
Above the Clouds:
New Software Challenges in Space Computing

Haoda Wang
Columbia University
New York, NY, USA

haoda.wang@columbia.edu

Robert Pendergrast
Columbia University
New York, NY, USA

rlp2153@columbia.edu

Kristófer Björnsson
Columbia University
New York, NY, USA

kfb2117@columbia.edu

Anika Somaia
Columbia University
New York, NY, USA

anika.somaia@columbia.edu

Ezra Landa
Columbia University
New York, NY, USA

ezraklanda@gmail.com

Junfeng Yang
Columbia University
New York, NY, USA

junfeng@cs.columbia.edu

Asaf Cidon
Columbia University
New York, NY, USA

asaf.cidon@columbia.edu

Abstract
Satellite-backed services have become an essential compo-
nent of everyday life, in areas such as navigation, Internet
connectivity and imaging. The collapsing cost of launching
to space has disrupted the way satellites are deployed,
shifting the industry from a model of few expensive
fault-tolerant high-orbit satellites to arrays of commodity
low-cost SmallSats in low-Earth orbit. However, satellite
software hasn’t kept up with the hardware trends, and
missions are still using the ad-hoc flight software infrastruc-
ture built for expensive one-off missions in high-altitude
orbits, wherein operators manually deploy software to each
satellite individually. This approach is woefully inadequate
in the new emerging SmallSat operational model, where an
operator needs to manage hundreds of “wimpy” satellites
with varying hardware capabilities under intermittent com-
munication. Furthermore, SmallSat operators increasingly
“rent out” their infrastructure to third parties, and need
to support the workloads of multiple different tenants on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotNets ’25, College Park, MD, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-2280-6/25/11
https://doi.org/10.1145/3772356.3772396

the same satellites, which raises the classic problems of
isolation and security similar to cloud computing, but in the
much more constrained hardware environment of space. In
this paper, we describe the new research questions intro-
duced by this operational model. We also sketch the design
of a novel lightweight eBPF-based runtime for fleets of
multi-tenant, heterogeneous and intermittently-connected
satellites.

CCS Concepts
• Computer systems organization → Real-time sys-
tems; • Networks → Cyber-physical networks; • Software
and its engineering→ Just-in-time compilers.

Keywords
satellite computing, flight software, bytecode languages
ACM Reference Format:
Haoda Wang, Robert Pendergrast, Kristófer Björnsson, Anika So-
maia, Ezra Landa, Junfeng Yang, and Asaf Cidon. 2025. Above the
Clouds: New Software Challenges in Space Computing. InThe 24th
ACM Workshop on Hot Topics in Networks (HotNets ’25), Novem-
ber 17–18, 2025, College Park, MD, USA. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3772356.3772396

1 Introduction
Spacecraft have become a critical, though often invisible,
component of everyday life. Beyond the reliance we all
have on GPS, spacecraft data has been valuable in many
new fields, such as global food supply [1], web mapping [2]
and increasingly real-time weather reports [3], which
help governments prevent and rapidly react to natural

https://orcid.org/0000-0001-9029-8071
https://orcid.org/0009-0003-1826-3837
https://orcid.org/0009-0006-7923-3449
https://orcid.org/0009-0004-8220-1929
https://orcid.org/0009-0001-8399-8974
https://orcid.org/0009-0000-2277-6545
https://orcid.org/0009-0007-4046-2022
https://doi.org/10.1145/3772356.3772396
https://doi.org/10.1145/3772356.3772396

HotNets ’25, November 17–18, 2025, College Park, MD, USA Haoda Wang et al.

disasters such as floods and forest fires. Similarly, satellite
Internet services provide important lifelines for remote
and disaster-struck areas [4, 5]. Meanwhile, spacecraft
such as the James Webb Space Telescope and the Mars
Perseverance rover aid in scientific discovery.

The rapid rise in spacecraft deployment has been driven
by an exponential decrease in launch costs, from $88.5K1

per kilogram in 1981 on the Space Shuttle to just $1.4K on
SpaceX’s Falcon Heavy today [6]. The reduction in launch
costs has resulted in operators moving away from few ex-
pensive, custom-built satellites running bespoke software
stacks in favor of many cheap, commodity SmallSats run-
ning commodity OSes such as Linux [7]. This mirrors the
shift from large expensive mainframes to clusters of com-
modity servers during the rise of cloud computing.

The introduction of off-the-shelf parts has opened up
an emerging market for multi-tenant payloads, similar to
how compute is allocated in public clouds [8]. In such an
arrangement, clients can host their instruments onboard
a vendor’s spacecraft, saving on costs such as testing
and certification [7]. Each satellite thus serves multiple
different customers, all of whom will need to run local
applications onboard the flight computer to interface with
the instruments and preprocess data. Similar to isolation
in the cloud, operators need to ensure isolation between
each tenant’s processes, while also allowing them access to
low-level hardware interfaces.

The current cloud computing paradigm of isolation
through virtualization cannot adequately address this chal-
lenge, as the overhead from virtual machines could cause
the system to miss real-time requirements. This is further
exacerbated by the less powerful chips built for spacecraft,
some of which do not have hardware virtualization support
or even a memory management unit [7]. While previous
work in the IoT space have shown that a bytecode-based
approach can be effective at providing multi-tenancy in
low-power real-time applications [9], bytecode is far less
performant than that native code, blocking its adoption
for compute-heavy use cases such as machine learning or
image recognition.

The space environment also introduces novel compute
and communications challenges. Flight software must
also ingest data from high-fidelity sensors that can emit
gigabytes of data each second, while also taking into ac-
count realtime limitations on various processes [10]. While
these are well-studied challenges in the cloud computing
space, doing so with the low-power processors spacecraft
use [2] due to their limited thermal and power headroom
is far more challenging. Making matters worse, as more
spacecraft are launched, bandwidth between satellites and

1Normalized to 2024 dollars.

ground stations is becoming a critical bottleneck [11]. This
will require future spacecraft to be capable of complex
onboard compute, while minimizing runtime and staying
within the spacecraft’s power envelope.

While current cloud computing paradigms assume that
nodes exist in a datacenter where compute and band-
width is plentiful and latency is low, these satellites are
multi-tenant, weak, heterogeneous nodes that experience
intermittent connectivity in low-bandwidth situations.
Bringing cloud-like multi-tenant computing to such an
environment comes with an array of technical challenges.
To this end, we aim to highlight open research questions
surrounding applying systems principles to this relatively
new setting of managing vast arrays of “wimpy” satellites
running multi-tenant workloads.

Furthermore, we provide a high-level design of a new
satellite software runtime that enables operators to adapt to
new situations without rewriting large portions of it, while
enforcing isolation. To do so, a key element of our design
revolves around compartmentalizing software features into
extensions. We also show how these extensions should
be written in an ISA-independent bytecode to support
the heterogeneous low-bandwidth environment that can
run in a sandbox environment. We find that the eBPF
bytecode is a promising approach for our SmallSat use
case. eBPF’s existing kernel use case emphasizes memory
safety and isolation, an extremely important consideration
for satellites. eBPF’s lightweight, cross-ISA nature also
reaches the performance of native binaries while being
more bandwidth-efficient than other bytecodes.

2 Extended Motivation
Software is critical to the correct operation of all modern
spacecraft. While the earliest satellites merely had to
send out radio pings at regular intervals, today’s flight
software has a far wider array of responsibilities, which
requires significant computational power to both plan [12]
and execute. For example, Earth observation satellites
pre-process queries with lightweight machine learning
models before downlinking [10, 13]. Similarly, to mini-
mize latency, communication satellites often run packet
processing tasks before forwarding network traffic to a
ground station [11]. Deep space exploration spacecraft
also use complex image processing methods to accurately
determine their location [14].

Historically, satellite launches tended to be large, expen-
sive, one-off missions with little to no tolerance for error. As
there were relatively few active satellites at any one time,
it was possible to control each satellite manually with be-
spoke software [15]. Even today, state-of-the-art satellite
workflows assume teams will manually write a customized

New Software Challenges in Space Computing HotNets ’25, November 17–18, 2025, College Park, MD, USA

list of function calls daily for each satellite [16]. After ex-
ecuting each workflow, the satellite sits idle until the next
sequence is uploaded, which tends to occur once a day. Re-
cent advances in LEO SmallSats have created four new chal-
lenges, which we outline in this section.

Intermittent connectivity. Due to their lower orbits, Small-
Sats also have a lower field-of-view of the Earth.Thus, more
satellites are required in LEO constellations to provide the
same coverage compared to those in higher orbits, further
increasing the LEO SmallSat population. For example, high-
orbit constellations such as those providing GPS need only
24 satellites to provide coverage to the entire world [17].
In contrast, Planet needs over 150 LEO SmallSats to pro-
vide full coverage of the Earth [2] while Starlink uses over
4,000 active SmallSats to serve its connectivity needs [18].
The current manual approach to developing spacecraft soft-
ware [13] is inadequate for such a large number of satellites.

SmallSats also experience intermittent and sometimes
limited connectivity with ground stations, since line-of-
sight between the satellite and ground station is needed
for satellite communication and data collection [19]. Tradi-
tional satellites are less affected by this limitation because
they orbit at altitudes 160× higher than LEO, and are thus
virtually guaranteed to be within line-of-sight to a ground
station. However, the lower field-of-view of individual
SmallSats means that ground station connections are much
more intermittent. For example, a typical ground station
will have line-of-sight to a SmallSat orbiting above it for
only ~100 seconds each day. With traditional X-band radios
operating at 4 Mbps [19], this means we are have ~50 MB
of combined upload/download bandwidth each day. Every
byte consumed by software updates or other overhead is
taken from bandwidth that could otherwise be used to
return valuable collected data to Earth.

Heterogeneous compute. The rapid developmental pace
of SmallSats [20] causes new generations of SmallSats to
be launched while previous nodes are still operating, mean-
ing that constellations tend to be very heterogeneous in na-
ture. Even the individual computers within a single SmallSat
can also use different ISAs [18], further complicating soft-
ware deployment and satellite management. Ensuring that
programs will behave consistently is of utmost priority, as
issues adapting to different ISAs have caused missions to
crash [21] or explode on launch [22].

Due to their small size, SmallSats need to work with
a very limited thermal and power envelopes, which
restrict them low-power mobile hardware instead of high-
performance datacenter counterparts [23, 24]. With limited
compute available, expensive computational overhead
could lead to the spacecraft missing real-time deadlines,
or running out of power during the computation. Thus,

any type of software deployment on SmallSats needs to
minimize both execution time and computational overhead.
Hosted multi-tenant payloads. An emerging paradigm

in spacecraft design is hosted payload modules, where
a launch provider hosts sensors from multiple organiza-
tions on the same spacecraft [7]. Such a model parallels
multi-tenant cloud platforms, where a single bare-metal
computer may host virtual machines from multiple clients.
Organizations benefit from sharing the costs of assembly,
verification, and launch, which significantly decreases
launch costs compared to building bespoke spacecraft.

This model has been proven in many NASAmissions [25–
28], where different institutions manage and operate the
different instruments onboard a spacecraft. Commercially,
many startups are also adopting this concept, including
hosted payload providers such as Rocket Lab and Redwire
Space [7]. Providers must ensure isolation between client
programs, so that clients’ code do not interfere.

However, the current state-of-the-art relies on one mono-
lithic binary for all tenants [16]. Updates to fix bugs or add
new features for a tenant are thus an extremely painful pro-
cess.The current method involves the tenant sending a spec-
ification of changes to be made to the vendor, who then
implements them independently [29]. While software test-
ing is done on a replica of satellite before being uplinked,
these are by no means formal specifications, and the testing
is nowhere near comprehensive. In fact, an untested compo-
nent resulted in the total loss of a $125M mission [21].

Recent research has also proposed bringing the cloud
computing paradigm into space to minimize the bandwidth
bottleneck on ground stations as the number of active satel-
lites grows [11, 30, 31]. This approach involves deploying
datacenters in space, which will preprocess data collected
by other spacecraft before forwarding it back to ground
stations [8]. However, the expense of launching spacecraft,
combined with the limited thermal and power envelope in
space [20], will require these space-bound datacenters to
rely on embedded chips without many features available in
the datacenter, such as hardware virtualization or IOMMU.
These developments call for an efficient way to ensure safe
multi-tenancy on low-power flight computers.

3 Design Requirements
Support for heterogeneous platforms. Satellite software
must address the vast array of compute elements available
to operators. Computers used within a constellation or
exploration mission vary in clock speed, memory, storage,
available co-processors, and even ISAs. With their very
limited uplink bandwidth, writing customized binaries for
every configuration within a constellation will quickly
become infeasible. However, traditional spacecraft software

HotNets ’25, November 17–18, 2025, College Park, MD, USA Haoda Wang et al.

is currently written for just a single specific hardware
platform [32], with ad-hoc methods for interoperability be-
tween different onboard computers [33] or SmallSats [34].
Extensibility. SmallSat missions often work under con-

stantly changing conditions and mission requirements [35].
Keeping up with such conditions often requires complex
logic that cannot be expressed with legacy sequencing ap-
proaches. For example, one application involves coordinat-
ing SmallSats to take successfully higher-resolution photos
of a specific location based on data from the preceding Small-
Sats in the chain [36]. Historically, these maneuvers were
done manually, but doing so for hundreds or thousands of
small satellites is infeasible. Thus, satellite software must
also be extensible and seamlessly adapt to new applications.

Since ground station bandwidth is extremely limited,
the research community has also proposed solutions
where computations usually done on Earth would be
done on the satellite instead [8, 11, 13]. As it is often hard
to foresee every possible application of a satellite at its
launch [33], software updates for hardware in orbit is a
routine occurrence [18]. However, as flight software is a
continuously-running, hard real-time process [37], updates
require scheduling a service blackout while new software
capabilities are added [18]. To reduce downtime from
these updates, our software runtime should ensure that
component changes are seamless.

Lightweight correctness and isolation. Flight software
is a critical real-time system that spacecraft rely on for
core functions, such as navigation and positioning or
propulsion and thermal upkeep [29]. Resource starvation
could also cause critical deadlines, such as a change in
orbit to avoid space debris, to be missed [38]. Thus, in
the compute-constrained space environment, we need
to ensure that program components do not take up an
inordinate amount of compute time.

Failures in flight software have often resulted in explo-
sive mission failures [21, 22, 39]. However, as SmallSats
are “wimpier” nodes than high-orbit satellites, they often
do not have strong per-node fault tolerance, rather relying
on failing over to the rest of the constellation to maintain
uptime [40]. This still represents a significant cost to
constellation operators, as each failed node still costs tens
of thousands of dollars to build and launch. Thus, flight
software must ensure that errors should be isolated to its
component in a lightweight way.

In a multi-tenant flight software system, each tenant
should not be able to access another tenant’s memory space,
or have errors propagate past the protection boundary.
To this end, memory safety and isolation of components
are a foremost priority for satellite software. Traditionally,
spacecraft operators have only addressed memory safety by
disallowing dynamic memory allocation in their software

Flight Software Binary

OS Kernel

Guidance,
Navigation &

Control

Traditional Satellite Software Design

Sandboxed Runtime Design

OS Kernel

Instrument
Drivers

Telemetry &
Data

Management

Attitude
Control &

Propulsion

Thermal &
Power Control

Command &
Data Handling

Instrument-
Specific
Routines

Instrument
Drivers

Telemetry &
Data

Management

Attitude
Control &

Propulsion

Thermal &
Power Control

kernel

userspace

kernel

userspace

bytecode
sandbox

Figure 1: Extension-style satellite software design
compared to traditional approach. Blue and green
boxes represent native kernel and userspace code re-
spectively, white boxes are bytecode that runs in a
userspace sandbox, and the red dotted line represents
a protection boundary.
development guidelines. However, this approach greatly
limits the extensibility of the software. Adapting modern
systems approaches, such as enforcing memory and type
safety [41], may provide a lightweight way to ensure
isolation and error protection while also allowing the
software to adapt to changing requirements.

4 Bytecode-Based Runtime
We thus propose a design that replaces the old sequencing-
based hardware-dependent design with an extension-based
design using a bytecode runtime. Such a design can ensure
multi-tenant isolation, while keeping the safety constraints
of flight software and improving deployment times.
High-level tasks run in a userspace sandbox. As shown in

Figure 1, our design divides a satellite’s software capabili-
ties into high-level bytecode extensions and low-level na-
tive code. Low-level capabilities interface directly with hard-
ware and provide APIs for high-level capabilities to use the
hardware, and thus need to be expressed in native code. On
the other hand, high-level capabilities such as planning and
decision-making, which do not involve hardware at all, will
be isolated within a sandbox running in userspace.

As the vast majority of software changes in real-world
spacecraft missions also modify high-level code, expressing
it in a bytecode runtime can further lower update bandwidth
requirements. We examined the flight software of two real-
world NASA missions, containing 8.4 and 4.6 million lines
of code. We found that in both codebases, ∼15% of the code

New Software Challenges in Space Computing HotNets ’25, November 17–18, 2025, College Park, MD, USA

represents high-level behaviors, which do not directly inter-
face with devices. Of all lines changed by software updates
deployed to these spacecraft, ∼85% of them were changes to
high-level code. Therefore, we can conclude that high-level
code changes much more frequently than “base layer” code,
which remains relatively stable.

When using bytecode, the binary also no longer needs to
restart after updating, minimizing service disruption [18].
Safety constraints. The naive approach of dynamically

loading shared libraries introduces additional validation
and safety headaches. As shared libraries essentially
contain “black-box” code, allowing them to be linked into
the memory space of a critical flight software process in
a multi-tenant environment presents a security and cor-
rectness threat. In contrast, an isolated, verified bytecode
satisfies real-time and safety constraints in flight software.
Verification can ensure that the bytecode will terminate
and does not access memory out-of-bounds [42]. The
effort needed for the program to pass validation can be
offloaded to the tenants, rather than the hosted payload
provider. Bytecode also allows the provider to easily insert
checkpoints to ensure that deadlines are not missed.

Easing deployments to heterogeneous constellations.
Instead of uploading a different binary for each flight
computer’s hardware configuration, we can instead send a
single bytecode that works across all configurations in the
constellation, saving precious uplink bandwidth, as well as
greatly simplifying the task of satellites propagating the
updates peer-to-peer. As satellites travel in a train forma-
tion, every node in the constellation will always be able
to communicate with at least the nodes ahead and behind
it, like a linked list. This allows for far more flexibility in
scheduling data transfers compared to the limited amount
of uplink windows available for ground-to-space transfers.

To motivate this design, we simulate update propagation
across a constellation of 150 SmallSats at an altitude of
400km equipped with state-of-the-art VHF radios [7] capa-
ble of inter-satellite communication and a ground station
at 42°N latitude. Figure 3 shows the time to send a 50MB
update for one to four different hardware configurations
requiring unique binaries across ten trials, starting at a
random time. The update time increases as more configura-
tions need to be supported, since the ground station needs
to uplink each version of the update to at least one of the
satellites, but it can attain line-of-sight to the constellation
only a few times each day. Thus, it is more efficient to
uplink the binary for one configuration at a time, since
once any binary upload to a satellite completes, it can be
distributed and applied to other satellites with similar con-
figurations between uplink windows. The results show that
even updating two configurations becomes prohibitively
expensive, taking almost two days in our simulation due to

Feature Native OpenJDK wasmtime uBPF
Cross-ISA � � �
Safety & Isolation � � �
Termination Ensured �
Small Binary Size � �
Efficient on Low-Power � �
Floating-Point � � � OC
SIMD Support � � OC

Table 1: Comparison of candidate bytecodes and fea-
tures important for use on satellites. Entries labeled
OC are open challenges outlined in §6.
the limited bandwidth. This is a significant issue for LEO
satellite operators, which may need to push changes to
their satellites multiple times a day.

5 Comparison of Bytecode Runtimes
We aim to build upon an existing well-defined runtime that
can benefit from community support, as building a new
bytecode runtime requires vast developmental efforts. We
thus evaluated how three widely-used bytecode runtimes
fit our design requirements (§3). We found that across a
variety of dimensions listed in Table 1, uBPF, a JIT-capable
runtime for eBPF, is the most promising runtime to use
as our foundation. However, significant gaps remain in
uBPF’s current capabilities before it is ready to be a runtime
for vast arrays of wimpy satellites. We now dive into the
details of our comparison.
Benchmarks. We considered three popular bytecode run-

times for embedded devices: Java on OpenJDK, Webassem-
bly onWasmtime, and eBPF on the uBPF userspace runtime.
As shown in Figure 2, we run three benchmarks that reflect
common software onboard spacecraft. The first is a naviga-
tional workload tested on real-world spacecraft [14] doing
integer operations on large arrays. The second runs 10M
rounds of AES encryption, which ensures the integrity and
security of spacecraft communication. Our final test does
10M multiplications of a 10x10 floating-point matrix, a key
component of state estimation and neural networks.
Binary size (upload time). The first dimension we com-

pared the runtimes is on the size of the binary or bytecode
that would need to be uploaded to space. We found that na-
tive binaries are larger than bytecode since helper functions
provided in bytecode runtimes need to be included in the
native binary. Java bytecode sizes tend to be smaller than
Wasm, as Java provides a large standard library that is not
included in the binary. While a portion of the C standard
library was included in eBPF and Wasm bytecode, we find
that eBPF tends to be much more compact than Wasm, as
Wasm’s stack machine format increases the binary size.

Execution time. Native binaries unsurprisingly are much
faster than JIT-compiled bytecode in terms of execution
time. Wasmtime consistently had the longest executions,

HotNets ’25, November 17–18, 2025, College Park, MD, USA Haoda Wang et al.

Figure 2: Comparison of execution time and binary size of common bytecode runtimes. The closer to the lower
left a runtime is, the more optimal it is. Red labels show gaps in eBPF’s ISA that are open challenges described in
§6.

Figure 3: Time needed for a 50MB software update to
uplink and propagate to a constellation of 150 Small-
Sats, each with 3Mbps radios and one ground station.
which previous work attributes to its stack structure [43],
which adds considerable overhead to the JIT and emits
suboptimal native instructions. OpenJDK’s poor perfor-
mance is because the JIT-ting happens in parallel with
execution [44], and the low-power ARM CPU used in this
benchmark was unable to effectively handle this compute
load. In contrast, uBPF efficiently precompiles bytecode
before execution, saving expensive interpretation cycles
for integer operations [45], as in the image processing task.
However, its performance suffers when programs need to
use more specialized pipelines, which we discuss below.

Hardware support. Due to their open-source nature, all
three bytecodes have well-supported interpreters for com-
mon spacecraft ISAs, such as ARM, x86, and PowerPC. How-
ever, we note that Java may not be suitable for low-power
devices due to the high JIT overhead. Similarly, Wasm is ex-
pensive to translate to native ISAs, as it uses a stackmachine
architecture that differs from the register-based native ISAs.
This adds inescapable overhead, as the JIT must run an ex-
pensive register allocation pass when translating to native
code [46], and the register allocation may be less efficient
than one generated by a full compiler such as LLVM. In com-
parison, eBPF’s ISA is register-based and easily mappable to
all host ISAs, which makes JIT translation fast and efficient.

The importance of architecture-aware programming
is highlighted by the results of the encryption and ma-
trix multiplication benchmarks. The native code takes

advantage of ARM’s NEON pipelines and encryption
accelerators, which significantly reduces its execution time.
While both Java and Wasm could take advantage of the
host FPU in the matrix multiplication benchmark, eBPF’s
ISA has no floating point extension. This required us to
write a software floating point library, which executes
floating point operations as multiple ALU instructions. This
requires many more cycles per operation, and incurs a
heavy execution time penalty.
Safety and isolation. Unlike native binaries, all three run-

times provide a meaningful measure of isolation with built-
in protections. For memory safety, both Wasm and Java as-
sume that code is untrusted.They rely on expensive runtime
checks to safely run untrusted code [47], but many potential
exploits still remain [48]. While there has been some previ-
ous work in runtime safety solutions for bytecodes [9, 49],
they usually rely on interpreting bytecode to ensure mem-
ory safety, which incurs a significant performance impact.

Rather than relying on runtime protections, eBPF uses a
verifier which ensures that all pointer arithmetic is valid and
in bounds before program execution.The verifier alsomakes
sure that eBPF programs will terminate, which rules out a
destructive class of bugs for spacecraft. Verification occurs
on the ground before the functions are uplinked to the spae-
craft, minimizing the onboard power usage [50].

Results summary. By using a RISC ISA that closely
mirrors popular hardware ISAs, eBPF achieves small
binary sizes while remaining fast on low-power devices,
outclassing Wasm and Java. eBPF’s verifier also guarantees
safety and termination properties that other runtimes do
not. Though it currently lacks support for floating-point
and SIMD pipelines, support for these can be added to
eBPF by extending the ISA. eBPF thus has the potential to
become an ideal bytecode for satellite software systems,
though challenges remain that we outline in §6.

6 Open Challenges
While userspace eBPF is a promising foundation for a satel-
lite runtime, significant open challenges remain.

New Software Challenges in Space Computing HotNets ’25, November 17–18, 2025, College Park, MD, USA

Figure 4: Time for uBPF and LLVM to compile eBPF
bytecode for an image processing algorithm to native
RISC-V, at various optimization levels.

Verifying maximum runtime of bytecode. eBPF must
adapt to the real-time environment of spacecraft, where
functions have worst-case execution time maximums.
Some previous work exists that estimates a maximum
execution time for eBPF programs based on the helper
functions it calls [51]. However, this approach assumes the
computations done by the eBPF program is simple enough
to add minimal additional runtime to the program. While
this may hold true for eBPF programs managing network
flow in datacenters, embedded use cases in low-power
CPUs such as Kalman filters are computationally expensive
and will take up different amounts of time based on the
host processor. To this end, this project will need to develop
a runtime policy checker that takes into account processor
speed and instruction count in addition to the runtime of
helper functions. The policy must also manage separate
timings for integer and floating-point operations, and add
runtime accordingly for map accesses.

Efficient compilation on low-power devices. As shown in
Figure 4, JIT compilation ismuchmore efficient than a direct
translation from one bytecode to another, but much less per-
formant. An open research question is how to incorporate
metadata into bytecode to provide the JIT with additional
insight into program semantics. To meet power constraints,
we need to minimize the amount of operations the JIT com-
piler executes during the translation stage. However, we are
also limited by the amount of metadata we can include, due
to the scarcity of uplink bandwidth. This design space thus
involves a trade-off between the information we can include
in the bytecode while still remaining bandwidth-efficient.
One approach could cache addresses of vectorization candi-
dates and add inner loops to mimic SIMD instructions, min-
imizing the work the JIT needs to do.

Radiation hardening. Elevated radiation levels in space
can cause silent data corruption (SDC), such as random bit
flips, on spacecraft computers [52]. To remain performant
but cheap, SmallSat computers often lack the radiation
hardening afforded to their high-orbit counterparts [53].

Our recent work proposed a method to efficiently replicate
intensive computations on commodity computers without
significantly increasing runtime [54]. However, this method
does not work well for flight control software, which is
more control-flow dependent not easily parallelizable. The
current state-of-the-art still relies on duplicating compute
to ensure correctness, which is expensive and may not be
viable for cost-sensitive missions [55]. Efficiently keeping
real-time control code reliable on commodity devices is
thus an open avenue for future research.

eBPF’s safety properties partially addresses this issue.The
termination guarantee can detect SDCs that cause hangs,
while the runtime detects corruptions in pointer addresses
as invalid accesses. However, SDC in program data could
still result in incorrect results, and triplicating the program,
though effective, may be too expensive computationally. De-
tecting and fixing SDCs efficiently in a single-threaded man-
ner remains an open challenge.
Multi-node cooperation and intermittent networking. Our

bytecode solution is but the first step in maintaining effi-
cient multi-tenancy on satellite constellations – the larger
problem of managing inter-satellite communication and co-
ordination remains. First, the same transmission window or
flyover target can be visible to successive satellites in a train
formation at different times. Most workloads will simply re-
quire at least one, but not all of the satellites to do work
during the flyover [36]. This necessitates some form of coor-
dination for successful missions.

However, current network design patterns are insufficent
for this challange. The low orbits of SmallSat constellations
often mean that downlink to ground stations vary over
each orbit, making hub-and-spoke network topologies
suboptimal. Also, each node can only communicate with
a limited and varying number of their peers, based on
line-of-sight, and higher failure rates in space may mean
that these peers may not stay consistent, making peer-
to-peer communication difficult to manage as well. Thus,
developing efficient inter-satellite communication and
scheduling algorithms for the intermittently connected
space environment will be essential to enabling the next
generation of satellite compute.

Acknowledgments
This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship Program
under Grant No DGE-2437839. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation. The authors
thank the anonymous reviewers and our shepherd for their
helpful feedback.

HotNets ’25, November 17–18, 2025, College Park, MD, USA Haoda Wang et al.

References
[1] I. E. Mladenova, J. D. Bolten, W. T. Crow, N. Sazib, M. H. Cosh, C. J.

Tucker, and C. Reynolds. “Evaluating the operational application of
SMAP for global agricultural drought monitoring”. In: IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing
12.9 (2019), pp. 3387–3397.

[2] C. Boshuizen, J. Mason, P. Klupar, and S. Spanhake. “Results from
the Planet Labs Flock Constellation”. In: (2014).

[3] L. Scheck, M. Weissmann, and L. Bach. “Assimilating visible satel-
lite images for convective-scale numerical weather prediction: A
case-study”. In: Quarterly Journal of the Royal Meteorological Soci-
ety 146.732 (2020), pp. 3165–3186.

[4] F. Michel, M. Trevisan, D. Giordano, and O. Bonaventure. “A first
look at starlink performance”. In: Proceedings of the 22nd ACM Inter-
net Measurement Conference. 2022, pp. 130–136.

[5] Hughes and OneWeb Announce Agreements for Low Earth Orbit Satel-
lite Service in U.S. and India. https://www.hughes.com/resources/
press- releases/hughes- and-oneweb- announce- agreements- low-
earth-orbit-satellite-service-us. 2021.

[6] H. Jones. “The recent large reduction in space launch cost”. In: 48th
International Conference on Environmental Systems. 2018.

[7] B. Yost and S. Weston. State-of-the-art small spacecraft technology.
Tech. rep. 2024.

[8] N. Bleier, M. H. Mubarik, G. R. Swenson, and R. Kumar. “Space Mi-
crodatacenters”. In: Proceedings of the 56th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. 2023, pp. 900–915.

[9] R. Liu, L. Garcia, and M. Srivastava. “Aerogel: Lightweight access
control framework for webassembly-based bare-metal iot devices”.
In: 2021 IEEE/ACM Symposium on Edge Computing (SEC). IEEE. 2021,
pp. 94–105.

[10] B. Denby, K. Chintalapudi, R. Chandra, B. Lucia, and S. Noghabi.
“Kodan: Addressing the computational bottleneck in space”. In: Pro-
ceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
3. 2023, pp. 392–403.

[11] D. Bhattacherjee, S. Kassing, M. Licciardello, and A. Singla. “In-orbit
computing: An outlandish thought experiment?” In: Proceedings of
the 19th ACM Workshop on Hot Topics in Networks. 2020, pp. 197–
204.

[12] S. Kuhn. “Thermal is the Plan the Plan is Death: Deployment of the
Mars 2020 On-Board Planner”. In: 2024 IEEE Aerospace Conference.
IEEE. 2024, pp. 1–21.

[13] B. Tao, O. Chabra, I. Janveja, I. Gupta, and D. Vasisht. “Known
Knowns and Unknowns: Near-realtime Earth Observation Via
Query Bifurcation in Serval”. In: 21st USENIX Symposium on
Networked Systems Design and Implementation (NSDI 24). 2024,
pp. 809–824.

[14] J. Nash, Q. Dwight, L. Saldyt, H. Wang, S. Myint, A. Ansar, and V.
Verma. “Censible: A Robust and Practical Global Localization Frame-
work for Planetary Surface Missions”. In: IEEE International Confer-
ence on Robotics and Automation (2024).

[15] V. Z. Sun, S. Sholes, K. M. Stack, K. Farley, T. Del Sesto, R. Kro-
nyak, G. Pyrzak, R. Welch, and R. Lange. “Evolution of the Mars
2020 Perseverance Rover’s Strategic Planning Process”. In: 2024 IEEE
Aerospace Conference. IEEE. 2024, pp. 1–16.

[16] R. Bocchino, T. Canham, G. Watney, L. Reder, and J. Levison. “F
Prime: an open-source framework for small-scale flight software
systems”. In: (2018).

[17] T. H. Dixon. “An introduction to the Global Positioning System and
some geological applications”. In: Reviews of geophysics 29.2 (1991),
pp. 249–276.

[18] A. Badshah, N. Morris, and M. Monson. “Over-The-Vacuum Update
– Starlink’s Approach for Reliably Upgrading Software on Thou-
sands of Satellites”. In: Small Satellite Conference. Aug. 2023.

[19] P. A. Ilott. “Communications with Mars: A Brief and Informal HIs-
tory”. In: 2021 Space-Terrestrial Internetworking workshop (STINT)
(2021).

[20] W. A. Powell. “High-performance spaceflight computing (hpsc)
project overview”. In: Radiation Hardened Electronics Technology
Conference (RHET) 2018. GSFC-E-DAA-TN62651. 2018.

[21] M. I. Board. Mars Climate Orbiter Mishap Investigation Board Phase
I Report November 10, 1999. 1999.

[22] M. Dowson. “The Ariane 5 software failure”. In: ACM SIGSOFT Soft-
ware Engineering Notes 22.2 (1997), p. 84.

[23] J. Murphy, M. Buckley, L. Buckley, A. Taylor, J. O’brien, and B. Mac
Namee. “Deploying Machine Learning Anomaly Detection Models
to Flight Ready AI Boards”. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. 2024, pp. 6828–
6836.

[24] E. R. Dunkel, J. Swope, A. Candela, L. West, S. A. Chien, Z. Towfic, L.
Buckley, J. Romero-Cañas, J. L. Espinosa-Aranda, E. Hervas-Martin,
et al. “Benchmarking deep learning models on myriad and snap-
dragon processors for space applications”. In: Journal of Aerospace
Information Systems 20.10 (2023), pp. 660–674.

[25] G. Chin, S. Brylow, M. Foote, J. Garvin, J. Kasper, J. Keller, M. Lit-
vak, I. Mitrofanov, D. Paige, K. Raney, et al. “Lunar reconnaissance
orbiter overview: The instrument suite and mission”. In: Space Sci-
ence Reviews 129 (2007), pp. 391–419.

[26] J. P. Grotzinger, J. Crisp, A. R. Vasavada, R. C. Anderson, C. J. Baker,
R. Barry, D. F. Blake, P. Conrad, K. S. Edgett, B. Ferdowski, et al.
“Mars science laboratory mission and science investigation”. In:
Space science reviews 170 (2012), pp. 5–56.

[27] K. A. Farley, K. H. Williford, K. M. Stack, R. Bhartia, A. Chen, M. de
la Torre, K. Hand, Y. Goreva, C. D. Herd, R. Hueso, et al. “Mars 2020
mission overview”. In: Space Science Reviews 216 (2020), pp. 1–41.

[28] R. T. Pappalardo, B. J. Buratti, H. Korth, D. A. Senske, D. L. Blaney,
D. D. Blankenship, J. L. Burch, P. R. Christensen, S. Kempf, M. G.
Kivelson, et al. “Science overview of the Europa clipper mission”.
In: Space Science Reviews 220.4 (2024), p. 40.

[29] D. Dvorak. “NASA study on flight software complexity”. In: AIAA
infotech@ aerospace conference andAIAA unmanned…unlimited con-
ference. 2009, p. 1882.

[30] Y. Michalevsky and Y. Winetraub. “WaC: SpaceTEE-Secure and
Tamper-Proof Computing in Space using CubeSats”. In: Proceedings
of the 2017 Workshop on Attacks and Solutions in Hardware Security.
2017, pp. 27–32.

[31] S. K. Johnson, D. J. Mortensen, M. A. Chavez, and C. L. Woodland.
“Gateway–a communications platform for lunar exploration”. In:
38th International Communications Satellite Systems Conference
(ICSSC 2021). Vol. 2021. IET. 2021, pp. 9–16.

[32] G. E. Reeves and J. F. Snyder. “An overview of the Mars exploration
rovers’ flight software”. In: 2005 IEEE International Conference on Sys-
tems, Man and Cybernetics. Vol. 1. IEEE. 2005, pp. 1–7.

[33] V. Verma, J. Nash, L. Saldyt, Q. Dwight, H. Wang, S. Myint, J. Biesi-
adecki, M. Maimone, A. Tumbar, A. Ansar, et al. “Enabling Long &
Precise Drives forThe PerseveranceMars Rover via Onboard Global
Localization”. In: 2024 IEEE Aerospace Conference. IEEE. 2024, pp. 1–
18.

[34] J. A. Gutierrez Ahumada, K. Doerksen, and S. Zeller. “Automated
fleet commissioning workflows at Planet”. In: (2021).

[35] J. Mason, J. Stupl, W. Marshall, and C. Levit. “Orbital debris–debris
collision avoidance”. In: Advances in Space Research 48.10 (2011),
pp. 1643–1655.

https://www.hughes.com/resources/press-releases/hughes-and-oneweb-announce-agreements-low-earth-orbit-satellite-service-us
https://www.hughes.com/resources/press-releases/hughes-and-oneweb-announce-agreements-low-earth-orbit-satellite-service-us
https://www.hughes.com/resources/press-releases/hughes-and-oneweb-announce-agreements-low-earth-orbit-satellite-service-us

New Software Challenges in Space Computing HotNets ’25, November 17–18, 2025, College Park, MD, USA

[36] Z. Cheng, B. Denby, K. McCleary, and B. Lucia. “EagleEye:
Nanosatellite constellation design for high-coverage, high-
resolution sensing”. In: Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 1. ASPLOS ’24. La Jolla, CA,
USA: Association for Computing Machinery, 2024, pp. 117–132.
isbn: 9798400703720. doi: 10 . 1145 / 3617232 . 3624851. uRl:
https://doi.org/10.1145/3617232.3624851.

[37] T. Durkin. “What the Media Couldn’t Tell You About Mars
Pathfinder”. In: Robot Science & Technology 1 (1998).

[38] N. G. Leveson. “Role of software in spacecraft accidents”. In: Journal
of spacecraft and Rockets 41.4 (2004), pp. 564–575.

[39] A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising,
D. MacPherson, P. Burr, and D. Dipprey. “Report on the loss of the
Mars Polar Lander and Deep Space 2 missions”. In: (2000).

[40] J. Cappaert, F. Foston, P. S. Heras, B. King, N. Pascucci, J. Reilly, C.
Brown, J. Pitzo, and M. Tallhamm. “Constellation modelling, perfor-
mance prediction and operations management for the spire constel-
lation”. In: (2021).

[41] A. Levy, B. Campbell, B. Ghena, D. B. Giffin, P. Pannuto, P. Dutta,
and P. Levis. “Multiprogramming a 64kb computer safely and effi-
ciently”. In: Proceedings of the 26th Symposium on Operating Systems
Principles. 2017, pp. 234–251.

[42] E. Gershuni, N. Amit, A. Gurfinkel, N. Narodytska, J. A. Navas, N.
Rinetzky, L. Ryzhyk, and M. Sagiv. “Simple and precise static anal-
ysis of untrusted Linux kernel extensions”. In: PLDI 2019. Phoenix,
AZ, USA: Association for Computing Machinery, 2019, pp. 1069–
1084. isbn: 9781450367127. doi: 10 . 1145 / 3314221 . 3314590. uRl:
https://doi.org/10.1145/3314221.3314590.

[43] Y. Yan, T. Tu, L. Zhao, Y. Zhou, and W. Wang. “Understanding
the performance of webassembly applications”. In: Proceedings of
the 21st ACM Internet Measurement Conference. IMC ’21. Virtual
Event: Association for Computing Machinery, 2021, pp. 533–
549. isbn: 9781450391290. doi: 10 . 1145 / 3487552 . 3487827. uRl:
https://doi.org/10.1145/3487552.3487827.

[44] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K.
Ishizaki, H. Komatsu, and T. Nakatani. “Overview of the IBM Java
just-in-time compiler”. In: IBM systems Journal 39.1 (2000), pp. 175–
193.

[45] S. Kubica and M. Kogias. “𝜇BPF: Using eBPF for Microcontroller
Compartmentalization”. In: Proceedings of the ACM SIGCOMM 2024
Workshop on eBPF and Kernel Extensions. 2024, pp. 23–29.

[46] K. Zandberg, E. Baccelli, S. Yuan, F. Besson, and J.-P. Talpin.
“Femto-containers: lightweight virtualization and fault isolation
for small software functions on low-power IoT microcon-
trollers”. In: Proceedings of the 23rd ACM/IFIP International
Middleware Conference. Middleware ’22. Quebec, QC, Canada:
Association for Computing Machinery, 2022, pp. 161–173.
isbn: 9781450393409. doi: 10 . 1145 / 3528535 . 3565242. uRl:
https://doi.org/10.1145/3528535.3565242.

[47] J. Dejaeghere, B. Gbadamosi, T. Pulls, and F. Rochet. “Comparing
Security in eBPF and WebAssembly”. In: Proceedings of the 1st
Workshop on EBPF and Kernel Extensions. eBPF ’23. New York,
NY, USA: Association for Computing Machinery, 2023, pp. 35–
41. isbn: 9798400702938. doi: 10 . 1145 / 3609021 . 3609306. uRl:
https://doi.org/10.1145/3609021.3609306.

[48] C. Disselkoen, J. Renner, C. Watt, T. Garfinkel, A. Levy, and D. Ste-
fan. “Position paper: Progressive memory safety for webassembly”.
In: Proceedings of the 8th International Workshop on Hardware and
Architectural Support for Security and Privacy. 2019, pp. 1–8.

[49] M. Research. DeviceScript - TypeScript for Tiny IoT Devices. https :
//github.com/microsoft/devicescript. 2022.

[50] M. Craun, A. Oswald, and D. Williams. “Enabling eBPF on Embed-
ded SystemsThrough Decoupled Verification”. In: Proceedings of the
1st Workshop on EBPF and Kernel Extensions. eBPF ’23. New York,
NY, USA: Association for Computing Machinery, 2023, pp. 63–69.
isbn: 9798400702938. doi: 10 . 1145 / 3609021 . 3609299. uRl: https :
//doi.org/10.1145/3609021.3609299.

[51] R. Sahu and D. Williams. “Enabling BPF Runtime policies for better
BPF management”. In: Proceedings of the 1st Workshop on EBPF and
Kernel Extensions. eBPF ’23. New York, NY, USA: Association for
Computing Machinery, 2023, pp. 49–55. isbn: 9798400702938. doi:
10.1145/3609021.3609297. uRl: https://doi .org/10.1145/3609021.
3609297.

[52] E. Normand. “Single-event effects in avionics”. In: IEEE Transactions
on nuclear science 43.2 (1996), pp. 461–474.

[53] H. Wang, S. Myint, V. Verma, Y. Winetraub, J. Yang, and A. Cidon.
“Mars Attacks! Software Protection Against Space Radiation”. In:
Proceedings of the 22nd ACM Workshop on Hot Topics in Networks.
2023, pp. 245–253.

[54] H. Wang, S. Myint, V. Verma, Y. Winetraub, J. Yang, and A.
Cidon. “Radshield: Software Radiation Protection for Commodity
Hardware in Space”. en. In: ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems (2026).

[55] C. Skeggs. “Vivid: An Operating System Kernel for Radiation-
Tolerant Flight Control Software”. PhD thesis. Massachusetts Insti-
tute of Technology, May 2022. uRl: https://celskeggs.com/vivid.pdf.

https://doi.org/10.1145/3617232.3624851
https://doi.org/10.1145/3617232.3624851
https://doi.org/10.1145/3314221.3314590
https://doi.org/10.1145/3314221.3314590
https://doi.org/10.1145/3487552.3487827
https://doi.org/10.1145/3487552.3487827
https://doi.org/10.1145/3528535.3565242
https://doi.org/10.1145/3528535.3565242
https://doi.org/10.1145/3609021.3609306
https://doi.org/10.1145/3609021.3609306
https://github.com/microsoft/devicescript
https://github.com/microsoft/devicescript
https://doi.org/10.1145/3609021.3609299
https://doi.org/10.1145/3609021.3609299
https://doi.org/10.1145/3609021.3609299
https://doi.org/10.1145/3609021.3609297
https://doi.org/10.1145/3609021.3609297
https://doi.org/10.1145/3609021.3609297
https://celskeggs.com/vivid.pdf

	Abstract
	1 Introduction
	2 Extended Motivation
	3 Design Requirements
	4 Bytecode-Based Runtime
	5 Comparison of Bytecode Runtimes
	6 Open Challenges
	Acknowledgments

