Towards Accessible Model-Free Verification

Alexander Krentsel” Oliver Ye Anthony Tafoya
Google / UC Berkeley Google Google
Xugian Ma Sylvia Ratnasamy Anees Shaikh
Google Google / UC Berkeley Google
Abstract ACM Reference Format:

Despite coming up on two decades of network verification
research, verification tooling continues to see limited real-
world adoption and outages continue to occur. Relying on
interviews with network engineers and our own experience
as a large network operator, we ask why. These conversations
reveal that the culprit is traditional verification’s reliance on
hand-crafted network models, which leads to issues with cov-
erage, correctness, maintainability, and fidelity, ultimately
hindering practical applicability and adoption.

To address this, we call for the research community to
embrace “model-free verification” through network emu-
lation. Recent technology advancements — maturation of
orchestration infrastructure and vendor-provided container
images — make it possible to leverage emulation to obtain a
high-fidelity converged dataplane from actual router control
plane code, and then apply established dataplane verification
techniques to this extracted state. We prototype such a sys-
tem with open-source components, and present early results
showing this approach can accurately verify configurations
previously untestable, paving the way for more robust, prac-
tical network verification.

CCS Concepts

« Networks — Network reliability; Network manageabil-
ity; Network performance evaluation.

Keywords

Network Verification, Network Emulation, Configuration
Analysis, Batfish

“Corresponding author: akrentsel@google.com

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

HotNets 25, College Park, MD, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2280-6/25/11
https://doi.org/10.1145/3772356.3772380

Alexander Krentsel, Oliver Ye, Anthony Tafoya, Xugian Ma, Sylvia
Ratnasamy, and Anees Shaikh. 2025. Towards Accessible Model-
Free Verification. In The 24th ACM Workshop on Hot Topics in Net-
works (HotNets "25), November 17-18, 2025, College Park, MD, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3772356.
3772380

1 Introduction

Maintaining network correctness remains extremely difficult
for network operators today. Despite network providers’ best
efforts, network outages continue to occur, and have a huge
impact on the many services that rely on the network for
correct behavior [16, 24, 28, 39, 40].

While the root causes of outages vary, prior works [7,
18, 41] report networks are particularly vulnerable when
configuration changes are made. As network size and com-
plexity grows exponentially, so too does the frequency of
configuration changes; in our network we push thousands
of configuration changes per day to WAN devices for on-
going maintenance operations, network expansion, policy
changes, customer-triggered changes, etc. Intent driven net-
working — automatically generating low-level configuration
from high-level operator intent — helps avoid syntactic and
so-called "fat finger" configuration bugs. However, it does
not eliminate all bugs, especially related to incorrect intent.

Network verification has emerged to address this problem
by formally modeling and verifying that the network’s be-
havior satisfies some invariant, such as reachability. It can be
broken into two core research directions [37]: dataplane ver-
ification [25, 26, 31] which checks that the set of forwarding
entries in the network satisfy some correctness property, and
control plane verification [7, 10, 12, 34] which checks that a
network configuration will produce a network data plane
that satisfies some intent. Control plane verification aims to
verify network behavior before a configuration is deployed
to the production network, making it more attractive for
network operators as a tool for outage prevention.

Given the promise of, and research momentum behind,
network verification, should we expect that verification is
an integral part of a network operator’s toolkit? Although
reports of verification being applied at some large CSPs [1]
are encouraging, broader adoption among practitioners ap-
pears to remain limited. To understand this, we surveyed 30


https://orcid.org/0009-0005-2728-1898
https://orcid.org/0009-0006-0502-6324
https://orcid.org/0009-0007-2287-2618
https://orcid.org/0009-0006-2320-5414
https://orcid.org/0000-0002-0524-9425
https://orcid.org/0000-0001-8041-4841
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3772356.3772380
https://doi.org/10.1145/3772356.3772380
https://doi.org/10.1145/3772356.3772380

HotNets "25, November 17-18, 2025, College Park, MD, USA

network engineers and interviewed ten more who manage
networks ranging across enterprises, universities, small re-
gional ISPs, multi-national ISPs, and CSPs. As we report in §2,
though a majority of network engineers were familiar with
network verification tooling (primarily, Batfish [7, 12] for
control plane verification), only a handful of the respondents
had meaningfully used verification in production.

In this paper, we ask why the promise of control plane
verification tooling has not translated into wider adoption
in real-world networks. We draw from interview and survey
data, as well as our own experiences (§2) to understand the
current situation — our attempts to apply existing control-
plane verification tools to production-scale, multi-vendor
networks have run into significant roadblocks.

We argue the core challenges are due to control plane
verification’s reliance on modeling of control plane behavior.
Control plane verification techniques require modeling pro-
tocol behavior based on configurations, then use the model’s
output to reason through network behavior. But in practice,
implementing a model that captures and maintains all per-
tinent features of the router is exceedingly difficult. As we
show in §2, the real-world feature-set is large, and configu-
ration languages are proprietary interfaces, frequently being
expanded or changed, and varying from vendor to vendor.
As a result, models will always lag in their ability to faith-
fully represent the actual control plane, and thus not capture
real-world behavior. Indeed the most frequently stated (74%)
barrier to adoption in our survey of network operators was
that existing verification tools do not support the pertinent
protocols or features.

We see a promising alternative path forward with the
emergence of high-fidelity network emulation tools. Over
the last several years, nearly all major router vendors have
developed container-based virtual images [4, 5, 15, 38], which
can be deployed within emulation tools. While proprietary
emulators exist that can run these images [29], in recent
years we’ve seen maturing open source network emula-
tion infrastructure [14, 23], along with standardized vendor-
independent configuration, control, and telemetry APIs [13,
32, 36]. The recent shift from VMs to containers enables scal-
ing networks to digital twin size with reduced costs. Taken
together, this broadens access for researchers and practition-
ers to use high-fidelity emulation in their workflows.

Based on these advancements, we argue for model-free con-
trol plane verification as an approach to making verification
feasible on production-complexity networks. Rather than
modeling control plane behavior, our approach takes router
configurations and executes high-fidelity control plane emu-
lation until convergence. We then apply traditional dataplane
verification techniques to verify properties of the resulting
dataplane. This provides the pre-deployment guarantees of
control-plane verification, while overcoming the limitations

Krentsel et al.

of using control plane models to generate the dataplane.
While network emulation itself is an old idea [22, 27, 29] that
has even been applied with simulation and verification [34],
our intent in this paper is to make the case for model-free
verification as essential to broadening the reach of network
verification, with emulation as the right enabling technology.
Hence, we write this paper to encourage the research commu-
nity to engage in developing a robust open-source ecosystem
for network emulation, and its application to verification.

To demonstrate the accessibility of our approach, we im-
plement a model-free verification prototype system using
open source emulation and verification components. We
build atop the mature Batfish verification engine and query li-
brary, which allows developers to reuse its well-documented
frontend query interface to validate a variety of properties.
Our early results (§5) show that our approach is able to suc-
cessfully detect the impact of configuration changes unable
to be parsed by Batfish, handle a wider range of features,
and uncover bugs in the Batfish network model. We believe
this model-free approach paves the way for more robust,
practical network verification.

2 Why avoid modeling?

To understand the practical applicability of model-based con-
trol verification, we draw on both our own experience at a
large CSP, as well as a survey and interviews with external
network engineers. For interviews (n=10) and our survey
(n=30), we recruited participants from a handful of popular
network operations forums and via snowball sampling. Our
survey comprised 12 questions covering background and
network verification tooling experience. Virtually all partic-
ipants held technical network roles, across a wide range of in-
dustries including enterprise (8), ISP (7), CSP (4), government
(3), and others (8). Network sizes were approximately evenly
represented across small (1-50), medium (51-500), large (501-
5000), and very large (5000+) by network device count. Our
interviewees likewise spanned diverse sectors and geogra-
phy, including university campus networks, commercial ISPs,
large government scientific networks, and enterprise net-
works in the US, Canada, and UK. In brief, though two thirds
of respondents had heard of network verification, only 30%
had attempted to use it. Of the group of 10 interviewed, the
main tool participants were aware of was Batfish, however
only two attempted to use it in production, and zero were ac-
tively using it in their work. Those familiar with verification
raised issues as we elaborate on in what follows.

Batfish. We examine Batfish [7, 12] as the reference veri-
fication tool, as it is among the most mature and widely used
network verification tools, with an active Slack community

Due to space limitations, we only provide a brief summary of our survey
and will report on it in detail in a future publication.



Towards Accessible Model-Free Verification

with thousands of members and over 1,200 stars indicating
user interest on GitHub. It was also by far the most com-
monly known network verification tool in our interviews.

The core network model in Batfish is called the Incremen-
tal Batfish Dataplane (IBDP) [21], which is written in Java
and models an iterative exchange of information between
routers and the resulting converged dataplane, for a set of the
most popular router features such as IS-IS and BGP. In order
to use this model, Batfish first needs to know how to config-
ure those features in the model, so it has a "parsing” layer
which extracts relevant network configuration information
from the router configuration. Each vendor has their own
configuration language, so there is a custom parser written
for each unique configuration language.

This basic approach of modeling control plane behavior
to generate a dataplane from device configurations comes
with a number of drawbacks:

Coverage. The reference model only supports a subset of
protocols, as modeling each protocol’s behavior is very diffi-
cult: it requires deeply understanding routing protocol specs,
which themselves are long and complex, with features still
being added?. Also, for some protocols, Batfish provides no
support (e.g., RSVP-TE). The protocols that are supported are
modeled at partial fidelity, only supporting the subset of fea-
tures and configuration knobs relevant to a set of target net-
work environments. This sentiment was strongly reflected
in our survey; of respondents that were familiar with net-
work verification tooling, the most frequent (74%) of biggest
barriers to adoption was that existing verification tools do
not support the specific features or protocols that they use.

Correctness. For the portions of protocols that are sup-
ported by the model, writing the reference model implemen-
tation is tedious and error-prone for the tool developer. Over
the past 7 years, there have been over 800 issues filed on
GitHub for the Batfish network model and configuration
parsing, for issues such as the modeled BGP route propaga-
tion differing from an observed production router [11], an
L3 edge not appearing when expected [30], a valid Juniper
configuration causing Batfish to crash [20], and many others.
These issues are not presented as a critique of the Batfish
model developers; on the contrary, we simply aim to point
out how difficult it is to get the model "right" for even a
subset of protocols, and how much work remains.

Maintainability. Router behavior, configuration syntax, and
feature support continuously evolve on real-world routers,
so must be continuously updated in the model. For example,
Arista made changes to their configuration syntax in the
late 2010s. The Batfish developers run continuous regression
shadow-testing of their network model and parsers with real

%For example, the BGP spec [35] has nearly 80 drafts and RFCs with proposed
extensions to the standard.

HotNets "25, November 17-18, 2025, College Park, MD, USA

routers in the lab [12], and still many model and parser bugs
are reported. We further observe that due to the complexity
of router and network behavior, model designers often make
assumptions to keep the model simple, such as assuming
certain symmetries, default behaviors, etc. As fidelity needs
or feature-sets evolve, if those assumptions are violated, this
may require fully re-architecting the model.
Single separate implementation. A reference model of
protocol behavior does not capture vendor-specific behaviors.
This makes it impossible to uncover bad behavior caused
by bugs or incompatibilities that appear in vendor imple-
mentations, which occur with non-trivial frequency. In our
network we have observed significant numbers of issues in
vendor implementations, such as a new software version that
introduced an incorrect route metric selection in iBGP, or a
bug where LSP deletions were not being correctly applied.
A single reference model also prevents detecting bugs that
occur as a result of interplay between different vendor imple-
mentations. 93% of survey respondents manage multivendor
networks, and so are prone to such issues. Such bugs often
cannot be caught by testing done by the vendor themselves.
In one such case in our network, one vendor’s OS produced
an unusual but valid BGP advertisement that caused another
vendor’s routing process to crash during parsing, leading
to traffic loss and a partial network outage. In another case,
poor interplay between RSVP-TE signaling timers in two
vendors resulted in very slow reconvergence after a major
link-cut, leading to tens of minutes of severe congestion.

Taken together, these reasons make it difficult to apply
model-based verification in many real world networks. Our
own attempts to apply Batfish for verification in a global,
multi-vendor network over several years (2017-2021) were
not successful, due to the challenges noted above. More re-
cently (2025) we experimented with 1500 production router
configurations across a number of network roles, but found
that all of them failed in the parsing phase due to unsup-
ported features in the model.

3 Emulation as an Opportunity

The traditional use case for emulation in network validation
has been to develop a digital twin of the network on which
changes can be applied and evaluated for correctness before
deployment to production. Such systems may leverage mod-
els of network devices [42] or virtualized images of actual
vendor device implementations [29]. Emulation has the ad-
vantage of supporting interaction using essentially the same
tooling as that used to make changes on the production net-
work. For example, when unexpected network behavior is
observed, operators can SSH into emulated routers to inspect
their internal state using the same router CLI tooling they
use to inspect and debug production routers.



HotNets "25, November 17-18, 2025, College Park, MD, USA

However, emulation by itself is limited in that it is diffi-
cult to perform the type of exhaustive analysis that formal
verification enables. Model-free verification proceeds in two
steps to address this limitation. First, we use network emu-
lation to get from network configuration and context (such
as BGP advertisements) to a converged dataplane. Next, we
apply traditional dataplane verification techniques on the
resulting dataplane. Network emulation gives us the benefit
of accurate dataplane forwarding entries without requiring
manually written models and configuration parsing. Formal
verification then provides valuable capabilities such as identi-
fying specific routes that do not satisfy a desired invariant or
concluding no such routes exist through exhaustive search.

From the perspective of control plane verification, this
approach has a number of key benefits:

Maximum fidelity model. Vendor-supplied virtual images
are the most accurate representations of device configuration
and control, and are able to run production configurations
similar to hardware devices. An emulation-based approach
hence ensures that the resultant dataplane model reflects
actual behavior.

Production interfaces and tooling. Emulated devices run-
ning vendor software support the same management and
control interfaces as the production network, thus fitting
naturally into existing workflows. For example, operator
tools which inspect router RIBs to debug reachability issues
on production routers can be applied unchanged using the
emulated routers’ standard interfaces (CLIs, OpenConfig,
etc.). Our survey respondents echoed the importance of this
benefit; 52% selected “lack of integration with existing work-
flows and tools” as among the biggest barriers to adoption
of existing verification tooling, with nearly half rating the
importance of network verification tools allowing use of
familiar network operator tools at 4 or 5 out of 5.
Application to SDN and non-SDN networks. Emulated
environments also support applying verification to SDN-
based networks, as they support running an SDN controller
and any control-plane instrumentation and programming
infrastructure directly. Control inputs can be taken from
current or historical production data. Thus for both SDN and
non-SDN networks, a high-fidelity dataplane representation
can be extracted and used by a verification engine.

Network emulation is of course not new to the research
community — Emulab [22] and VINI [9], and tools such as
Mininet [27] are examples of lightweight environments that
provided software implementations of hosts, routers, and net-
works for experimentation and evaluation. However these
tools did not faithfully emulate vendor router behavior.

Earlier work also reports on emulation environments with
vendor router images [29], though these have not been avail-
able to the research community. And past efforts to leverage

Krentsel et al.

Native Batfish System (Replaced)

_______________ IFEiiEL H Analysis
\ Dataplane et

Extraction [N w— P
Lower Stage
Upper Stage Model-Free Verification System W

Figure 1: System diagram showing the native Batfish
flow in gray, new components in dark green, and re-
placed components hatched.

router emulation to validate correctness in large-scale net-
works has encountered several challenges that have been
mitigated more recently as the technology has become more
mature and accessible. For example, lack of virtual images
from all relevant vendors made emulating multi-vendor net-
works challenging [42] - today, all major router vendors offer
a virtualized version of their firmware. In addition, scaling
to large networks is significantly improved as most vendors
now support containerized versions of their images (vs. vir-
tual machines), and emulation frameworks integrated with
Kubernetes make it possible to leverage cloud platforms to
more easily scale-out the emulated network [23].

4 Approach

Our approach builds on the opportunity that emulation pro-
vides, consisting of two core stages shown in Fig. 1. The up-
per stage executes the control plane emulation using virtual
routers with device configurations and, optionally, additional
context such as route advertisements. Once the emulation
reaches a steady state, the dataplane forwarding state is ex-
tracted and provided to the bottom stage. This stage formally
models the dataplane and feeds it to a verification engine,
which can answer queries issued by an operator.

We aim to leverage open source components in construct-
ing each stage of our system. In particular, we chose to build
on top of Kubernetes Network Emulator [23] for emulation,
and Batfish [7] for verification as it is a mature control plane
verification tool with a large community of industry users
and an actively maintained codebase. This enables network
practitioners to use our framework as a drop-in backend
for Batfish, running the same queries they may currently be
familiar with. We describe each stage in turn below.

4.1 Control-Plane Emulation

The upper stage of our system takes the same inputs as Bat-
fish, i.e. router configs, a topology file capturing links, and
a set of BGP advertisements. However, rather than relying
on a control plane network model, we directly emulate the



Towards Accessible Model-Free Verification

control plane behavior using Kubernetes Network Emulator
(KNE) [23]. KNE is an open-source network emulator that
brings up vendor-provided Router OS images, and emulates
the links between their interfaces by setting up dedicated
virtual networks. The control and management plane soft-
ware code in the images is identical to their physical router
counterparts. The main differences are in behavior related
to the physical hardware, such as actual forwarding ASICs
— this is simulated with vendor-provided code running on
non-specialized hardware such as general purpose compute
servers. KNE’s ability to scale is limited only by the con-
straints of Kubernetes, which supports up to 150,000 pods [3].
Initializing KNE takes single to tens of minutes, depending
on the network size, as pods are brought up and emulated
router OSes start up; but subsequently applying new configu-
ration to already-up routers converges much more quickly as
messages are exchanged locally. After convergence, we use
the vendor-independent gNMI [13] management RPC service
to dump Abstract Forwarding Tables (AFTs) in the common
OpenConfig [33] data models, which all vendor images now
support, allowing this step to be fully vendor-agnostic.

4.2 Data-Plane Verification

The lower stage of our system consists of dataplane modeling
and a verification engine that accepts verification queries. In
order to maximize usability and minimize development effort,
we reuse the modeling and verification engine portions of
Batfish. We modified or added 3,300 lines of Java code in
the Batfish backend to allow ingesting the AFTs pulled via
gNML, in place of the data plane produced by the Incremental
Batfish Dataplane network model. The rest of the verification
engine remains the same.

As a result, verification queries to the engine are issued
through the existing Pybatfish [2] query interface in Python,
which comes with a decade of refinement from real-world
operator feedback, extensive documentation, and familiarity
to network operators.

5 Early Results

We run the implementation of our system described in §4,
with the model-free network emulation portion in a single-
node Kubernetes cluster running in the cloud, and the modi-
fied Batfish verification engine running on a local machine.
We use the Python Pybatfish [2] library to write and issue all
verification queries. Though our method explicitly supports
constructing topologies containing different vendors (which
capture vendor-implementation-specific behavior), for eval-
uation simplicity all routers in the topology configurations
below are Arista routers running cEOS Verison 4.34.0F. We
report observations from our early testing.

HotNets "25, November 17-18, 2025, College Park, MD, USA

r- ’: AS 4
AS 2 AS 2 AS 2

oo

AS 3 AS 3

iBGP

ISIS

Figure 2: Diagram of our 6-node test network showing
configured IS-IS and BGP communication.

router isis default ! Correctly parsed.
net 49.0001.1010.1040.1030.00
address-family ipv4 unicast
]
interface Loopback® ! Correctly parsed.
ip address 2.2.2.1/32
isis enable default
isis passive-interface default
interface Ethernet2
ip address 100.64.0.1/31
no switchport
isis enable default

! Model issue #1

! Model issue #2

Figure 3: Router 1 Configuration Snippet.

Model-free verification can successfully uncover reach-
ability impact. We first ensure that our system works as
expected. To do this, we construct a test scenario by taking
production configurations and simplifying them down to the
simple setup shown in Fig. 2, containing 6 nodes that use
just iBGP, eBGP, and IS-IS. The number of lines in each con-
figuration ranges from 62-82. We then fed this configuration
to our system, as well as a buggy version of the configura-
tions where an eBGP session between R2 and R3 was taken
down, and ran PyBatfish’s Differential Reachability
query across the two cases. This query type exhaustively
compares network paths for all possible packets across two
snapshots, and surfaces cases where the paths differ. The out-
put correctly discovers the loss of connectivity from routers
in AS3 to routers in AS2, confirming we properly integrated
the emulation-derived dataplanes in the verification engine.
In our experimentation, we naturally came across scenar-
ios that highlighted the pitfalls of modeling:
Model-based verification struggles with feature cover-
age. We took the same configurations used above (success-
fully configuring the network in Fig. 2 in emulation), and
fed it to the native Batfish model-based simulation and veri-
fication system to compare its behavior. We found Batfish’s



HotNets "25, November 17-18, 2025, College Park, MD, USA

network model generation failed to recognize between 38
and 42 of lines in each configuration. Some of these lines
are for enabling features that are not directly relevant to
the dataplane, such as management daemon (PowerManager,
LedPolicy, Thermostat, etc.) or configuring management
services (gRPC, gNMI, SSL profiles, and more). However,
others are materially relevant to the router behavior, includ-
ing enabling MPLS and MPLS-TE (as these are simply not
in the subset of features supported in the Batfish network
model). Partial feature coverage makes it hard to trust final
verification results.

Model-based verification results can be wrong or mis-
leading. We found that assumptions baked into control
plane modeling code can cause the verification results to
differ from actual network behavior. Our decision to aug-
ment (vs. replace) the Batfish backend allowed us to use
Batfish’s built-in Differential Reachability question to
explore differences in forwarding behavior between Batfish’s
native model-based simulations and our model-free emula-
tion for identical configurations. To this end, in one of our
first experiments, we constructed a simple 3-node line topol-
ogy, i.e. R1 <> R2 <> R3. On each router, we assigned unique
IP addresses to each interface, then enabled IS-IS as shown in
the simplified configuration in Fig. 3. We then compared the
results of running our model-free emulation-based system
vs. the existing Batfish model-based simulation approach.

We found that the verification engine reported a differ-
ence in reachability between the two (identical) sets of con-
figurations; Batfish’s model-derived dataplane did not have
reachability from R2 to R1, reporting packets to be dropped,
whereas the dataplane from the actual Arista router emula-
tion was reported to have full pair-wise reachability. After
reaching out to the Batfish maintainers, further debugging
revealed that Batfish’s network model applied configuration
in a particular order, assuming a router interface could have
no IP address unless it is first configured as routed (i.e., no
switchport). As the ip address 100.64.0.1/31 line (is-
sue #1 in Fig. 3) came first in our configuration, this line was
simply ignored, which changed the final produced dataplane.
Furthermore, isis enable default (issue #2 in Fig. 3) was
reported as invalid syntax. As a result, the simulation’s data-
plane behavior meaningfully differed from the actual router’s
behavior of accepting this configuration.

This result shows both the difficulty and danger of relying
on network models; configuration parsing and interpretation
is often complex and must keep up with changes made by
vendors, which can lead to misleading verification results.
Emulation performance can scale in size and complex-
ity. To gauge emulation scalability, we ran some early tests
bringing up a variety of topologies. Router container resource
requirements vary by vendor; for the Arista containers we
used above, each emulated router requires 0.5 vCPUs and 1

Krentsel et al.

GB of RAM [23]. As such, we were able to bring up topolo-
gies of up to 60 routers on a single e2-standard-32 2.25GHz
processor machine with 32 vCPUs and 128 GB of memory.
We tested and saw successful convergence of up to 1,000
devices on a 17-node Kubernetes cluster.

To gauge convergence time with production realistic con-
ditions, we brought up a replica of a multi-vendor 30-node
portion of our network with production-complexity configu-
rations, and inject production-recorded routes (millions from
each BGP peer). We observe convergence time after config-
uration and including route injection to be approximately
3 minutes. We detect convergence to be complete once we
observe the dataplane to stabilize at all routers. The one-
time initial startup time of the emulation infrastructure and
container booting was 12-17 minutes.

Emulation-as-a-Model fits the Network Operator tool-
ing flow. We found an under-appreciated benefit of using
emulation: in constructing network configuration for various
scenarios, we could use standard network operator tools to
“poke at” the control plane to inspect and debug unexpected
behavior. When our initial IS-IS configuration mistakenly
used incorrect syntax for Arista routers, resulting in our ver-
ification system reporting missing reachability, we were able
to uncover the issue connecting to the router via SSH, and in-
specting IS-IS database entries and ip route information. This
echoes the sentiments of operators reported in §2. Taken
together, our approach provides the powerful exhaustive
search capabilities of traditional dataplane verification, with
access to familiar network operator interfaces for inspection.
Unlike prior work [17] which proposes integrating verifica-
tion directly into the running dataplane (i.e. relying on the
actual live control plane instead of control plane emulation),
this allows for applying verification to any range of what-if
scenarios as operators iterate before pushing changes.

6 Discussion

We acknowledge that our results are preliminary, and much
remains to fully evaluate the scalability of emulation and its
use in verification. In addition, a number of limitations and
open questions remain, some of which are specific to our
model-free approach, while others hold more generally.
Hardware bugs. As the dataplane hardware is emulated,
bugs in the physical hardware will not be captured because
our verification operates on the AFTs supplied to the for-
warding complex, and hence do not reflect bugs in that layer.
Such bugs are rare, but do occur; for example we observed a
case where a hardware fault caused TCAMs on a router to
not be programmed with expected forwarding entries. In an-
other published case, a bug in the hardware-level checksum
computation caused some packets to be dropped [19]. This
is a problem for model-based verification as well.



Towards Accessible Model-Free Verification

Non-deterministic behavior. Some convergence behavior
is dependent on the order and timing of control messages
exchanged, such as the order of reservation messages in
RSVP-TE [8] or the relative arrival time of BGP advertise-
ments used as tiebreakers. Naively, one run of emulation
will produce a single converged state. This limitation is even
stronger in model-based verification tools like Batfish, which
avoid supporting features requiring non-determinism or sim-
plify their modeling. For higher confidence, our emulation
approach can be run multiple times in parallel to produce
multiple resulting dataplanes. We want to investigate further
how to efficiently explore the impact of ordering.

Likewise, some bugs do not show up deterministically, or
require the accrual of router state over time. An emulation
run may not necessarily trigger these bugs. Model-based ver-
ification does not capture these dynamics either — exploring
such implementation-level timing bugs is an open problem.
Exhaustive search across configuration scenarios. Our
model-free approach operates over the same input as na-
tive Batfish, providing verification within a given network
snapshot of configurations and scenario context (e.g. link
statuses, external BGP advertisements). However, some net-
work attributes of interest to operators can require reasoning
over a range of possible scenarios, such as checking that the
network maintains reachability in the face of any single link
cut. While our system can check this, it would do so by run-
ning emulation for each new context in parallel and running
exhaustive differential reachability checks across the pro-
duced data planes. This is doable for some queries but can
be overly compute intensive for others such as searching
any k link cuts, which grows exponentially. Such exhaustive
explorations (e.g., over wide context space) are more readily
supported by model-centric approaches [10].

The tradeoff we identify, however, is that relying on a net-
work model comes with a host of problems that potentially
affect the validity or practicality of the analysis. Finding
high-fidelity and practically applicable methods of exhaus-
tive network context search remains an open problem.
Performance verification. Recent research [6] attempts
to verify bounds on performance (throughput, latency) for a
constrained space of workloads. This direction is of partic-
ular interest to operators, as many bugs manifest as perfor-
mance bugs rather than correctness bugs. Emulation does
not handle comprehensively exploring a workload (e.g. de-
mand) space the way a symbolic network performance model
can. However, emulated routers do also provide dataplane
emulation (with some fidelity limitations) that may provide
an opportunity for examining performance for particular
workloads. Furthermore, one can explore workloads on the
produced dataplane model, such as checking link utilizations
for a range of possible demands with the given dataplane.

HotNets "25, November 17-18, 2025, College Park, MD, USA

Implications for the field. In this work, we aim to explore
why production adoption of network verification seems to
considerably lag research advancements. We find a key chal-
lenge to be reliance on control plane models, which are lim-
ited in fidelity and coverage, and hard to get right and main-
tain. This observation motivates our alternative model-free
emulation-based approach using open source components.
However, despite the drawbacks we discuss in this pa-
per, modeling still is an important technique for verifica-
tion. More generally, modeling, simulation, emulation, and
physical testbeds all have pros and cons in terms of fidelity,
ease-of-use, and runtime/overheads. Our conclusion is that
emulation is a very attractive point in the design space for
making verification more practical and adoptable, one that
has perhaps not received sufficient attention from the re-
search community as full-fidelity emulation was not acces-
sible to the community at large. We hope to motivate this
direction and bring focus to recent advancements in emu-
lation and what they enable for network researchers and
practitioners — both as a tool for verification, but also more
broadly as a tool for system evaluation and teaching.

Acknowledgments. We thank the anonymous reviewers
and our shepherd Costin Raiciu for their insightful comments
and helpful feedback. We also thank our colleagues at Google,
including Neha Manjunath, Marcus Hines, Rob Shakir, Kirill
Mendelev, Pranay Maddula, and others for their discussions
and contributions.

References

[1] 2012. Network Verification. https://www.microsoft.com/en-us/

research/project/network-verification/. Accessed: 2025-6-21.

2016. PyBatfish. https://pybatfish.readthedocs.io/en/latest/. Accessed:

2025-6-10.

[3] 2024. Considerations for large clusters. https://kubernetes.io/docs/
setup/best-practices/cluster-large/. Accessed: 2025-6-9.

[4] 2024. vJunos-router Overview. https://www.juniper.net/

documentation/us/en/software/vjunos-router/vjunos-router-

kvm/topics/vjunos-router-overview-understanding html. Accessed:

2025-5-8.

2025. IOL - Cisco Modeling Labs v2.8. https://developer.cisco.com/

docs/modeling-labs/iol/. Accessed: 2025-5-8.

Mina Tahmasbi Arashloo, Ryan Beckett, and Rachit Agarwal. 2023.

Formal Methods for Network Performance Analysis. In 20th USENIX

Symposium on Networked Systems Design and Implementation (NSDI

23). USENIX Association, Boston, MA, 645-661. https://www.usenix.

org/conference/nsdi23/presentation/tahmasbi

Ari Fogel and Stanley Fung, University of California, Los Angeles, Luis

Pedrosa, University of Southern California, Meg Walraed-Sullivan, Mi-

crosoft Research, Ramesh Govindan, University of Southern California,

Ratul Mahajan, Microsoft Research, and Todd Millstein, University

of California, Los Angeles. [n.d.]. Batfish: A General Approach to

Network Configuration Analysis. NSDI 2015 ([n. d.]).

[8] Daniel O. Awduche, Lou Berger, Der-Hwa Gan, Tony Li, Dr. Vijay
Srinivasan, and George Swallow. 2001. RSVP-TE: Extensions to RSVP
for LSP Tunnels. RFC 3209. doi:10.17487/RFC3209

[2

—

[5

—

[6

—

[7

—


https://www.microsoft.com/en-us/research/project/network-verification/
https://www.microsoft.com/en-us/research/project/network-verification/
https://pybatfish.readthedocs.io/en/latest/
https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://www.juniper.net/documentation/us/en/software/vjunos-router/vjunos-router-kvm/topics/vjunos-router-overview-understanding.html
https://www.juniper.net/documentation/us/en/software/vjunos-router/vjunos-router-kvm/topics/vjunos-router-overview-understanding.html
https://www.juniper.net/documentation/us/en/software/vjunos-router/vjunos-router-kvm/topics/vjunos-router-overview-understanding.html
https://developer.cisco.com/docs/modeling-labs/iol/
https://developer.cisco.com/docs/modeling-labs/iol/
https://www.usenix.org/conference/nsdi23/presentation/tahmasbi
https://www.usenix.org/conference/nsdi23/presentation/tahmasbi
https://doi.org/10.17487/RFC3209

HotNets "25, November 17-18, 2025, College Park, MD, USA

(9]

(10

=

(11]

(12

—

[13

=

[14]
[15]

(16

[l

(17]

(19]

[20

[t

[21

—

[22

—

(23]

[24

=

[25

[

[26]

Andy Bavier, Nick Feamster, Mark Huang, Larry Peterson, and Jen-
nifer Rexford. 2006. In VINI veritas: realistic and controlled network
experimentation. In Proceedings of the 2006 conference on Applications,
technologies, architectures, and protocols for computer communications.
ACM, New York, NY, USA.

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017.
A General Approach to Network Configuration Verification. In Pro-
ceedings of the Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM ’17). Association for Computing Machin-
ery, New York, NY, USA, 155-168.

bharmarsameer. [n. d.]. BatFish Issue 8981: Traceroute Disagreement.
https://github.com/batfish/batfish/issues/8981. [Accessed 05-07-2025].
Matt Brown, Ari Fogel, Daniel Halperin, Victor Heorhiadi, Ratul Maha-
jan, and Todd Millstein. 2023. Lessons from the evolution of the Batfish
configuration analysis tool. In Proceedings of the ACM SIGCOMM 2023
Conference (ACM SIGCOMM ’23). Association for Computing Machin-
ery, New York, NY, USA, 122-135.

Carl Lebsack, Marcus Hines, Paul Borman, Anees Shaikh, Rob Shakir,
Wen Bo Li, et al. 2018. gNMI - gRPC Network Management Inter-
face. https://github.com/openconfig/reference/blob/master/rpc/gnmi/
gnmi-specification.md.

Roman Dodin. 2021. ContainerLab.Dev. https://containerlab.dev/.
Accessed: 2025-5-8.

Roman Dodin. 2021. Nokia SR Linux goes public. https://netdevops.
me/2021/nokia-sr-linux-goes-public/. Accessed: 2025-5-8.

Tony Fyler. 2023. Azure Outage Disconnects Thousands. https://
techhq.com/2023/01/azure-outage-disconnects-thousands. Accessed:
2024-1-30.

Aaron Gember-Jacobson, Costin Raiciu, and Laurent Vanbever. 2017.
Integrating Verification and Repair into the Control Plane. In Proceed-
ings of the 16th ACM Workshop on Hot Topics in Networks (Palo Alto,
CA, USA) (HotNets °17). Association for Computing Machinery, New
York, NY, USA, 129-135. doi:10.1145/3152434.3152439

Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and
Amin Vahdat. 2016. Evolve or Die: High-Availability Design Principles
Drawn from Googles Network Infrastructure. In Proceedings of the
2016 ACM SIGCOMM Conference (Florianopolis, Brazil) (SIGCOMM
’16). Association for Computing Machinery, New York, NY, USA, 58-72.
doi:10.1145/2934872.2934891

Chuanxiong Guo. 2015. Pingmesh: A Large-Scale System for Data
Center Network Latency Measurement and Analysis. In SIGCOMM.
Dan Halperin. [n. d.]. BatFish Issue 8744: JunOS Parsing Crash. https:
//github.com/batfish/batfish/issues/8744. [Accessed 05-07-2025].
Dan Halperin, Ari Fogel, Ratul Mahajan, Victor Heorhiadi, Matt Brown,
Spencer Fraint, Todd Millstein, Harsh Verma, and Corina Miner. 2025.
batfish/batfish. https://github.com/batfish/batfish. https://github.com/
batfish/batfish

Mike Hibler, Robert Ricci, Leigh Stoller, Jonathon Duerig, Shashi Gu-
ruprasad, Tim Stack, Kirk Webb, and Jay Lepreau. 2008. Large-scale
virtualization in the emulab network testbed. In 2008 USENIX Annual
Technical Conference (USENIX ATC 08).

Marcus Hines and Alex Masi. 2021. Kubernetes Network Emulator.
https://github.com/openconfig/kne.

Santosh Janardhan. 2021. Details About The October 4 Out-
age. https://engineering.fb.com/2021/10/05/networking- traffic/outage-
details/. Engineering at Meta (Oct. 2021). Accessed: 2024-1-30.
Peyman Kazemian, George Varghese, and Nick McKeown. 2012.
Header Space Analysis: Static Checking for Networks. In 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
12). 113-126.

Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P Brighten
Godfrey. 2012. Veriflow: verifying network-wide invariants in real

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Krentsel et al.

time. SIGCOMM Comput. Commun. Rev. 42, 4 (Sept. 2012), 467-472.
Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A network in a
laptop: rapid prototyping for software-defined networks. In Proceed-
ings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks
(Monterey, California) (Hotnets-IX). Association for Computing Ma-
chinery, New York, NY, USA, Article 19, 6 pages. doi:10.1145/1868447.
1868466

Frederic Lardinois. 2020.
TechCrunch (June 2020).
Hongqiang Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao, Sri Tal-
lapragada, Nuno Lopes, Andrey Rybalchenko, Guohan Lu,
and Lihua Yuan. 2017. CrystalNet: Faithfully Emulat-
ing Large Production Networks. (October 2017), 599-613.
https://www.microsoft.com/en-us/research/publication/crystalnet-
faithfully-emulating-large-production-networks/

Ratul Mahajan. [n.d.]. BatFish Issue 6183: Missing L3 Edge. https:
//github.com/batfish/batfish/issues/6183. [Accessed 05-07-2025].
Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar,
P Brighten Godfrey, and Samuel Talmadge King. 2011. Debugging the
data plane with anteater. In Proceedings of the ACM SIGCOMM 2011
conference (SIGCOMM ’11). Association for Computing Machinery,
New York, NY, USA, 290-301.

Marcus Hines, Rob Shakir, Sam Ribeiro, Eric Breverman, et al. 2018.
gNOI - gRPC Network Operations Interface. https://github.com/
openconfig/gnoi.

OpenConfig Project. 2015. OpenConfig. https://www.openconfig.net/.
Santhosh Prabhu, Kuan Yen Chou, Ali Kheradmand, Brighten Godfrey,
and Matthew Caesar. 2020. Plankton: Scalable network configuration
verification through model checking. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20). 953-967.
Yakov Rekhter, Susan Hares, and Tony Li. 2006. A Border Gateway
Protocol 4 (BGP-4). RFC 4271. doi:10.17487/RFC4271

Rob Shakir, Xiao Wang, Nathaniel Flath, et al. 2017. gRIBI - gRPC
Routing Information Base Interface. https://github.com/openconfig/
gribi.

Ratul Mahajan Ryan Beckett. 2020. Capturing the state of research
on network verification. https://netverify.fun/2-current-state-of-
research/. Accessed: 2022-10-9.

Whitney Sisler and Arista Networks. 2017. Arista Introduces Con-
tainerized Software for Cloud Networking - Arista. https://www.arista.
com/en/company/news/press-release/2918-pr-20170307. Accessed:
2025-5-8.

Richard Speed. 2021. AWS runs into IT Problems. https://www.
theregister.com/2021/12/15/aws_down. Accessed: 2024-1-30.
WIRED. 2019. The Catch-22 that Broke the Internet.
https://arstechnica.com/information-technology/2019/06/the-
catch-22-that-broke-the-internet/.

Xieyang Xu, Yifei Yuan, Zachary Kincaid, Arvind Krishnamurthy, Ratul
Mahajan, David Walker, and Ennan Zhai. 2024. Relational Network
Verification. In Proceedings of the ACM SIGCOMM 2024 Conference
(ACM SIGCOMM °24). Association for Computing Machinery, New
York, NY, USA, 213-227.

Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu, Bingchuan
Tian, Qiaobo Ye, Chunsheng Wang, Xin Wu, Tianchen Guo, Cheng Jin,
Duncheng She, Qing Ma, Biao Cheng, Hui Xu, Ming Zhang, Zhiliang
Wang, and Rodrigo Fonseca. 2020. Accuracy, Scalability, Coverage: A
Practical Configuration Verifier on a Global WAN. In Proceedings of the
Annual Conference of the ACM Special Interest Group on Data Commu-
nication on the Applications, Technologies, Architectures, and Protocols
for Computer Communication (Virtual Event, USA) (SIGCOMM °20).
Association for Computing Machinery, New York, NY, USA, 599-614.
doi:10.1145/3387514.3406217

IBM Cloud suffers prolonged outage.


https://github.com/batfish/batfish/issues/8981
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md
https://containerlab.dev/
https://netdevops.me/2021/nokia-sr-linux-goes-public/
https://netdevops.me/2021/nokia-sr-linux-goes-public/
https://techhq.com/2023/01/azure-outage-disconnects-thousands
https://techhq.com/2023/01/azure-outage-disconnects-thousands
https://doi.org/10.1145/3152434.3152439
https://doi.org/10.1145/2934872.2934891
https://github.com/batfish/batfish/issues/8744
https://github.com/batfish/batfish/issues/8744
https://github.com/batfish/batfish
https://github.com/batfish/batfish
https://github.com/openconfig/kne
https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/
https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1145/1868447.1868466
https://www.microsoft.com/en-us/research/publication/crystalnet-faithfully-emulating-large-production-networks/
https://www.microsoft.com/en-us/research/publication/crystalnet-faithfully-emulating-large-production-networks/
https://github.com/batfish/batfish/issues/6183
https://github.com/batfish/batfish/issues/6183
https://github.com/openconfig/gnoi
https://github.com/openconfig/gnoi
https://www.openconfig.net/
https://doi.org/10.17487/RFC4271
https://github.com/openconfig/gribi
https://github.com/openconfig/gribi
https://netverify.fun/2-current-state-of-research/
https://netverify.fun/2-current-state-of-research/
https://www.arista.com/en/company/news/press-release/2918-pr-20170307
https://www.arista.com/en/company/news/press-release/2918-pr-20170307
https://www.theregister.com/2021/12/15/aws_down
https://www.theregister.com/2021/12/15/aws_down
https://arstechnica.com/information-technology/2019/06/the-catch-22-that-broke-the-internet/
https://arstechnica.com/information-technology/2019/06/the-catch-22-that-broke-the-internet/
https://doi.org/10.1145/3387514.3406217

	Abstract
	1 Introduction
	2 Why avoid modeling?
	3 Emulation as an Opportunity
	4 Approach
	4.1 Control-Plane Emulation
	4.2 Data-Plane Verification

	5 Early Results
	6 Discussion
	References

