
Software Managed Networks via Coarsening
Pradeep Dogga∗

UCLA
Los Angeles, CA, USA

Rachee Singh∗
Cornell University
Ithaca, NY, USA

Suman Nath
Microsoft Research

Redmond, WA, USA

Ravi Netravali
Princeton University
Princeton, NJ, USA

Jens Palsberg
UCLA

Los Angeles, CA, USA

George Varghese
UCLA

Los Angeles, CA, USA

ABSTRACT
We propose moving from Software Defined Networks (SDN)
to Software Managed Networks (SMN) where all information
for managing the life cycle of a network (from deployment
to operations to upgrades), across all layers (from Layer 1
through 7) is stored in a central repository. Crucially, a SMN
also has a generalized control plane that, unlike SDN, con-
trols all aspects of the cloud including traffic management
(e.g., capacity planning) and reliability (e.g., incident routing)
at both short (minutes) and large (years) time scales. Just as
SDN allows better routing, a SMN improves visibility and en-
ables cross-layer optimizations for faster response to failures
and better network planning and operations. Implemented
naively, SMN for planetary scale networks requires orders of
magnitude larger and more heterogeneous data (e.g., alerts,
logs) than SDN. We address this using coarsening — map-
ping complex data to a more compact abstract representation
that has approximately the same effect, and is more scalable,
maintainable, and learnable. We show examples including
Coarse Bandwidth Logs for capacity planning and Coarse
Dependency Graphs for incident routing. Coarse Dependency
Graphs improve an incident routing metric from 45% to 78%
while for a distributed approach like Scouts the same metric
was 22%. We end by discussing how to realize SMN, and
suggest cross-layer optimizations and coarsenings for other
operational and planning problems in networks.

CCS CONCEPTS
• Networks → Network management.

KEYWORDS
Network Management, AIOps, Capacity Planning

This work is licensed under a Creative Commons Attribution 4.0 International
License.
HotNets ’25, November 17–18, 2025, College Park, MD, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2280-6/25/11
https://doi.org/10.1145/3772356.3772393

ACM Reference Format:
Pradeep Dogga∗, Rachee Singh∗, Suman Nath, Ravi Netravali, Jens
Palsberg, and George Varghese. 2025. Software Managed Networks
via Coarsening. In The 24th ACM Workshop on Hot Topics in Net-
works (HotNets ’25), November 17–18, 2025, College Park, MD,
USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3772356.3772393

1 INTRODUCTION
Indeed, when people operate in silos, companies may miss
innovation opportunities. – Peter Drucker

Planetary-scale networks including clouds like Amazon
AWS, Google Cloud, and Microsoft Azure are complex to
deploy. Managing these massive networks demands signif-
icant operational resources due to frequent production out-
ages [15, 29, 37] and necessitates analysis of large amounts
of heterogeneous operational data for critical tasks, including
capacity planning [39] and engineering fault tolerance [16].
Problem: Siloed Network Management. The inherent com-
plexity of these networks is exacerbated by what we call
siloed network management—a practice where network man-
agement responsibilities are strictly partitioned by layers
within the network stack. For example, in most hyperscalers,
one team maintains the physical network infrastructure like
optical fiber, another oversees Layer 2/3 operations like tun-
neling [42] and SDN-based traffic engineering (TE) [19, 20,
26, 27], and a third team owns operations of the transport
layer. Each of these teams builds and maintains its part of
the system largely in isolation. While SDN has made inroads
within individual layers of the networking stack, the benefits
of SDN have remained trapped inside layer-based silos.

Unfortunately, this compartmentalization has a cost as man-
agement experts have long realized [4]. Operational bound-
aries across layers, both in software and organizational struc-
ture, lead to missed dependencies between network con-
figuration across the layers. This causes seemingly minor
changes in one layer to cascade into major outages else-
where. Consequently, network issues become challenging and
time-consuming to diagnose and resolve. We highlight four

*These authors contributed equally to this work

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3772356.3772393
https://doi.org/10.1145/3772356.3772393
https://doi.org/10.1145/3772356.3772393

HotNets ’25, November 17–18, 2025, College Park, MD, USA P. Dogga et al.

real-world examples where this fractured model of network
management has caused operational problems:

Capacity Planning and TE in the Dark: Engineering teams
managing optical fiber augment capacity on inter-datacenter
(DC) links of the wide-area network (WAN) to prevent bot-
tlenecks. Independently, TE controllers at Layer 3 optimize
traffic distribution across those links. But the relationship is
bidirectional: TE decisions affect link utilization, influencing
which links should be upgraded by the capacity teams, and
link capacities inform how traffic is engineered. However, the
tools and metrics all teams use are disconnected. This mis-
match can lead to capacity teams upgrading links that TE has
recently overloaded—regardless of whether the link can even
be upgraded, say due to fiber constraints in the ground. The
result is wasted planning cycles and misaligned optimization.

Wavelength Modulation and Resilience: Pushing optical
wavelengths to higher data rates increases their susceptibil-
ity to failure [40]. At Layer 3, each wavelength maps to one
or more logical inter-DC links [39, 48]; when a wavelength
fails, the logical link drops, and the routing layer must re-
converge [19, 20, 26, 27, 46]. These re-convergences are dis-
ruptive, especially when they occur frequently. Yet the teams
tuning physical-layer parameters do so unaware of the higher-
layer effects. In one case we observed, it took weeks for cloud
operators to trace recurring routing flaps to an aggressive
configuration at the optical layer.

WAN link flaps impacting cluster traffic: Link flaps in the
public-WAN resulted in unsuccessful Pingmesh [17] probes
originating from a DC cluster. The incident was first (wrongly)
routed to the cluster team, causing resolution in hours because
it was done manually by the cluster and WAN teams meeting.

Database service failure impacting downstream services:
A partial failure in a database service caused alerts in six
different services that depend on it. Each service, after alert
triaging, independently created an incident and was assigned
it a low priority (since the local impact was insignificant). Cre-
ation of six “unique” incidents caused redundant investigation,
and the low priority caused delayed and manual investigation.
Alerts from all services should have been triaged together to
create a single high priority incident using the global view.

These examples point to a deeper problem: some classes
of network problems are inherently cross-layer and cross-
team, yet our current operational models resist cross-layer
reasoning. Solving them demands holistic data collection
and coordinated decision-making across layers. But today’s
architectures lack the fundamental capability to even observe
such dependencies, let alone optimize for them.

We argue for a new approach—one where networks retain
cross-layer observability and expose relevant state across tra-
ditional silos. With such relevant data, engineers could reason

Minutes
to Years

Routing,
Policy,

Control Plane
(Classical)

...

Reliability
Plane

...

Traffic Engineering,
Capacity Planning,

Traffic Plane

...

SNMP,
NetFlow,

Management
Plane

...

Data Plane

...

Coarsened States

Cloud
Dependency
Graph

CLDS CLTO

SMN Controller (Cross Layer/Team)

Controller
feedback

e.g., add X
capacity

incident
routing

Process
Changes

Forwarding, Firewalls,
Intrusion Detection

Incident Routing,
Retrospective Analysis

Figure 1: The heart of the Software Managed Network
(SMN) vision is a generalized controller that controls all
other planes.

about inter-dependent phenomena and co-design mechanisms
that span layers of networking stack. Such visibility is a pre-
requisite for realizing powerful cross-layer optimizations [24]
and, more importantly, for empowering engineers to reason
about the network as a unified system rather than a stack of
opaque boxes. We believe breaking down these silos is not
just a question of architecture—it is a foundational step to-
ward enabling the next generation of cloud-scale networking
innovation.

The rest of the paper is organized as follows. We introduce
our proposal Software Managed Networking (SMN) in §2 as
a solution to cross-layer visibility problems, propose a tech-
nique called coarsening (§3) to address the scaling challenges
in SMN; describe two new examples of coarsening (§4-§5)
for reliability and capacity planning; and end by discussing
how our proposed SMN architecture can be realized (§6).

2 SOFTWARE MANAGED NETWORKS
"One plane to rule them all." - adapted from J.R.R. Tolkien

We propose Software Managed Networking (SMN) as a
novel network management paradigm to centrally maintain
and orchestrate network state across the full communication
stack — from physical infrastructure to application-level con-
figurations. This ranges from physical cable layouts and sub-
marine cables [34] to customer transport connection data such
as goodput [47], and includes failure logs [10] and fine grain
traffic information [39]. By integrating network state from
the data plane (e.g., packet forwarding), control plane (e.g.,
traffic engineering), and management plane (e.g., incident
response) into a unified, software-driven system, SMNs have
the potential to eliminate traditional management silos by
enabling holistic visibility and operational control.

Figure 1 sketches the SMN architecture we envision in
more detail. The main SMN Controller gets inputs from and

Software Managed Networks via Coarsening HotNets ’25, November 17–18, 2025, College Park, MD, USA

sends feedback to the Data Plane, the classical control plane,
and traffic management, reliability and management planes.
The SMN Controller has three components, two primary data
sources and an optimizer.

Aspects SDN SMN
Scope Data Plane All Planes
Timescale 𝜇 seconds to Hours Minutes to Years
Data Inputs Structured (Traffic,

Topology)
Mixed (Telemetry,
Logs)

Outputs Actions (e.g., add
FIB entry)

Actions, Process
Changes

APIs OpenFlow, P4 OpenTelemetry,
OpenConfig

Enabling
Technologies

NoSQL, Compilers,
Optimization

Data Lakes, Gener-
ative AI, ML

Managed
Layers

L2-L3 L1-L7

Table 1: Comparing SDN to SMN

(1) Cross-layer and Cross-Team Network State: SMNs
aggregate detailed state information across layers of the net-
working stack, providing comprehensive visibility into net-
work conditions and behaviors. We call this the Cross-Layer
Cross-Team Data Store (CLDS) in Figure 1 where the icon
represents a data lake because some data store can be unstruc-
tured (e.g., failure logs).

(2) Dependency Graphs: A key innovation of SMNs is
their explicit maintenance of cross-layer dependency graphs
that we call Cloud Dependency Graphs in Figure 1. These
graphs capture and detail the complex interdependencies be-
tween network states, configurations, and events over the net-
work’s entire operational lifetime. These dependency graphs
will enable cross-layer analysis and optimizations.

(3) A Generalized Control Plane. SMNs significantly
expand the foundational principles of Software Defined Net-
working (SDN). Whereas SDN traditionally focuses solely on
centrally programming the forwarding behavior of network
switches via forwarding tables, SMNs generalize this ap-
proach to encompass centralized management of the Routing
Information Base (RIB), Forwarding Information Base (FIB),
Management Information Base (MIB) and Diagnostic and
Traffic information. Moreover, SMNs distinguish themselves
from SDNs by operating over extended temporal horizons.
While SDNs concentrate on immediate, short-term opera-
tional responses, SMNs adopt a strategic viewpoint, managing
network state over months and even years. This long-term per-
spective enables strategic operations, like capacity planning,
reliability engineering, and procedural enhancements.

By maintaining comprehensive network state and detailed
dependencies over extended periods, and operating several
control loops over different time granularities, SMNs can
empower operators to shape the long-term evolution and opti-
mization of complex networks. This aspect is operationalized
in Figure 1 by what we call the Cross-Layer, Cross-Team
optimizer (CLTO) whose output is a set of feedback either to
teams or external agents. For example, for incident response,
the time scale can be minutes and the feedback is to the team
that is implicated as the cause of the incident; for capacity
planning, the time scale can be months or years and the feed-
back may be to an external provider to provision additional
capacity. Table 1 compares the SDN and SMN visions along
several relevant dimensions.
How SMNs can mitigate operational challenges. An SMN
can address the four war stories in the introduction:

1. Capacity Planning and TE in the Dark: As the SMN is
aware through its CLDS of Traffic Engineering decisions at
L3 and fiber constraints at L1, it can avoid capacity upgrades
of links TE has recently overloaded, and only does so when
the overload is sustained over time and fits fiber constraints.

2. Wavelength Modulation and Resilience: As the SMN
is aware through its dependency graph of the dependency
between optical links and logical inter-DC links, it can trace
recurring routing flaps quickly to an aggressive configuration
at the optical layer.

3. WAN link flaps impacting cluster traffic: The SMN ob-
serves values exceeding threshold in both the cluster and the
Wide Area. However, using its Dependency Graph, the SMN
computes that most failing cluster probes depend on the wide
area. Hence, the SMN routes the incident to the WAN team
while informing the cluster team.

4. Database Service Failure: The SMN aggregates alerts
by a coarse label (e.g., the service) and find that the alerts of
the Database service in aggregate from other services are over
threshold, and the Database telemetry also indicates faults, so
it sends feedback imputing failure to the database team,

Challenges. The SMN vision, however, has challenges:
Manual Resolution: The war stories above show that many

cross-layer problems in clouds are resolved manually in sev-
eral hours today. SMN should enable various flavors of au-
tomation across teams, including using machine learning and
generative AI to resolve incidents and optimize resources.
This goes beyond mere centralization to enable the right fea-
tures to be extracted at the right granularity.

Scalability: While attempts like Amazon CloudWatch [3]
and OmniTable [33] already provide centralized storage and
tracing [11] to correlate data, centralizing this data across

HotNets ’25, November 17–18, 2025, College Park, MD, USA P. Dogga et al.

Target Set S

Coarsening Mapping C

Coarsened Set s
|s| << |S|

Coarsening Mappings:
Capacity Planning: Coarse Bandwidth Logs

Incident Routing: Coarse Dependency Graphs

Retrospective Analysis: Coarse Labels

Coarsened Sets:
More efficient to process (scalable)

More learnable (less heterogeneity)

More maintainable (less updates needed)

Figure 2: A Coarsening is a mapping between sets that
approximately preserves action semantics

teams can take an infeasible amount of storage [36, 43] and
bandwidth, but is also expensive to sift through.

Maintainability: In some instances, like dependency graphs
(e.g., [28]) across all fine-grained services, the storage for the
graph itself is not the bottleneck. What is hard is generating
and maintaining the graph because of legacy code and churn.

Organizational Constraints: SMN cannot dismantle the
existing successful organizational structure of clouds into
teams, but must augment them with interfaces to a centralized
resource akin to a SDN controller.

Architecture, Interfaces: Like SDN, SMN must go beyond
merely centralizing all data. It also requires an architecture
and interfaces such as SDN’s OpenFlow [12] so that users
across teams can query and correlate data.

We propose to tackle the challenge of scalability and main-
tainability by contracting detailed operational network data
into simplified yet informative representations. Effective coars-
ening must strike a delicate balance between reducing com-
plexity and preserving critical information—ensuring essen-
tial insights and dependencies are not lost. We discuss how
we plan to achieve this balance in the next section. We then
return to the challenge of architecture and interfaces.

3 SMN VIA COARSENING
"All the news that’s fit to print." - New York Times motto

A second message of this paper, besides the SMN vision is
that we can meet some of the challenges and move towards
software managed networks at some loss in fidelity using a
technique we call coarsening. Just as the New York Times
aims to print all the news that is fit to print, we believe a SMN
need only store relevant data, coarsened to fit.

Slightly more formally, given a complex structure 𝑆 , a
coarsening 𝑠 =𝐶 (𝑆) is a succinct mapping of 𝑆 to a simpler
structure 𝑠 such that |𝑠 | < |𝑆 | and acting on 𝑠 is approximately
the “same” as acting on 𝑆 (see Figure 2). For example, answer-
ing a set of queries on 𝑠 could be nearly as accurate as sending

the same queries to 𝑆 . More interestingly, repairing (writing
not reading) 𝑠, could have approximately the same effect as
repairing 𝑆 , a common example of which is restarting a large
system for fast mitigation as in NetPilot [44].

Coarsening is implicit in earlier work. For example, hierar-
chical routing ([23]) coarsens networks into areas to reduce
state at the cost of only approximately optimal routes. Our
goal in this paper, however, is to explicitly present coarsening
as a broad concept that cuts across varied networking tasks
such routing, failure detection and capacity planning, while
enabling scaling to planetary networks. Using concrete exam-
ples, we show why coarsening is useful not just for reducing
storage but also for improved maintainability and long term
insight. Our goal is to start a conversation about the feasibility
of Software Managed Networks, and enable the community
to develop other network-specific coarsenings beyond the two
described in this paper.

Coarsening is similar but differs from a technique for pro-
gram analysis called abstract interpretation (AE) [6]. Both
work with abstracted descriptions of the state of a system
(or program) to gain scalability/feasibility. However, coars-
ening avoids modeling the system code entirely, and instead
works with partial descriptions of system states that arise from
system runs. AE also requires an inverse mapping called a
concretization function, i.e., sound mapping of the abstract
outcomes back to concrete values, to enable downstream anal-
yses crucial in complex program analysis. These differences
imply that while AE is sound for failure detection, coarsening
may miss (hopefully) rare failures. On the other hand, the
added conditions [6] make AE hard to apply to the manage-
ment of large networks.

While there are many sources of large data in planetary
networks such as model training, we describe two illustrative
problems where coarsening can be useful: capacity planning
and incident response.

Although previous work has aspects of our work (e.g. de-
pendencies [18, 21], coarse fixes [44], bucketing [14]), none
introduces the coarsening concept or addresses SMNs.

Our definition of “approximately the same effect” for a
coarsening in Figure 2 is vague, and formalizing the general
concept remains a challenge. Instead, Table 2 provides an
overview of the benefit and the approximation error for the
two coarsenings we describe next, together with estimates
and simulations that show their promise.

4 COARSE BANDWIDTH LOGS
Our first example of a coarsening is simply to improve scala-
bility in storage and computation. Software-defined networks
(SDNs) collect rich logs of bandwidth demands on network
links, which are critical inputs to both short-term and long-
term decision-making problems in the network. In wide-area

Software Managed Networks via Coarsening HotNets ’25, November 17–18, 2025, College Park, MD, USA

Example Mapping What’s Lost What’s Gained
Coarse BW Logs Nodes → Meta Nodes Suboptimal solution Fast traffic engineering and planning
CDGs Microservice → team dependency. Coarser incident routing Extra Signal for incident routing.

Table 2: Coarsening Examples and Tradeoffs

SDNs, these historical logs are used to forecast future de-
mand [19, 20, 26, 46]. In the short term, traffic engineering
controllers use the resulting demand estimates to compute
network flow allocations that align with operator goals, rang-
ing from maximizing throughput [45] to enforcing priority
fairness [27]. Over longer timescales, bandwidth logs inform
capacity planning [39, 49]. For example, operators follow
heuristics like augmenting the bandwidth on a link if its uti-
lization consistently exceeds a threshold [38]. Listing 1 shows
a representative format of bandwidth logs:

Listing 1: Example uncoarsened bandwidth log: times-
tamp, source DC, destination DC, bandwidth (Gbps).

Format: ts, src_dc, dst_dc, bw_Gbps
2025-06-01T00:00, us-e1, eu-w1, 1250
2025-06-01T00:05, us-w2, ap-se1, 980
2025-06-01T00:10, us-e1, eu-w1, 1325
2025-06-01T00:15, us-w2, ap-se1, 1010
2025-06-01T00:20, us-e1, eu-w1, 1275

As shown in Listing 1, bandwidth logs collected over long
time scales in large networks can be massive, with each row
capturing the demand between a pair of datacenters in a five-
minute time window [19, 20]. As a result, storing and pro-
cessing them becomes a challenge. We explore the idea of
coarsening bandwidth logs along two key dimensions to make
them more tractable for SMNs:

Time based coarsening: One approach is to aggregate
bandwidth logs over time to reduce input size. For exam-
ple, traffic engineering controllers can replace per-epoch de-
mand traces, collected over months, with summary statistics
(e.g., mean or 95𝑡ℎ percentile bandwidth usage) over fixed
smaller time windows. More sophisticated variants of this
coarsening approach might compute multiple summary statis-
tics over nested time windows to preserve important trends
while shrinking the dataset. However, this process risks dis-
carding valuable historical context. For example, a summary
over the past month fails to capture the impact of traffic spikes
due to seasonal events like federal holidays observed in the
previous year [38]. The time windows over which bandwidth
logs are coarsened will depend on the nature of traffic patterns
— in a time of high churn, we want to coarsen the logs more
often to not miss trends.

Topology-based coarsening: A second approach is to
coarsen logs over the network graph by grouping nodes into
“supernodes”. Cloud traffic engineering systems can operate
at this granularity by routing traffic between supernodes that
represent entire geographical regions (e.g., US east coast),
instead of individual datacenters [1, 26]. While this reduces
bandwidth log size and makes the flow optimization problem
more tractable, both TE and capacity planning applications
on the coarsened network graph will find approximate solu-
tions that may be far from optimal. For example, traffic engi-
neering optimization on a coarsened network graph assumes
that all traffic from the supernode must be routed along pre-
determined network edges defined in the coarsened graph [1].
This restriction in the algorithmic search space can lead to
suboptimal solutions.

Impact on algorithmic performance. There is a clear
tradeoff between coarsening granularity and performance
of downstream applications of bandwidth logs. Coarsening
hundreds of nodes into, say, ten supernodes will reduce the
volume of data logs by an order of magnitude. Moreover, the
resulting traffic engineering and capacity planning optimiza-
tion will be computationally tractable due to small input size
and few decision variables. However, very coarse bandwidth
logs can make the problem trivially small and reduce the util-
ity of the solutions. For example, coarsening the graph where
a supernode represents all datacenters in a continent, will lead
to a small topology of 7 nodes. Traffic engineering controllers
will then compute optimal allocation of all traffic between any
pair of continents (e.g., North America and Europe) which
in the coarse graph will use inter-supernode links i.e., subsea
cables. The resulting allocations have limited utility, since the
routing within the large super nodes is not specified by the
optimization.

Key research questions include: 1) Can we find the Pareto
frontier between the extent of coarsening (e.g., larger super
nodes vs. smaller super nodes) and optimality of algorithms
that rely on the coarsened logs? 2) Can we automatically
identify which network partitions have more “stable” traffic
demand patterns to coarsen only the stable parts?

Potential reduction in log size. Recent work shows that
only a small fraction (≤ 10%) of datacenters exchange high
volume traffic in cloud wide-area networks [27]. Therefore,

HotNets ’25, November 17–18, 2025, College Park, MD, USA P. Dogga et al.

Figure 3: Coarse dependency graph simulating Reddit

in a planet-scale wide-area network of roughly 300 datacen-
ters [26, 46], coarsening the network graph into smaller re-
gions (e.g., US east cost, west coast) will lead to less than
30 high traffic regions, leading to a 10𝑋 reduction in log size.
Combined with time-based coarsening, the reduction factor
increases manifold depending on the amount of historical data
maintained (e.g., weeks vs. months).

5 COARSE DEPENDENCY GRAPHS
Our second example of a coarsening is to improve main-
tainability for the Cloud Dependency graph of Figure 1. We
discuss this coarsening specifically in the context of routing
an incident to the right team like the Wide Area versus Clus-
ter war story. A dependency graph contains edges 𝑥 → 𝑦

if 𝑥 depends on 𝑦 at runtime. A coarse-grained dependency
graph (CDG) shows dependencies of various services and
teams as in Figure 3. By contrast, a fine-grained dependency
graph shows dependencies between service components (use-
ful for root causing). While teams may maintain their own
fine-grained dependency graphs, we propose the SMN only
maintain a coarse dependency graph for the cloud (Figure 1).

Tools like Sherlock [28] can extract fine-grained depen-
dencies between services, while tools like CodeScene [41]
can infer dependencies between microservices. Fine-grained
dependency information at the cloud level is often unavailable
and hard to maintain because of different tracing infrastruc-
tures and legacy systems. Fortunately, from our experience,
engineers can directly sketch the CDG (e.g., cluster probes
depend on the WAN) and refine it over time.

Figure 3 shows a CDG for a simulated Reddit implementa-
tion. Each node represents a team with edges to other teams
it depends on to deliver a service. Coarsening can create false
dependencies. For example, in Figure 3 a particular hyper-
visor failure in the CPU that hosts Cassandra could affect
only certain writes to the user profile cache without affecting
Reddit’s subreddit fetch functionality. While this fine-grain
dependency is missed by the CDG, other signals can help
route the incident correctly, such as internal health metrics of
Reddit (e.g., subreddit cache hits/misses).

We propose a simple technique with which the CLTO in
Figure 1 can automate incident routing by leveraging a CDG,
and the following derived metric.

Symptom Explainability: Intuitively, symptom explain-
ability of team 𝑇 is the fraction of symptoms explained using
the CDG assuming team 𝑇 is the only one to cause a failure.
More precisely, define the vector of symptoms (i.e., nodes in
the CDG who experience symptoms) as an incident syndrome.
Symptom can be a function (e.g., packet loss > X%) of in-
ternal health metrics defined by respective individual teams.
We then define symptom explainability for team 𝑇 as the co-
sine similarity of the incident syndrome to the syndrome if
only team 𝑇 caused a failure. This allows for noise, false de-
pendencies and normalizes each team’s explainability metric
between [0, 1].

Preliminary Results: We simulated 560 fine-grained faults
(e.g., hypervisor failure, bad timeouts) from the Revelio In-
cident Dataset with the open-source Reddit [35] application
on the Revelio testbed [10]. We used the symptom explain-
abilty metric as well as standard internal health metrics [10]
from production systems. We implement pairwise reachabil-
ity probes between application server clusters and application
health checks polled by a monitoring agent at 1-minute inter-
vals to mimic metrics used in clouds. We identify 8 “teams”
including Network, Application and Infrastructure. For ex-
ample, an incident caused by a faulty firewall rule should be
handled by the network team, and an incident caused by a
faulty server should be handled by its microservice infrastruc-
ture team.

We use both cosine similarities and internal health metrics
as feature vectors input to a Random Forest Classifier to pre-
dict the correct team label for a given incident. We re-use
the same dataset splits for training, validation, and testing as
Revelio does. Our test set only contains incidents that are a
result of a root-cause that is never injected in the same way
as in the training set. The performance of the Random Forest
Classifer for CLTO in routing incidents (amongst 8 teams)
on the test set with and without using symptom explainabil-
ity as a feature improved from 45% to 78% while a purely
distributed approach like Scouts [13] was only 22%. This
can be attributed to fan-out cause-effect relationships (e.g., a
failure in a lower layer causes multiple failures in the x higher
layer), which are confounders in distributed approaches that
can rely only on internal health metrics of a layer. Centralized
approaches like CLTO on the other hand perform much better
when this additional context is represented through structures
like coarse dependency graphs.

The bottom line is that even imperfect (but easily maintain-
able) information like a Coarse Dependency Graph is useful
in a machine learning context because it provides a strong
extra signal in addition to team-internal health metrics. The

Software Managed Networks via Coarsening HotNets ’25, November 17–18, 2025, College Park, MD, USA

same intuition suggests the SMN can route to the Wide Area
team in the War story described earlier.

6 REALIZING SMN
Just as realizing SDNs required the development of new net-
working protocols (e.g., OpenFlow), realizing SMNs will
need novel system architectures, data structures, and APIs:

Global data lake: The CLDS in Figure 1 can be a real-
time data lake that provides a global view of network compo-
nents (part numbers, software versions), reliability informa-
tion (alerts, incidents, telemetry, logs from service teams) and
capacity planning telemetry (bandwidth logs, costs). While
each team independently manages its own data, and the op-
timizer (CLTO in Figure 1) consults the CLDS, teams and
central leaders can also easily discover and consume data
from other teams. To do so requires a (1) A queryable global
catalog describing data sets and metadata, including team
names, data type (alert/incident/log/telemetry), data schema,
units (2) a uniform schema, (3) access control policies, (4)
automation that continuously processes real-time telemetry
and logs, and (5) policies to retain data. We can leverage
recent advances in building large-scale data lakes [2, 7] and
instrumentation frameworks such as Open Telemetry [32] to
achieve these goals.

Network History store: SMN’s data lake, in addition to real-
time data, also stores past data to enable historical analysis
for reliability and capacity planning by the CLTO in Figure 1.
Storing all data for an extended period of time can be expen-
sive. On the other hand, deleting key data may hurt the efforts
of learning failure and bandwidth root-cause patterns from
the past. The SMN needs sophisticated retention policies: e.g.,
it can retain all data that are related to incidents for a long
period of time. Further, while such positive examples are es-
sential for data-driven automation, they must be balanced by
negative examples. The CLDS can also retain a small sam-
ple of failure-free data. A more speculative idea is to keep
ML models and not logs over very long periods to concisely
capture how network patterns evolve with time. These can be
viewed as coarsenings in time.

AIOps engine: The CLTO in Figure 1 provides a natural
place for developing AIOps1 solutions. For example, one can:
(1) denoise telemetry and logs on injection into the data lake,
(2) enrich incidents with metadata such as similar incidents,
potential root causes, and fixes learned from retrospective
analysis [8], (3) Use generative AI to convert logs into struc-
tured inputs for the CLTO (4) learn rules to prioritize and
route incidents, (5) take automatic mitigation steps such as
rebooting an unhealthy micro-service, or lighting up a fiber.
Even though there are existing AIOps efforts [5], SMN’s

1Artificial Intelligence for IT operations

data lake and CLTO makes it easier to experiment with new
techniques involving diverse data from multiple layers and
teams.

7 CONCLUSION
When Software Defined Networks were first proposed, they
were dismissed as unscalable and prone to failures. They have
now become mainstream [20, 22]. We believe the time is ripe
to revisit centralizing all operational data — from assets to
incidents to bandwidth patterns — in a centralized repository
in a Software Managed Network (SMN) to improve coordina-
tion, coherence, pattern learning, and long term planning.

To make this vision a reality, we have proposed the abstract
idea of coarsening to reduce storage while preserving op-
erational effectiveness. While cross-layer optimizations and
coarsening are both old ideas implicit in much past work (as
was SDN), we believe that making coarsening a first class
concept, centralizing all data from L1 to L7, and adding a gen-
eralized control plane and architectural support can help make
SMN a reality. We have provided a few examples of SMN
applications and coarsenings. However, just as with SDN,
we believe the networking community will find unforeseen
cross-layer optimizations and coarsenings for SMN.

Peering dimly into the crystal ball, can mappings from IP
links to layer 1 information like submarine cables [34] be used
not just for risk modeling [25] but for risk-aware topology
design [30] and capacity planning [39] at layer 3. Can Layer
4 information collected in Espresso [47] be used for traffic
engineering and capacity planning instead of only to choose
BGP peers? Can application level log information at Layer 7
stored in the SMN be used to help an Application Designed
Network [50] compiler generate an implementation tailored
to the network state? The unstructured information in a SMN
(e.g., logs) is a natural fit for generative AI-powered agents
for failure response [9] and ticket prioritization [31]. What
are the corresponding coarsenings for scalability, learnability,
and maintainability? We have no idea, but we hope others in
the community will.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers, our shepherd, Brighten
Godfrey and Radhika Mysore for their thoughtful feedback.
Pradeep Dogga was supported in part by NSF Award No.
CNS-1901510 and research grants from Google, Amazon and
Cisco. Rachee Singh is supported in part by ACE, one of the
seven centers in JUMP 2.0, a Semiconductor Research Corpo-
ration (SRC) program sponsored by DARPA, NSF Awards No.
2444537 and No. 2435852. George Varghese was supported
in part by NSF Award No. 2333587.

HotNets ’25, November 17–18, 2025, College Park, MD, USA P. Dogga et al.

REFERENCES
[1] F. Abuzaid, S. Kandula, B. Arzani, I. Menache, M. Zaharia, and P. Bailis.

Contracting wide-area network topologies to solve flow problems
quickly. In 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21), pages 175–200. USENIX Association,
Apr. 2021.

[2] Amazon.com. What is a datalake? https://aws.amazon.com/big-data/
datalakes-and-analytics/what-is-a-data-lake/, 2022.

[3] AWS. Application and infrastructure monitoring - aws cloudwatch.
https://aws.amazon.com/cloudwatch/, 2023.

[4] T. Casciaro, A. C. Edmondson, and S. Jang. Cross-silo leadership.
Harvard Business Review, May 2019.

[5] Z. Chen, Y. Kang, L. Li, X. Zhang, H. Zhang, H. Xu, Y. Zhou, L. Yang,
J. Sun, Z. Xu, et al. Towards intelligent incident management: why we
need it and how we make it. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, pages 1487–1497,
2020.

[6] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’77, page 238–252,
New York, NY, USA, 1977. Association for Computing Machinery.

[7] Databricks.com. Introduction to Datalakes. https://databricks.com/
discover/data-lakes/introduction, 2022.

[8] P. Dogga, C. Bansal, R. Costleigh, G. Jayagopal, S. Nath, and X. Zhang.
AutoARTS: Taxonomy, insights and tools for root cause labelling of
incidents in microsoft azure. In 2023 USENIX Annual Technical Con-
ference (USENIX ATC 23), pages 359–372, Boston, MA, July 2023.
USENIX Association.

[9] P. Dogga, K. Narasimhan, A. Sivaraman, and R. Netravali. A system-
wide debugging assistant powered by natural language processing. In
Proceedings of the ACM Symposium on Cloud Computing, SoCC ’19,
page 171–177, New York, NY, USA, 2019. Association for Computing
Machinery.

[10] P. Dogga, K. Narasimhan, A. Sivaraman, S. Saini, G. Varghese, and
R. Netravali. Revelio: Ml-generated debugging queries for finding root
causes in distributed systems. Proceedings of Machine Learning and
Systems, 4, 2022.

[11] B. Eaton, J. Stewart, J. Tedesco, and N. C. Tas. Distributed latency
profiling through critical path tracing: Cpt can provide actionable and
precise latency analysis. Queue, 20(1):40–79, mar 2022.

[12] O. N. Foundation. Open flow switch specification. https:
//opennetworking.org/wp-content/uploads/2014/10/openflow-switch-
v1.5.1.pdf/, 2025.

[13] J. Gao, N. Yaseen, R. MacDavid, F. Vieira Frujeri, V. Liu, R. Bianchini,
R. Aditya, X. Wang, H. L. , D. Maltz, M. Y. , and B. Arzani. Scouts:
Improving the diagnosis process through domain-customized incident
routing. In SIGCOMM. ACM, August 2020.

[14] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan,
G. Nichols, D. Grant, G. Loihle, and G. Hunt. Debugging in the (very)
large: ten years of implementation and experience. In Proceedings of
the ACM SIGOPS 22nd Symposium on Operating Systems Principles,
SOSP ’09, page 103–116, New York, NY, USA, 2009. Association for
Computing Machinery.

[15] Google. Google cloud service health. https://status.cloud.google.com/
summary, 2023.

[16] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat. Evolve
or Die: High-Availability Design Principles Drawn from Googles Net-
work Infrastructure. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM. ACM, 2016.

[17] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,
V. Wang, B. Pang, H. Chen, Z.-W. Lin, and V. Kurien. Pingmesh: A
large-scale system for data center network latency measurement and
analysis. In Proceedings of the 2015 ACM Conference on Special In-
terest Group on Data Communication, SIGCOMM ’15, page 139–152,
New York, NY, USA, 2015. Association for Computing Machinery.

[18] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates.
Nodoze: Combatting threat alert fatigue with automated provenance
triage. Proceedings 2019 Network and Distributed System Security
Symposium, 2019.

[19] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer. Achieving high utilization with software-driven
wan. In Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM, SIGCOMM ’13, page 15–26, New York, NY, USA, 2013.
Association for Computing Machinery.

[20] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer. Achieving high utilization with software-driven
wan. SIGCOMM Comput. Commun. Rev., 43(4):15–26, aug 2013.

[21] H. Jahanshahi, K. Chhabra, M. Cevik, and A. Baþar. Dabt: A
dependency-aware bug triaging method. In Proceedings of the 25th
International Conference on Evaluation and Assessment in Software
Engineering, EASE ’21, page 221–230, New York, NY, USA, 2021.
Association for Computing Machinery.

[22] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stu-
art, and A. Vahdat. B4: experience with a globally-deployed software
defined wan. SIGCOMM Comput. Commun. Rev., 43(4):3–14, Aug.
2013.

[23] L. Kleinrock and F. Kamoun. Hierarchical routing for large networks;
performance evaluation and optimization. Computer Networks, 1:155–
174, 1977.

[24] R. R. Kompella, A. Greenberg, J. Rexford, A. C. Snoeren, and J. Yates.
Cross-layer visibility as a service. In Proc. of fourth workshop on Hot
Topics in Networks (HotNet-IV), 2005.

[25] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren. Ip fault
localization via risk modeling. In Proceedings of the 2nd Conference on
Symposium on Networked Systems Design & Implementation - Volume
2, NSDI’05, page 57–70, USA, 2005. USENIX Association.

[26] U. Krishnaswamy, R. Singh, N. Bjørner, and H. Raj. Decentralized
cloud wide-area network traffic engineering with BLASTSHIELD. In
19th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 22), pages 325–338, Renton, WA, Apr. 2022. USENIX
Association.

[27] U. Krishnaswamy, R. Singh, P. Mattes, P.-A. C. Bissonnette, N. Bjørner,
Z. Nasrin, S. Kothari, P. Reddy, J. Abeln, S. Kandula, H. Raj, L. Irun-
Briz, J. Gaudette, and E. Lan. OneWAN is better than two: Unifying
a split WAN architecture. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages 515–529, Boston,
MA, Apr. 2023. USENIX Association.

[28] G. Li, D. Chen, S. Lu, M. Musuvathi, and S. Nath. Sherlock: Unsuper-
vised synchronization-operation inference. In Proceedings of the 26th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS 2021, page 314–328,
New York, NY, USA, 2021. Association for Computing Machinery.

[29] H. Liu, S. Lu, M. Musuvathi, and S. Nath. What bugs cause production
cloud incidents? In Proceedings of the Workshop on Hot Topics in
Operating Systems, May 2019.

[30] J. C. Mogul, D. Goricanec, M. Pool, A. Shaikh, D. Turk, B. Koley,
and X. Zhao. Experiences with modeling network topologies at multi-
ple levels of abstraction. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages 403–418, Santa
Clara, CA, Feb. 2020. USENIX Association.

https://aws.amazon.com/big-data/datalakes-and-analytics/what-is-a-data-lake/
https://aws.amazon.com/big-data/datalakes-and-analytics/what-is-a-data-lake/
https://aws.amazon.com/cloudwatch/
https://databricks.com/discover/data-lakes/introduction
https://databricks.com/discover/data-lakes/introduction
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf/
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf/
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf/
https://status.cloud.google.com/summary
https://status.cloud.google.com/summary

Software Managed Networks via Coarsening HotNets ’25, November 17–18, 2025, College Park, MD, USA

[31] Netbrain. Generative ai in network operations. https://www.
netbraintech.com/blog/ai-in-network-operations/, 2025.

[32] Opentelemetry.io. Automatic Instrumentation | OpenTelemetry. https:
//opentelemetry.io/docs/instrumentation/java/automatic/, 2022.

[33] A. Quinn, J. Flinn, M. Cafarella, and B. Kasikci. Debugging the
OmniTable way. In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22), pages 357–373, Carlsbad, CA,
July 2022. USENIX Association.

[34] A. Ramanathan and S. Abdu Jyothi. Nautilus: A framework for cross-
layer cartography of submarine cables and ip links. Proc. ACM Meas.
Anal. Comput. Syst., 7(3), Dec. 2023.

[35] reddit.com. reddit: the front page of the internet. https://reddit.com/,
2022.

[36] K. Rodrigues, Y. Luo, and D. Yuan. CLP: Efficient and scalable search
on compressed text logs. In 15th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 21), pages 183–198. USENIX
Association, July 2021.

[37] SecurityShelf. Cloud misconfig exposes 3tb of sensi-
tive airport data in amazon s3 bucket: ‘lives at stake’.
https://securityshelf.com/2022/07/06/cloud-misconfig-exposes-
3tb-of-sensitive-airport-data-in-amazon-s3-bucket-lives-at-stake/,
2022.

[38] R. Singh, S. Agarwal, M. Calder, and P. Bahl. Cost-effective cloud
edge traffic engineering with cascara. In 18th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 21), pages
201–216. USENIX Association, Apr. 2021.

[39] R. Singh, N. Bjorner, S. Shoham, Y. Yin, J. Arnold, and J. Gaudette.
Cost-effective capacity provisioning in wide area networks with shoofly.
In Proceedings of the 2021 ACM SIGCOMM 2021 Conference, SIG-
COMM ’21, page 534–546, New York, NY, USA, 2021. Association
for Computing Machinery.

[40] R. Singh, M. Ghobadi, K.-T. Foerster, M. Filer, and P. Gill. Radwan:
Rate adaptive wide area network. In Proceedings of the 2018 Con-
ference of the ACM Special Interest Group on Data Communication,
SIGCOMM ’18, page 547–560, New York, NY, USA, 2018. Associa-
tion for Computing Machinery.

[41] A. Tornhill. Microservice dependencies - visualization.
https://codescene.com/blog/visualize-microservice-dependencies-in-
team-context/, 2022.

[42] A. Viswanathan, E. C. Rosen, and R. Callon. Multiprotocol Label
Switching Architecture. RFC 3031, Jan. 2001.

[43] J. Wei, G. Zhang, Y. Wang, Z. Liu, Z. Zhu, J. Chen, T. Sun, and Q. Zhou.
On the feasibility of parser-based log compression in Large-Scale cloud
systems. In 19th USENIX Conference on File and Storage Technologies
(FAST 21), pages 249–262. USENIX Association, Feb. 2021.

[44] X. Wu, D. Turner, C.-C. Chen, D. A. Maltz, X. Yang, L. Yuan, and
M. Zhang. Netpilot: automating datacenter network failure mitiga-
tion. In Proceedings of the ACM SIGCOMM 2012 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’12, page 419–430, New York, NY, USA,
2012. Association for Computing Machinery.

[45] Z. Xu, F. Y. Yan, R. Singh, J. T. Chiu, A. M. Rush, and M. Yu. Teal:
Learning-accelerated optimization of wan traffic engineering. In Pro-
ceedings of the ACM SIGCOMM 2023 Conference, ACM SIGCOMM
’23, page 378–393, New York, NY, USA, 2023. Association for Com-
puting Machinery.

[46] C. yao Hong, S. Mandal, M. A. Alfares, M. Zhu, R. Alimi, K. N. Bolli-
neni, C. Bhagat, S. Jain, J. Kaimal, J. Liang, K. Mendelev, S. Padgett,
F. T. Rabe, S. Ray, M. Tewari, M. Tierney, M. Zahn, J. Zolla, J. Ong,
and A. Vahdat. B4 and after: Managing hierarchy, partitioning, and
asymmetry for availability and scale in google’s software-defined wan.
In SIGCOMM’18, 2018.

[47] K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holliman, G. Baldus,
M. Hines, T. Kim, A. Narayanan, A. Jain, V. Lin, C. Rice, B. Rogan,
A. Singh, B. Tanaka, M. Verma, P. Sood, M. Tariq, M. Tierney, D. Tru-
mic, V. Valancius, C. Ying, M. Kallahalla, B. Koley, and A. Vahdat.
Taking the edge off with espresso: Scale, reliability and programmabil-
ity for global internet peering. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, SIGCOMM ’17,
page 432–445, New York, NY, USA, 2017. Association for Computing
Machinery.

[48] Z. Zhong, M. Ghobadi, A. Khaddaj, J. Leach, Y. Xia, and Y. Zhang. Ar-
row: Restoration-aware traffic engineering. In Proceedings of the 2021
ACM SIGCOMM 2021 Conference, SIGCOMM ’21, page 560–579,
New York, NY, USA, 2021. Association for Computing Machinery.

[49] H. Zhu, V. Gupta, S. S. Ahuja, Y. Tian, Y. Zhang, and X. Jin. Network
planning with deep reinforcement learning. In Proceedings of the 2021
ACM SIGCOMM 2021 Conference, SIGCOMM ’21, page 258–271,
New York, NY, USA, 2021. Association for Computing Machinery.

[50] X. Zhu, W. Deng, B. Liu, J. Chen, Y. Wu, T. Anderson, A. Krishna-
murthy, R. Mahajan, and D. Zhuo. Application defined networks. In
Proceedings of the 22nd ACM Workshop on Hot Topics in Networks,
HotNets ’23, page 87–94, New York, NY, USA, 2023. Association for
Computing Machinery.

https://www.netbraintech.com/blog/ai-in-network-operations/
https://www.netbraintech.com/blog/ai-in-network-operations/
https://opentelemetry.io/docs/instrumentation/java/automatic/
https://opentelemetry.io/docs/instrumentation/java/automatic/
https://reddit.com/
https://securityshelf.com/2022/07/06/cloud-misconfig-exposes-3tb-of-sensitive-airport-data-in-amazon-s3-bucket-lives-at-stake/
https://securityshelf.com/2022/07/06/cloud-misconfig-exposes-3tb-of-sensitive-airport-data-in-amazon-s3-bucket-lives-at-stake/
https://codescene.com/blog/visualize-microservice-dependencies-in-team-context/
https://codescene.com/blog/visualize-microservice-dependencies-in-team-context/

	Abstract
	1 Introduction
	2 Software Managed Networks
	3 SMN via Coarsening
	4 Coarse Bandwidth Logs
	5 Coarse Dependency graphs
	6 Realizing SMN
	7 Conclusion
	References

