com/hipersys-
team/arrow. (2021).

[5] 2021. Open-source Prototype of Atomic Predicates Verifier.
https://gitee.com/gdtongji/atomic_predicates_verifier. (2021).

[6] 2022. GPT-3.5. https://lablab.ai/tech/openai/gpt3-5. (2022).

[7] 2022. Microsoft Copilot. https://github.com/features/copilot/. (2022).

2022. Open-source Prototype of Flash. https://github.com/snlab/flash.

(2022).

[9] 2022. OpenAl ChatGPT. https://openai.com/blog/chatgpt. (2022).

10] 2022. Pulp. https://pypi.org/project/PuLP. (2022).

[11] 2023. ACM IMC 2023 Call For Papers: Replicability Track.
https://conferences.sigcomm.org/ime/2023/cfp/. (2023).

[12] 2023. ChatPDF. https://www.chatpdf.com/. (2023).

[13] 2023. CS2023: ACM/IEEE-CS/AAAI Computer Science Curricula.
https://csed.acm.org/. (2023).

[14] Firas Abuzaid, Srikanth Kandula, Behnaz Arzani, Ishai Menache, Matei
Zaharia, and Peter Bailis. 2021. Contracting Wide-area Network
Topologies to Solve Flow Problems Quickly.. In NSDI 2021.

[15] Anonymous-Authors. 2023. Conversation Log of ChatGPT in
the Experiment. https://www.dropbox.com/sh/11tshmzf517juy5/
AACLtpzN-Oa-zbJluXNyH7rPa?dl=0. (2023).

[16] LucaBeurer-Kellner, Marc Fischer, and Martin Vechev. 2022. Prompting

Is Programming: A Query Language for Large Language Models. arXiv

e-prints (2022).

Wolfgang Bibel. 2013. Automated Theorem Proving. Springer Science

& Business Media.

[18] Huangxun Chen, Yukai Miao, Li Chen, Haifeng Sun, Hong Xu, Libin
Liu, Gong Zhang, and Wei Wang. 2022. Software-Defined Network
Assimilation: Bridging the Last Mile Towards Centralized Network
Configuration Management with Nassim. In SIGCOMM 2022.

[19] Alison Clear, Allen Parrish, Ming Zhang, and Gerritt C van der Veer.
2017. Cc2020: A Vision on Computing Curricula. In SIGCSE 2017.

[20] Dong Guo, Shenshen Chen, Kai Gao, Qiao Xiang, Ying Zhang, and
Y Richard Yang. 2022. Flash: Fast, Consistent Data Plane Verification
for Large-Scale Network Settings. In SIGCOMM 2022.

[21] Yangfan Huang, Yuling Lin, Haizhou Du, Yijian Chen, Haohao Song,
Linghe Kong, Qiao Xiang, Qiang Li, Franck Le, and Jiwu Shu. 2023.
Toward a Unified Framework for Verifying and Interpreting Learning-
Based Networking Systems. In IWQoS 2023.

[22] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. 2017. Netcache: Balancing
Key-Value Stores with Fast In-Network Caching. In SOSP 2017.

[23] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael
Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates,
Augustin Zidek, Anna Potapenko, et al. 2021. Highly Accurate Protein
Structure Prediction with Alphafold. Nature (2021).

[24] Franck Le, Mudhakar Srivatsa, Raghu Ganti, and Vyas Sekar. 2022.
Rethinking Data-Driven Networking with Foundation Models: Chal-
lenges and Opportunities. In HotNets 2022.

[25] Zili Meng, Minhu Wang, Jiasong Bai, Mingwei Xu, Hongzi Mao, and

Hongxin Hu. 2020. Interpreting Deep Learning-Based Networking

Systems. In SIGCOMM 2020.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo

Zhou, Silvio Savarese, and Caiming Xiong. 2022. A Conversational

Paradigm for Program Synthesis. arXiv e-prints (2022).

[27] Diego Ongaro and John Ousterhout. 2014. In Search of an Understand-
able Consensus Algorithm. In ATC 2014.

NCFlow.

—
[e)
—

(17

—

[26

—

HotNets *23, November 28-29, 2023, Cambridge, MA, USA

[28] Kia Rahmani, Mohammad Raza, Sumit Gulwani, Vu Le, Daniel Morris,
Arjun Radhakrishna, Gustavo Soares, and Ashish Tiwari. 2021. Multi-
Modal Program Inference: A Marriage of Pre-trained Language Models
and Component-Based Synthesis. arXiv e-prints (2021).

[29] Xavier Rival and Kwangkeun Yi. 2020. Introduction to Static Analysis:
An Abstract Interpretation Perspective. Mit Press.

[30] Scott Shenker. 2022. Rethinking SIGCOMM’s Conferences: Making
Form Follow Function. In SIGCOMM 2022 (2022).

[31] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh,
Sharad Chole, Shang-Tse Chuang, Anurag Agrawal, Hari Balakrishnan,
Tom Edsall, Sachin Katti, and Nick McKeown. 2016. Programmable
Packet Scheduling at Line Rate. In SIGCOMM 2016.

[32] Alan Tang, Siva Kesava Reddy Kakarla, Ryan Beckett, Ennan Zhai,
Matt Brown, Todd Millstein, Yuval Tamir, and George Varghese. 2021.
Campion: Debugging Router Configuration Differences. In SIGCOMM
2021.

[33] A. Vahidi. 2020. A BDD and Z-BDD Library Written in Java. https:
//bitbucket.org/vahidi/jdd. (2020).

[34] Gust Verbruggen, Vu Le, and Sumit Gulwani. 2021. Semantic Pro-
gramming by Example with Pre-trained Models. In PACM PL 2021
(2021).

[35] Jules White, Sam Hays, Quchen Fu, Jesse Spencer-Smith, and Dou-
glas C. Schmidt. 2023. ChatGPT Prompt Patterns for Improving Code
Quality, Refactoring, Requirements Elicitation, and Software Design.
arXiv e-prints (2023).

[36] Qiao Xiang, Yuling Lin, Mingjun Fang, Bang Huang, Siyong Huang,
Ridi Wen, Franck Le, Linghe Kong, and Jiwu Shu. 2023. Toward Re-
producing Network Research Results Using Large Language Models.
(2023). arXiv:cs.LG/2309.04716

[37] Lisa Yan and Nick McKeown. 2017. Learning Networking by Repro-
ducing Research Results. In SIGCOMM 2017 (2017).

[38] Hongkun Yang and Simon S Lam. 2016. Real-Time Verification of
Network Properties Using Atomic Predicates. In TON 2016 (2016).

[39] Rulan Yang, Xing Fang, Lizhao You, Qiao Xiang, Hanyang Shao, Gao
Han, Ziyi Wang, Jiwu Shu, and Linghe Kong. 2023. Diagnosing Dis-
tributed Routing Configurations Using Sequential Program Analysis.
In APNet 2023.

[40] Jane Yen, Tamas Lévai, Qinyuan Ye, Xiang Ren, Ramesh Govindan,
and Barath Raghavan. 2021. Semi-automated Protocol Disambiguation
and Code Generation. In SIGCOMM 2021.

[41] Jialu Zhang, José Cambronero, Sumit Gulwani, Vu Le, Ruzica Piskac,
Gustavo Soares, and Gust Verbruggen. 2022. Repairing Bugs in Python
Assignments Using Large Language Models. arXiv e-prints (2022).

[42] Jialu Zhang, De Li, John Charles Kolesar, Hanyuan Shi, and Ruzica
Piskac. 2022. Automated Feedback Generation for Competition-Level
Code. In ASE 2022.

[43] Peng Zhang, Xu Liu, Hongkun Yang, Ning Kang, Zhengchang Gu, and
Hao Li. 2020. APKeep: Realtime Verification for Real Networks. In
NSDI 2020.

[44] Tony Nuda Zhang, Upamanyu Sharma, and Manos Kapritsos. 2023.
Performal: Formal Verification of Latency Properties for Distributed
Systems. In PACM PL 2023 (2023).

[45] Zhizhen Zhong, Manya Ghobadi, Alaa Khaddaj, Jonathan Leach, Yit-
ing Xia, and Ying Zhang. 2021. ARROW: Restoration-Aware Traffic
Engineering. In SIGCOMM 2021.

[46] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster,
Silviu Pitis, Harris Chan, and Jimmy Ba. 2022. Large Language Models
Are Human-Level Prompt Engineers. arXiv e-prints (2022).

https://www.dropbox.com/sh/11tshmzf517juy5/AACLtpzN-Oa-zbJluXNyH7rPa?dl=0
https://www.dropbox.com/sh/11tshmzf517juy5/AACLtpzN-Oa-zbJluXNyH7rPa?dl=0
https://bitbucket.org/vahidi/jdd
https://bitbucket.org/vahidi/jdd
http://arxiv.org/abs/cs.LG/2309.04716

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Reproducing Using LLMs: Motivation

	3 A Preliminary Experiment
	3.1 Methodology
	3.2 Results
	3.3 Lessons

	4 Open Research Questions
	References

