Beyond Lamport, Towards Probabilistic Fair Ordering

Muhammad Haseeb™ Jinkun Geng™*) Radhika Mittal™ Aurojit Panda!™

Srinivas Narayana! Anirudh Sivaraman™

I New York University Stony Brook University ™ Rutgers University ™ UIUC

ABSTRACT

A growing class of applications demands fair ordering of
events, which ensures that events generated earlier are pro-
cessed before later events. However, achieving such sequenc-
ing is challenging due to the inherent errors in clock synchro-
nization: two events at two clients generated close together
may have timestamps that cannot be compared confidently.
We advocate for an approach that embraces, rather than elim-
inates, clock synchronization errors. Instead of attempting
to remove the error from a timestamp, Tommy, our pro-
posed system, leverages a statistical model to compare two
noisy timestamps probabilistically by learning per-clock syn-
chronization error distributions. Our preliminary statistical
model computes the probability that one event precedes an-
other by only relying on local clocks of clients. This serves
as a foundation for a new relation: likely-happened-before de-

noted by 2, where p represents the probability that an event

happened before another. The 2, relation provides a basis
for ordering multiple events which are otherwise considered
concurrent by Lamport’s happened-before (—) relation. We
highlight various related challenges including the intran-

sitivity of the 2, relation as opposed to the transitive —
relation. We outline several research directions: online fair
sequencing, stochastically fair total ordering, and handling
byzantine clients.

CCS CONCEPTS

» Networks — Application layer protocols; - Mathemat-
ics of computing — Probability and statistics;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HotNets °25, November 17-18, 2025, College Park, MD, USA

© 2025 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.

ACM ISBN 979-8-4007-2280-6/25/11...$15.00
https://doi.org/10.1145/3772356.3772401

KEYWORDS

Fairness, Ordering, Sequencing, Clock Synchronization,
Probabilistic Ordering

ACM Reference Format:

Muhammad Haseeb, Jinkun Geng, Radhika Mittal, Aurojit Panda,
Srinivas Narayana, Anirudh Sivaraman. 2025. Beyond Lamport,
Towards Probabilistic Fair Ordering. In The 24th ACM Workshop on
Hot Topics in Networks (HotNets °25), November 17-18, 2025, College
Park, MD, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/
10.1145/3772356.3772401

1 INTRODUCTION

Sequencers play a pivotal role in distributed systems, pro-
viding a mechanism to impose a total order on events oc-
curing potentially at different locations. They are essential
components in several fundamental protocols, such as con-
sensus and concurrency control. In consensus protocols (e.g.,
Paxos [1] and Raft [2]), the leader node serves as the se-
quencer for deciding a total order, as well as an orchestrator
for achieving agreement on the total order. More recently,
network-based sequencers have been introduced to offload
some of the complexity from these protocols. Systems such
as NOPaxos [3], Hydra [4], and Eris [5] decouple sequenc-
ing from the rest of the functionality, proposing dedicated
sequencers to improve overall system efficiency.

At its core, the function of a sequencer is simple: assign
ranks to incoming messages, thereby establishing a total
order for processing the messages. This ranking is typically
independent of when a message was originally generated.
Instead, it is assigned based on the order in which it is ob-
served by a server/sequencer (i.e., FIFO sequencer). In most
traditional applications, this FIFO approach suffices, as the
system only requires some ordering, even if arbitrary.

We make a case for fair ordering which, unlike FIFO order-
ing, requires that an earlier generated event is ordered before
a later generated event. The FIFO order could be naturally
closer to the fair order if the time between generation of
every two events is large enough that arbitrary network
delays do not obscure the order of events. However, there
is a rise in applications in which a large volume of events
is generated close together. These applications demand a
sequencing mechanism that explicitly aligns the ordering of
events with the timestamps at which the events are gener-
ated. It is particularly prominent in financial exchanges, ad

https://doi.org/10.1145/3772356.3772401
https://doi.org/10.1145/3772356.3772401
https://doi.org/10.1145/3772356.3772401

HotNets ’25, November 17-18, 2025, College Park, MD, USA

Learned Clock Offset Distributions
Fair partial order of messages
p

r, AN
R 4N >, B BN BN
@ @ 1102 2:i3:i4:
Client: | T e e e

Bq)’st effort
syncl?romzaﬂon Msgs Toutput

0

Statistical Model

Figure 1: The sequencer, Tommy, uses clock offset dis-
tributions and noisy timestamps of messages to achieve
a fair ordering of messages via a statistical model. Mes-
sages whose order cannot be confidently determined
become part of the same output batch.

exchanges, and other competitive systems [6-12], where fair-
ness is paramount, we call such applications auction-apps. In
such applications, millions of events by hundreds of clients
are generated within a very small window of time upon some
sensitive event, for example, in financial exchanges some
event leading to market volatility may be broadcasted to all
the clients simultaneously [7, 8, 13], eliciting a large volume
of responses by the clients. In these settings, ensuring that
an earlier-generated message is ranked lower (processed
sooner) than a later-generated one is crucial for maintaining
fairness among participants. It is because of such fairness
requirements and lack of fair ordering primitives, that ex-
changes today are built in private data-centers and not on
a general purpose networking fabric e.g., that of the public
cloud as seen by its tenants.

Recent Efforts: Recently the community has alluded to such
ordering in the context of auction-apps, but either the solu-
tions are (i) impractical [7, 13] due to strong assumptions
(e.g., near-perfect clock synchronization), or (ii) not gener-
ally reusable because of being coupled with the intricacies of
a particular application [8]. We define a general mechanism
for achieving fair ordering as a fair sequencer: a sequencer
that guarantees that an earlier event is ranked lower (i.e.,
processed sooner) than a later event with a high probability.

Classical Context: Lamport’s seminal work on ordering of
events [14] introduces the happened-before (—) relationship.
If two events a and b are causally related i.e., a causes b, then
they can be ordered i.e., a — b. The relation — is a transitive
relation so a set of related events can be partially ordered.
Two concurrent events, i.e., for whom a causal relationship
cannot be determined are left unordered i.e., a » b and b »
a. We are precisely interested in ordering such concurrent
events; a hard feat in its general essence as we establish in
this paper, but very much needed for fair ordering.

Fundamental Challenge: 1deal fair ordering requires perfect
clock synchronization so that two timestamped-events (from

Muhammad Haseeb, Jinkun Geng, Radhika Mittal,
Aurojit Panda, Srinivas Narayana, Anirudh Sivaraman

two different clients) can be ordered correctly even if the net-
work reorders them. Perfect clock-synchronization is impos-
sible to achieve in asynchronous or bounded-synchronous
networks [15, 16] due to fundamental uncertainty around
link delays. It is impossible to synchronize clocks of n pro-
cesses any more closely than u(1 — 1/n) where u represents
the uncertainty in the link delays [16]. This impossibility of
clock synchronization makes it challenging to achieve fair
ordering even if all parties are trusted [8].

An Approximate Solution and When It Fails: In a con-
strained setting where the time resolution of interest is sig-
nificantly coarser than the clock synchronization errors, the
fair sequencer can be implemented by a straightforward al-
gorithm as clock errors can be effectively ignored: by waiting
for at least one message from every client and then releasing
the message with the smallest timestamp, iteratively. This
algorithm achieves a fair total order, provided in-order de-
livery of messages per client. This approach is practical in
environments where all client VMs and the sequencer re-
side within a single data center, as clock synchronization
errors can be reduced to nanoseconds [17], making it prac-
tical for systems operating at microsecond or higher time
resolutions. However, when the required resolution is finer
or clock synchronization errors become pronounced, such
as in multi-data center deployments where the errors easily
reach tens of microseconds, this approach is insufficient. To
address these broader challenges, we call for a generally fair
sequencer.

A Research Vision and Associated Challenges: We advocate
leveraging the insight that two local timestamps from two
clients can be compared if the clock offsets distributions of
the clients are known. A client can learn its distribution of
clock offsets (w.r.t. the sequencer’s clock), for example, by
accumulating synchronization probes! from any clock syn-
chronization protocol. The learned offsets’ distributions are
shared with the sequencer, enabling a comparison of two
local timestamps. Figure 1 sketches a possible system archi-
tecture. Based on this ability, we introduce a new relation:

likely-happened-before, 2, where p denotes the probability

ie inx LN y, x happened before y with probability p. Similar
to how — relation is used for defining a partial order on

P
events, the — relation can be used to provide a fair partial

order. However, as the ﬂ> relation is probabilistic, ordering
all concurrent events with high confidence may not always
be possible. Hence, only a partial order is expected. It is
important to minimize such instances of non-ordering as oth-
erwise a trivial solution is to leave all events as unordered.
This ordering based on 2, constitutes fair ordering.

LA synchronization probe is a packet sent by a clock synchronization proto-
col from one client to the other to find and correct any clock offset.

Beyond Lamport, Towards Probabilistic Fair Ordering

. . . p .
There are two main challenges in using the — relation to

achieve fair ordering: (i) unlike the — relation, the — relation
is not necessarily transitive, so using it to order more than
two events is non-trivial and, (ii) finding the probability p

for constructing 2, relations. We later present a preliminary
statistical model to calculate p. Once p is known, it can be
used to obtain an ordering which has high confidence (§3.4).
Intransitivity and Ordering of Multiple Events: 1t is possi-
ble for the probability of event A preceding event B to be
high, the probability of B preceding C to be high, and yet the
probability of C preceding A to also be high. In a similar vein,
an ordinary cat may prefer fish to meat, meat to milk and

milk to fish, in exhibiting cyclic ordering. This renders LN
not necessarily a transitive relation, hindering us from defin-
ing an order on the events from pairwise relations. We later
discuss a solution for handling such intransitivity, while also
presenting a sequencer for the case where probabilities are
transitive. Transitivity exists for some nicely shaped distribu-
tions like Gaussian distributions (proof in a tech report [18])
but may not hold for arbitrary distributions (e.g., [19]).

Furthermore, online sequencing is an equally challenging
problem as sequencing a given set of events primarily be-
cause of (i) network asynchrony and, (ii) figuring out whether
some future events may need the same or lower rank than
some given events. We later discuss a direction for achieving
online sequencing. We prototype our statistical approach,
Tommy, and present simulation results demonstrating its
effectiveness compared to a naive TrueTime (Spanner) based
baseline [20]. We highlight a range of research directions
enabled by our approach —potentially culminating in a novel
sequencing primitive that supports a broad class of emerging
applications atop general-purpose networking infrastruc-
ture.

2 RELATED WORK AND MOTIVATION

Cloud Exchanges: Recent proposals for cloud-hosted finan-
cial exchanges [7, 8, 13] deal with the same sequencing prob-
lem. However these systems either simplify the problem by
making strong assumptions like negligible clock synchro-
nization errors or they reduce the scope of the problem by
limiting what kinds of events are possible. Figure 2 shows a
Waits For One (WFO) sequencer which waits for one mes-
sage from all clients and releases the one with the smallest
timestamp, iteratively. This sequencer is employed by [21]
and works as long as the clock synchronization errors are
small enough to be ignored so that the timestamps on the
messages can be considered representing a global-clock time.
On-Prem Exchanges: On-premise exchanges engineer their
infrastructure for fair ordering: connecting all clients to the
server using equal length wires and employing low jitter

HotNets *25, November 17-18, 2025, College Park, MD, USA

WFO

Xmeters | X meters

665 é8b 640

Tommy FIFO

Clocks with negligible
Best effort clock sync.

sync. error
Figure 2: Fair if Figure 3: Fair w/o Figure 4: Fair if all
clocks are perfectly constraints but wires are of equal

synchronized. probabilistically. length.

switches (e.g., L1 switches [22]). In such a setting, the server
can process messages in the order of their arrival which
would be equivalent to ordering them on their generation
timestamps (Figure 4). However, such a sequencer can only
be deployed by modifying the underlying infrastructure.
Tommy, our proposal, is a solution that does not make such
assumptions or require special infrastructure (Figure 3).

Departing from Arbitrary Ordering: Pompe [23] proposes
departing from an arbitrary total order and instead allowing
the nodes of a Replicated State Machine to present hints
about their desired ordering of events. However, Pompe is
fundamentally different from Tommy in its goals. Pompe
focuses on the question of how to keep a subset of replicas
from influencing the ordering of events unilaterally. It has
applications in settings e.g., blockchains, where Byzantine
failures are possible. Tommy, on the other hand, focuses
on whether and how an ordering of events can be achieved
which reflects the true order of event occurrences.

Our Motivation: Our motivation stems from the efforts
around migrating financial exchanges to the public cloud.
Financial exchanges have traditionally been built in private
data centers or colocation facilities, where the physical net-
work is engineered to provide fairness guarantees. This elim-
inates the need for a fair sequencer in such environments.
However, a recent wave of research [7, 8, 13, 21] exploring
the migration of financial exchanges to the public cloud has
created a demand for new networking primitives. One such
primitive, briefly mentioned in Onyx [21], is a sequencer for
fair total ordering. The design of Onyx assumes that clock
synchronization errors are significantly smaller than the time
resolution of interest, allowing it to disregard clock variabil-
ity. However, we observe that this assumption does not hold
if the system is deployed across multiple cloud regions where
the clock synchronization errors can be significantly higher
(e.g., in the order of milliseconds [24]), necessitating a more
generalized fair sequencer.

Auction-apps: Beyond financial exchanges, many applica-
tions can benefit from such a sequencer, including ad ex-
changes and competitive marketplaces. An application involv-
ing a shared state among multiple clients, where any particular

HotNets ’25, November 17-18, 2025, College Park, MD, USA

order of writes can be advantageous/disadvantageous for some
clients i.e., clients may compete to write earlier than others,
is a candidate for fair sequencing. We call such applications
auction-apps. The rise of competitive marketplaces [6-12]
and our discussion with experts demonstrate that such ap-
plications are becoming ubiquitous.

Fairness: We use the term fairness differently from the typ-
ical networking/scheduling notions of fairness i.e., Jain’s
index [25], CFS [26] or throughput-centric fairness. We de-
fine fairness in sequencing as follows:

Definition 1 (Fair Sequencing). Messages generated by the
clients should be seen by a server in the same order as their
generation is observed by an omniscient observer.”

Other notions of fairness in sequencing may also be pos-
sible, but we only focus on Definition 1. Furthermore, in
practice, the timestamp (w.r.t the local clock) at which an
event actually occurs and the timestamp (w.r.t the local clock)
that is associated with the event generation by a client can
have non-zero difference because of some latency between
the application and the clock. For the sake of this position
paper, we assume the difference is negligible.

3 PRELIMINARY DESIGN FOR TOMMY

Each client’s clock may have some error w.r.t. the sequencer’s
clock due to imperfect clock synchronization.> The se-
quencer, Tommy, receives messages from clients with times-
tamps attached, attempts to order them and form batches
(Bi, Bj, ..). All messages within a batch B; will have a rank i
where successive batches have higher ranks. Ideally, if mes-
sage a is created before message b according to the global-
clock, then the rank of the batch containing a should be
smaller than the rank of the batch containing b. If two times-
tamps cannot be ordered confidently, then the corresponding
messages should be part of the same batch. The challenge
is to come up with the batches that maximizes fairness: the
more batches we make, the better fairness we achieve.*

We decompose the above problem into two steps: (i) find-
ing the probability of one message preceding another mes-

sage (§3.2, §3.3) to construct the 2, relation and, (ii) using
the pairwise relationships to get ordered batches (§3.4) that
provides a fair partial order on all messages. We assume
all messages are present at the sequencer before it starts
sequencing. Later in §3.5, we lift this assumption. The pre-
liminary system does not handle the case where clock offset

2 An omniscient observer has access to a global clock with infinite resolution
and has instantaneous knowledge of all events. It serves as an idealized
scheme to compare against.

3Synchronizing clients’ clocks with the sequencer’s clock is sufficient as
opposed to synchronizing clients’ and sequencer’s clock with a global clock.
4 Assuming no two events occur at the same instant.

Muhammad Haseeb, Jinkun Geng, Radhika Mittal,
Aurojit Panda, Srinivas Narayana, Anirudh Sivaraman

distributions lead to intransitive probabilities on the order
of events, but we discuss a direction for a possible solution.

3.1 System Model

Each client submits a message to the sequencer and attaches
the current timestamp from its local clock. A message i has
timestamp T;. However, due to clock synchronization errors,
the true timestamp of the message (from the sequencer’s per-
spective) is: T, = T; + 0; where 0; represents the clock offset
of a client (w.r.t the sequencer’s clock) at the exact moment
when the message i is generated. The offset 6; is unknown
but follows probability distribution fy,. The sequencer can
observe Tj, not T;".

Different clients may have different distributions due to
heterogeneous synchronization conditions (e.g., different
temperature in different parts of a data center, asymmetric
latency between clients). Each client learns their own dis-
tribution (by accumulating clock synchronization probes)
and provides information about their distribution to the se-
quencer (§5).

3.2 Ordering Probability

It is impossible to compute T;* exactly but we can compare
two timestamps T;" and T} by only observing T; and T; using
a probabilistic analysis that assumes the knowledge of clock
offset distributions fp, and fp,.

We analyze the probability that one event/message pre-
cedes another. This probability is called the preceding-
probability:

P(Ty <T; | T, Tj) =P(T; + 0; < T; + 0;).
Rearranging,
B(Ty < T, | T.T)) =B(6; — 6 > T, -).
Since 0; and 6; are random variables, their difference follows
a new distribution:
AO =0; —6; ~ fap.
Then the preceding-probability is given by:

P(Ty < T/ | T, T)) =/ faedA.
-1,

If two independent random variables follow Gaussian
distributions, then their difference also follows a Gauss-
ian distribution [27]. Therefore, for independent Gaussian-
distributed clock synchronization errors, A6 would be
Gaussian-distributed. In this case, the preceding-probability

is simply @ (W) , where ®(x) is the standard nor-
- O'i +O'j

mal CDF, and y; and o7 respectively represent the mean and

variance of fp,.

Beyond Lamport, Towards Probabilistic Fair Ordering

3.3 Handling Arbitrary Distributions

When the clock offsets §; and 8; follow arbitrary distributions
rather than Gaussian or when we are uncertain about the
distribution of A6, we may not have a well-known solution
form. Such cases have been reported where although the
clock-offsets data appear Gaussian-like, it shows a long tail
and skewed behavior [28]. We must estimate the PDF fg for
each pair of clients to compute the preceding probabilities
to account for non-Gaussian behavior.

Computing all A\Os to get frg: For each round of clock syn-
chronization probes to the clients, a sequencer could gather
all the probes and calculate pairwise probe differences (Afs)
and learn their distribution (fag) across several rounds. This
is communication and computation intensive. If a clock sync.
protocol has a high probe frequency, it would increase the
communication to sequencer as well. However, a simpler
and efficient method exists, explained below.

Clients learn their own fy,: If clients learn their own off-
set (w.r.t. the sequencer’s clock) distributions over several
rounds of clock synchronization, they can share their re-
spective distributions with the sequencer which could per-
form (pairwise) convolutions to estimate fag for each pair of
clients.

Convolution for finding the Probability Density Function
(PDF): The PDF of AO= 0; — 0; is given by the convolution of

the individual PDFs 6; and §; i.e., fag(A) = / fo, () fo, (&-

A)dE. This approach requires less communication from the
clients to the sequencer as clients merely send their respec-
tive learned distributions to the sequencer as opposed to
sending all the clock synchronization probes.

Optimizing the convolutions calculations: The calculations
of all pairwise convolutions at the sequencer can further be
optimized by leveraging Fast Fourier Transform: convolution
in the time domain is multiplication in the frequency domain.
Instead of computing a convolution, we can (i) compute
Fourier transforms of fp; and f_g,, (i) multiply them point-
wise and, (iii) compute the inverse Fourier transform to get
fae- This process has log-linear time complexity if using FFT,
as opposed to the quadratic complexity of convolution.
Once fpg is obtained, the preceding-probability is sim-
(e8]
ply: P(T; < T; | T., Tj) = fag(A)dA. This framework
supports arbitrary clock error models, making it robust for
real-world environments.

3.4 Fair Ordering

P .
Once we define the — relation, we can work towards order-
ing multiple events. We model each message as a node in a

graph, where 2, denotes a directed edge with weight p. In

HotNets *25, November 17-18, 2025, College Park, MD, USA

our construction, there will be two edges between each pair
of nodes; for every such pair, we discard the edge with the
lower weight (assuming no ties). From the resultant graph,
we can extract a linear ordering of events by finding a topo-
logical ordering. Questions remain whether a topological
ordering exists or which topological ordering to select if
multiple orderings are possible.

Assuming clock offsets distributions that lead to transi-

tivity for ﬁ), the graph forms a transitive tournament [29].5
Transitive tournaments have a unique Hamiltonian path,
hence a unique topological ordering. So the problem sim-
plifies in the case of transitivity. In a tech report [18], we
prove how Gaussian distributions always lead to the required
transitivity. The tech report [18] illustrates an example with
several events and respective transitive preceding probabili-
ties and how fair ordering is achieved.

In the case of intransitivity of ﬁ>, the resulting graph could
be cyclic so no topological ordering may be possible. We may
need some transformation of the graph to enable extracting
a (most probable) linear ordering. One option is to remove
some edges that renders the graph acyclic. However, it would
lead to unfairness towards some messages/clients. For ex-
ample, for three events whose preceding probabilities form
a cycle, we could remove one edge to get a linear order-
ing but the removal of the edge would lead to ignoring one
preceding-probability in the final linear ordering. A notion
of stochastic fairness could be introduced and every time a
set of messages is processed, we remove some edges from
the graph in a fashion that leads to fairness over the long run.
However, finding the smallest set of edges whose removal
would make a graph acyclic is an NP-hard problem. These
aspects of fair ordering make the problem non-trivial under
intransitivity, warranting further research.

The extracted linear ordering from the graph, even under
transitive probabilities, cannot be construed as a final or-

dering. 2, relations of some adjacent messages in the linear
ordering have a p just slightly above 0.5 while other may
have a p close to 1; so it cannot be considered fair with a
reasonable confidence. We batch adjacent messages such

that if i 2 Jj has p > threshold then a batch boundary is
created between i and j, making i and j belong to two differ-
ent batches. Finally, the first such batch is assigned a rank of
0 while successive batches get incremental ranks, yielding
a fair ordering of messages. The messages which we can-
not order confidently become part of the same batch; thus
our ordering is partial and not total. The hyper-parameter

SA directed graph with exactly one edge between every pair of nodes is
called a tournament. A tournament in which the edge relation is transitive
is called a transitive tournament.

HotNets ’25, November 17-18, 2025, College Park, MD, USA

Threshold dictates the confidence of our ordering and needs
to be selected carefully.

A Threshold closer to 1 creates fewer and bigger batches,
while a Threshold closer to 0.5 creates smaller and more
batches. A higher value of Threshold provides more confi-
dence in the output ordering but may lead to more number
of messages left as unordered i.e., part of the same batch.
Ideally, each batch should be of size 1. Hence, maximizing
fairness amounts to creating smaller batches. While maxi-
mizing correctness may require staying indifferent about the
(concurrent) messages, i.e., making them part of the same
batch as we can never be 100% confident about ranking of
batches. We leave the optimization of Threshold as future
work and currently use a value of 0.75 in the evaluation.

Although we achieve partial ordering on the messages,
it is a total ordering on the batches. The sequencer emits
one batch at a time to an upstream application for further
processing of the corresponding messages.

3.5 Online Sequencing

The above discussion on ordering assumes that the sequencer
has received all the messages that need to be sequenced.
However, in practice, messages arrive as a stream, and the
sequencer must operate in an online fashion. Crucially, the
sequencer must ensure that once a batch of messages is emit-
ted, i.e., released after sequencing, no new message should
arrive that either belongs in the same batch or demands a
lower rank.

Two main questions: The challenge of online sequencing
boils down to answering two key questions. Q1: Given a
batch of timestamps (of messages), what future timestamps
might still need to be included in the current batch? Q2: How
can we ensure that all messages with timestamp ¢ (or < t)
have already arrived at the sequencer? Q1 arises due to clock
synchronization errors —specifically, a client ¢ may have
enough uncertainty in their local timestamps that messages
from another client, with later timestamps, must be grouped
with ¢’s messages. In such scenarios, although two messages
i, j from a client can be ordered w.r.t each other, they must
belong to the same batch as a third high-uncertainty message
k from another client. This is required because P(T;" < T;)
as well as P(Tj* < T}}) can both be very small. The second
question reflects the challenges introduced by network asyn-
chrony. Our accompanying tech report [18] illustrates online
sequencing with an example.

Safe batch emission: We hint at how the answer to Q1 can be
extracted which is equivalent to calculating waiting-period
to safely emit a batch. The sequencer can safely emit a batch
if no new message that needs a lower or equal rank arrives
during this waiting period, otherwise a new waiting period
is calculated accounting for the newly received messages.

Muhammad Haseeb, Jinkun Geng, Radhika Mittal,
Aurojit Panda, Srinivas Narayana, Anirudh Sivaraman

1.00- e TrueTime

O Tommy

0 20 40 60 80 100 120
Clocks (Std.) Deviation

Figure 5: Tommy achieves fairer sequencing than True-
Time. Size of the marker (and color intensity) is pro-
portional to the inter-messages gap across clients.

This could in theory lead to blocking the sequencer from
emitting any messages if the arrival pattern of messages and
the clock offsets distributions are set adversely. We have not
tackled this yet.

A safe way to emit a batch is to calculate a future time TF
for each message i in the batch such that

P(T < TF) > pate

where psafe can be set to a high value to ensure enough
confidence (e.g., 0.999). T that respects the above constraint
can be trivially and efficiently computed by a binary search
on the future timestamps.

The safe emission time for the entire batch becomes:

T, = max (TF) Vk € batch

The sequencer after finalizing a batch, will only emit it (i)
once its clock reaches Tj, timestamp and, (ii) it has not re-
ceived any further messages that should be part of the batch
or deserve a lower rank. If new messages arrive before T
which violate (ii), then Tj is extended accounting for the new
messages. The parameter pg,fe presents a trade-off between
latency of emitting a batch and certainty of fairness.

Dealing with network asynchrony: There are several direc-
tions for dealing with network asynchrony (for Q2). Assum-
ing bounded asynchrony and waiting for sufficiently long
enough is a common practice while [7] studies the impact
of waiting period on fairness. Another direction, applica-
ble to auction-apps is to assume the knowledge of a fixed
number of clients. This simple knowledge is powerful in an-
swering Q2. To ensure all messages generated before some
timestamp ¢ have arrived, the sequencer simply waits for
messages or heartbeats with timestamp greater than ¢ from
all clients. This works as long as the communication between
each client and the sequencer happens through an ordered
delivery channel (e.g., TCP connection). However, this design
may cost liveness i.e., a failed client may halt the sequencer
from emitting any messages.

Beyond Lamport, Towards Probabilistic Fair Ordering

4 EVALUATION

We evaluate our statistical model using a simulator with 500
clients, each assigned a Gaussian clock offsets distribution,
N (u, 0?). At message generation, a client reads the wall-clock
time ¢, samples noise € from the distribution, and tags the
message with T = t + €. The sequencer receives all messages
before ordering, i.e., we do not evaluate online sequencing.
Ground-truth timestamps (t) are also collected for evaluation.
Clients send their distributions and timestamped messages
to the sequencer as shown in Figure 1. We seed the clients
with clock offsets distributions, instead of clients learning
such distributions, so the following results are an upper-
bound on the performance as the errors in estimating such
distributions are not captured.

For baseline, we emulate Spanner TrueTime [20], where
each message is assigned an uncertainty interval [T—-30, T+
30], and overlapping intervals are assigned the same rank.

We propose a metric, Rank Agreement Score (RAS): +1 for
each correct ordered pair, —1 for incorrect, and 0 for indiffer-
ence i.e., for assigning same batch to a pair of messages.

Figure 5 shows RAS (each point is the sum of RAS of all
pairs of messages) for both approaches, with marker size (and
color intensity) showing inter-messages gaps across clients.
With low clock errors (lower x-axis), both systems perform
comparably. Tommy outperforms (higher y-axis) TrueTime,
when inter-messages gap decreases (marker size/color inten-
sity decreases) and/or clock errors increase (higher x-axis).
However, Tommy’s probabilistic nature can lead to nega-
tive RAS under high uncertainty/high clock errors, whereas
TrueTime’s RAS remains 0 due to its conservative nature.

5 FUTURE RESEARCH

.. p . , . P
Characterization of —: Unlike Lamport’s — relation, — re-
lation is not necessarily transitive, which makes extracting
the linear ordering a challenge. More research is needed

to (i) render ?, transitive by some transformation of the
problem space (e.g., barring the relation of some elements
by enforcing constraints on event occurrence pattern), and
(ii) studying the probability distributions of clock offsets to

. P cps
establish when — can be safely treated as transitive.

Host-network variability: Jitter in the host’s data path can
affect an application’s access to the local clock as well as the
latency of sending out a message. Advancements in low-
latency and low-jitter host networking (e.g., DPDK [30],
XDP [31], RTOS [32]) have minimized latency variations
in the host data path. However, it remains to be studied how
low latency variance can be reduced and whether it sets an
upper bound on the achievable fairness guarantees.

Extension to Fair Total Order: The proposed sequencer
emits batches instead of individual messages. As the batch

HotNets *25, November 17-18, 2025, College Park, MD, USA

size can be arbitrarily large, some applications may require
emitting individual messages instead of batches. Doing this
would require extending the fair partial order to fair total
order of messages. Arbitrarily breaking ties on messages of
a batch would violate fairness as some clients may always
be preferred over others. A random mechanism for breaking
ties might be of interest as it would lead to stochastic fairness
over a sufficiently long duration.

Learning Clock Offsets Distributions: Any clock synchro-
nization protocol gives each client enough information to
estimate its offsets distribution. Each synchronization probe
may add an offset (w.r.t. to the sequencer’s clock) to the
clock of a client. Such offsets can be used to estimate the
distribution. This mechanism may be too brittle for extraor-
dinary conditions like a part of the data-center experiencing
abrupt temperature changes, leading to dramatic clock sync.
errors. A robust mechanism for capturing such errors in the
respective distributions is needed. Similarly, more research
is needed to account for the clock drift errors along with the
clock offsets errors in the error distributions.

Byzantine Clients: Byzantine failures further complicate the
problem of fair sequencing. A study about achievable fairness
guarantees in the presence of Byzantine failures is needed.
Pompe [23] can serve as a promising starting point for further
exploration. In auction-apps, clients have an incentive to dic-
tate sequencing of messages e.g., by manipulating the times-
tamps attached to the messages, as it may translate to mon-
etary benefits e.g., winning trades in a financial exchange.
In-depth investigation of security boundaries is needed to
make fair sequencing practical. The trust models in [21]
provide a starting point.

6 CONCLUSION

We present the problem of fair sequencing and associated
challenges which warrant substantial future research. We
advocate for utilizing clock offset distributions along with
a best effort clock synchronization protocol to construct a
pairwise relation, likely-happened-before. The proposed rela-
tion helps in achieving probabilistic fair ordering of events,
useful for an emerging class of applications which require
fairly ordering several concurrent events.

7 ACKNOWLEDGMENTS

We thank the reviewers and our shepherd, Jon Crowecroft,
for their helpful comments. We thank Ramakrishnan Krish-
namurthy and Fabian Ruffy for their helpful comments and
productive brainstorming sessions. This work was supported
by NSF CAREER award (2340748).

HotNets ’25, November 17-18, 2025, College Park, MD, USA

REFERENCES

(1]

—
w
=

—_
w
=

—_
(=)
—

—
(o)
=

—_
=}
-

[10

=

[11

—

(12

—

(13]

Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133-169, May 1998. ISSN 0734-2071. doi: 10.1145/279227.279229.
URL https://doi.org/10.1145/279227.279229.

Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. In Proceedings of the 2014 USENLX Conference on
USENIX Annual Technical Conference, USENIX ATC’14, page 305-320,
USA, 2014. USENIX Association. ISBN 9781931971102.

Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and
Dan R. K. Ports. Just say NO to paxos overhead: Replacing consensus
with network ordering. In 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 16), pages 467-483, Savannah,
GA, November 2016. USENIX Association. ISBN 978-1-931971-33-1.
URL https://www.usenix.org/conference/osdil6/technical-sessions/
presentation/li.

Inho Choi, Ellis Michael, Yunfan Li, Dan R. K. Ports, and Jialin Li.
Hydra: Serialization-Free network ordering for strongly consistent
distributed applications. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages 293-320, Boston,
MA, April 2023. USENIX Association. ISBN 978-1-939133-33-5. URL
https://www.usenix.org/conference/nsdi23/presentation/choi.

Jialin Li, Ellis Michael, and Dan R. K. Ports. Eris: Coordination-free
consistent transactions using in-network concurrency control. In Pro-
ceedings of the 26th Symposium on Operating Systems Principles, SOSP
’17, page 104-120, New York, NY, USA, 2017. Association for Comput-
ing Machinery. ISBN 9781450350853. doi: 10.1145/3132747.3132751.
URL https://doi.org/10.1145/3132747.3132751.

Amazon Ads. What is real-time bidding (rtb)? definition and im-
portance. https://advertising.amazon.com/library/guides/real-time-
bidding. Accessed: 2025-04-07.

Ahmad Ghalayini, Jinkun Geng, Vighnesh Sachidananda, Vinay Sri-
ram, Yilong Geng, Balaji Prabhakar, Mendel Rosenblum, and Anirudh
Sivaraman. Cloudex: A fair-access financial exchange in the cloud. In
Proceedings of the Workshop on Hot Topics in Operating Systems, HotOS
’21, page 96-103, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450384384. doi: 10.1145/3458336.3465278. URL
https://doi.org/10.1145/3458336.3465278.

Eashan Gupta, Prateesh Goyal, Ilias Marinos, Chenxingyu Zhao, Rad-
hika Mittal, and Ranveer Chandra. Dbo: Fairness for cloud-hosted
financial exchanges. In Proceedings of the ACM SIGCOMM 2023 Confer-
ence, ACM SIGCOMM ’23, page 550-563, New York, NY, USA, 2023. As-
sociation for Computing Machinery. ISBN 9798400702365. doi: 10.1145/
3603269.3604871. URL https://doi.org/10.1145/3603269.3604871.
Nike Shoe Bot. Nike shoe bot - the ultimate sneaker bot, 2025. URL
https://www.nikeshoebot.com/. Accessed: 2025-03-19.

AIO Bot. Aio bot | the ultimate sneaker bot for automatic copping,
2025. URL https://www.aiobot.com/. Accessed: 2025-03-19.

Kasada. Nft bots: How they work and how to stop them, 2025. URL
https://www .kasada.io/nft-bots/. Accessed: 2025-03-19.

Arjun Balasingam, Karthik Gopalakrishnan, Radhika Mittal, Moham-
mad Alizadeh, Hamsa Balakrishnan, and Hari Balakrishnan. Toward a
marketplace for aerial computing. In Proceedings of the 7th Workshop
on Micro Aerial Vehicle Networks, Systems, and Applications, Dronet
’21, page 1-6, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450385992. doi: 10.1145/3469259.3470485. URL
https://doi.org/10.1145/3469259.3470485.

Muhammad Haseeb, Jinkun Geng, Ulysses Butler, Xiyu Hao, Daniel
Duclos-Cavalcanti, and Anirudh Sivaraman. Poster: Jasper, a scal-
able and fair multicast for financial exchanges in the cloud. In
Proceedings of the ACM SIGCOMM 2024 Conference: Posters and De-
mos, ACM SIGCOMM Posters and Demos ’24, page 36-38, New

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Muhammad Haseeb, Jinkun Geng, Radhika Mittal,
Aurojit Panda, Srinivas Narayana, Anirudh Sivaraman

York, NY, USA, 2024. Association for Computing Machinery. ISBN
9798400707179. doi: 10.1145/3672202.3673728. URL https://doi.org/
10.1145/3672202.3673728.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558-565, July 1978. ISSN 0001-0782. doi:
10.1145/359545.359563. URL https://doi.org/10.1145/359545.359563.
Nikolaos M. Freris, Scott R. Graham, and P. R. Kumar. Fundamental
limits on synchronizing clocks over networks. IEEE Transactions on Au-
tomatic Control, 56(6):1352—1364, 2011. doi: 10.1109/TAC.2010.2089210.
Jennifer Lundelius and Nancy Lynch. An upper and lower bound
for clock synchronization. Information and Control, 62(2):190—
204, 1984. ISSN 0019-9958. doi: https://doi.org/10.1016/S0019-
9958(84)80033-9. URL https://www.sciencedirect.com/science/article/
Ppii/S0019995884800339.

Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel
Rosenblum, and Amin Vahdat. Exploiting a natural network effect
for scalable, fine-grained clock synchronization. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18),
pages 81-94, Renton, WA, April 2018. USENIX Association. ISBN
978-1-939133-01-4. URL https://www.usenix.org/conference/nsdi18/
presentation/geng.

Muhammad Haseeb, Jinkun Geng, Radhika Mittal, Aurojit Panda, Srini-
vas Narayana, and Anirudh Sivaraman. Fair ordering, 2025. URL
https://arxiv.org/abs/2510.13664.

Richard P. Savage Jr. and. The paradox of nontransitive dice.
The American Mathematical Monthly, 101(5):429-436, 1994. doi:
10.1080/00029890.1994.11996968. URL https://doi.org/10.1080/
00029890.1994.11996968.

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christo-
pher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak,
Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David
Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Ya-
sushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and
Dale Woodford. Spanner: Google’s globally distributed database.
ACM Trans. Comput. Syst., 31(3), August 2013. ISSN 0734-2071. doi:
10.1145/2491245. URL https://doi.org/10.1145/2491245.

Muhammad Haseeb, Jinkun Geng, Daniel Duclos-Cavalcanti, Xiyu
Hao, Ulysses Butler, Radhika Mittal, Srinivas Narayana, and Anirudh
Sivaraman. Network support for scalable and high performance cloud
exchanges. In Proceedings of the ACM SIGCOMM 2025 Conference,
SIGCOMM °25, page 1110-1131, New York, NY, USA, 2025. Associa-
tion for Computing Machinery. ISBN 9798400715242 doi: 10.1145/
3718958.3750530. URL https://doi.org/10.1145/3718958.3750530.
leptonsys.com. Layer 1 switches: Key functions and tech-
nologies. https://www .leptonsys.com/blog/layer-1-switches-key-
functions-and-technologies.

Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo
Alvisi. Byzantine ordered consensus without byzantine oligarchy. In
14th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 20), pages 633-649. USENIX Association, November 2020.
ISBN 978-1-939133-19-9. URL https://www.usenix.org/conference/
0sdi20/presentation/zhang-yunhao.

Jinkun Geng, Shuai Mu, Anirudh Sivaraman, and Balaji Prabhakar.
Tiga: Accelerating geo-distributed transactions with synchronized
clocks. In Proceedings of the ACM SIGOPS 31st Symposium on
Operating Systems Principles, SOSP ’25, page 555-571, New York,
NY, USA, 2025. Association for Computing Machinery. ISBN
9798400718700. doi: 10.1145/3731569.3764854. URL https://doi.org/
10.1145/3731569.3764854.

Raj Jain, Dah Ming Chiu, and Hawe WR. A quantitative measure of
fairness and discrimination for resource allocation in shared computer

https://doi.org/10.1145/279227.279229
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/li
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/li
https://www.usenix.org/conference/nsdi23/presentation/choi
https://doi.org/10.1145/3132747.3132751
https://advertising.amazon.com/library/guides/real-time-bidding
https://advertising.amazon.com/library/guides/real-time-bidding
https://doi.org/10.1145/3458336.3465278
https://doi.org/10.1145/3603269.3604871
https://www.nikeshoebot.com/
https://www.aiobot.com/
https://www.kasada.io/nft-bots/
https://doi.org/10.1145/3469259.3470485
https://doi.org/10.1145/3672202.3673728
https://doi.org/10.1145/3672202.3673728
https://doi.org/10.1145/359545.359563
https://www.sciencedirect.com/science/article/pii/S0019995884800339
https://www.sciencedirect.com/science/article/pii/S0019995884800339
https://www.usenix.org/conference/nsdi18/presentation/geng
https://www.usenix.org/conference/nsdi18/presentation/geng
https://arxiv.org/abs/2510.13664
https://doi.org/10.1080/00029890.1994.11996968
https://doi.org/10.1080/00029890.1994.11996968
https://doi.org/10.1145/2491245
https://doi.org/10.1145/3718958.3750530
https://www.leptonsys.com/blog/layer-1-switches-key-functions-and-technologies
https://www.leptonsys.com/blog/layer-1-switches-key-functions-and-technologies
https://www.usenix.org/conference/osdi20/presentation/zhang-yunhao
https://www.usenix.org/conference/osdi20/presentation/zhang-yunhao
https://doi.org/10.1145/3731569.3764854
https://doi.org/10.1145/3731569.3764854

Beyond Lamport, Towards Probabilistic Fair Ordering

26

(27

[28

[29

(30

[31

(32

=

—

—

[

]

—

—

systems. CoRR, ¢s.NI1/9809099, 01 1998.

Chee Siang Wong, Ian Tan, Rosalind Deena Kumari, and Fun Wey. To-
wards achieving fairness in the linux scheduler. SIGOPS Oper. Syst. Rev.,
42(5):34-43, July 2008. ISSN 0163-5980. doi: 10.1145/1400097.1400102.
URL https://doi.org/10.1145/1400097.1400102.

John G. Proakis. Probability, random variables and stochastic processes.
IEEE Trans. Acoust. Speech Signal Process., 33:1637, 1985. URL https:
//api.semanticscholar.org/CorpusID:2072334.

Ha Yang Kim. Modeling and tracking time-varying clock drifts in wireless
networks. PhD thesis, Georgia Institute of Technology, Atlanta, GA,
USA, 2015.

S I Gass and. Tournaments, transitivity and pairwise comparison
matrices. Journal of the Operational Research Society, 49(6):616—-624,
1998. doi: 10.1057/palgrave.jors.2600572. URL https://doi.org/10.1057/
palgrave.jors.2600572.

DPDK Project. Data plane development kit (dpdk). https:/
www.dpdk.org/. Accessed: 2025-04-07.

Toke Hepiland-Jergensen, Jesper Dangaard Brouer, Daniel Borkmann,
John Fastabend, Tom Herbert, David Ahern, and David Miller. The
express data path: fast programmable packet processing in the operat-
ing system kernel. In Proceedings of the 14th International Conference
on Emerging Networking EXperiments and Technologies, CONEXT 18,
page 54-66, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450360807. doi: 10.1145/3281411.3281443. URL
https://doi.org/10.1145/3281411.3281443.

Real-Time Linux Project. Real-time linux. https:
//wiki.linuxfoundation.org/realtime/start. Accessed: 2025-04-07.

HotNets *25, November 17-18, 2025, College Park, MD, USA

https://doi.org/10.1145/1400097.1400102
https://api.semanticscholar.org/CorpusID:2072334
https://api.semanticscholar.org/CorpusID:2072334
https://doi.org/10.1057/palgrave.jors.2600572
https://doi.org/10.1057/palgrave.jors.2600572
https://www.dpdk.org/
https://www.dpdk.org/
https://doi.org/10.1145/3281411.3281443
https://wiki.linuxfoundation.org/realtime/start
https://wiki.linuxfoundation.org/realtime/start

	Abstract
	1 Introduction
	2 Related Work and Motivation
	3 Preliminary Design for Tommy
	3.1 System Model
	3.2 Ordering Probability
	3.3 Handling Arbitrary Distributions
	3.4 Fair Ordering
	3.5 Online Sequencing

	4 Evaluation
	5 Future Research
	6 Conclusion
	7 ACKNOWLEDGMENTS
	References

