
Tackling Ambiguity in User Intent for LLM-based
Network Configuration Synthesis

Rajdeep Mondal
University of California, Los

Angeles
Los Angeles, CA, USA

Nikolaj Bjørner
Microsoft Research
Redmond, WA, USA

Todd Millstein
University of California, Los

Angeles
Los Angeles, CA, USA

Alan Tang
Microsoft

Redmond, WA, USA

George Varghese
University of California, Los

Angeles
Los Angeles, CA, USA

Abstract
Beyond hallucinations, another problem in program synthe-
sis using LLMs is ambiguity in user intent. We illustrate the
ambiguity problem in a networking context for LLM-based
incremental configuration synthesis of route maps and ACLs.
Configuration stanzas frequently overlap in header space,
making the relative priority of actions impossible for the
LLM to infer without user interaction. Measurements in a
large cloud identify complex ACLs with 100s of overlaps,
showing ambiguity is a real problem. We propose a proto-
type system,Clarify, augmenting an LLMwith a newmodule
called aDisambiguator that helps elicit user intent. On a small
synthetic workload, Clarify incrementally synthesizes rout-
ing policies and interactively disambiguates user intent to
ensure correctness.

CCS Concepts
•Networks→Networkmanageability; •Human-centered
computing→ Systems and tools for interaction design.

Keywords
Large language models (LLMs), network verification, net-
work configuration synthesis, specification ambiguity, incre-
mental program synthesis

ACM Reference Format:
RajdeepMondal, Nikolaj Bjørner, ToddMillstein, Alan Tang, andGeorge
Varghese. 2025. Tackling Ambiguity in User Intent for LLM-based
Network Configuration Synthesis. In The 24th ACM Workshop on

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
HotNets ’25, College Park, MD, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2280-6/25/11
https://doi.org/10.1145/3772356.3772402

Hot Topics in Networks (HotNets ’25), November 17–18, 2025, Col-
lege Park, MD, USA. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3772356.3772402

1 Introduction
"Life is ambiguous; there are many right answers - all depend-
ing on what you are looking for." - Roger van Oech

While LLM technology for program synthesis is dramat-
ically improving and hallucinations may disappear, LLMs
will never be able to read a user’s mind for their intent. Tech-
niques like RAG [2, 6, 11, 15, 26, 35], chain of thought [36]
and Agentic AI [13] greatly reduce hallucinations and incor-
rect output. However, one key bottleneck remains even if
an LLM can perform program synthesis perfectly: the need
for the user to fully and unambiguously specify their intent.
This is difficult to do even for relatively simple settings and
is infeasible to expect users to do correctly for realistic tasks.
A recent study [17] on disentangling possible meanings

from ambiguous English sentences found that only 32% of
the LLM-proposed resolutions were considered correct in
crowd-sourced evaluations. Another study [24] showed that
LLMs are inconsistent in applying factual knowledge when
prompted with ambiguous entities, with performance deteri-
orating to 75% with under-specified commands. To address
this problem, Amazon Bedrock recently introduced their Au-
tomated Reasoning framework that enables users to validate
logical models extracted from policy documents and identify
ambiguities in cases where model outputs can have multiple
interpretations [25].
We present an approach that addresses this problem in

the context of synthesis for program updates, where an ex-
isting piece of code is extended to support new functionality
or fix bugs. For concreteness, we focus on updates to net-
work configurations, specifically updates to routing policy
(route-maps) and access control (ACLs). Such updates hap-
pen frequently and need to be correct, and while LLMs are a

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3772356.3772402
https://doi.org/10.1145/3772356.3772402
https://doi.org/10.1145/3772356.3772402

HotNets ’25, November 17–18, 2025, College Park, MD, USA Rajdeep Mondal, Nikolaj Bjørner, Todd Millstein, Alan Tang, and George Varghese

natural fit for synthesizing updates, the lack of unambiguous
specifications remains a limiting factor in practice [27].

We observe that often the intent of an update is itself rela-
tively simple and unambiguous. However, if care is not taken
then this update can easily cause regressions and unexpected
behavior through interactions and interference with exist-
ing parts of the configuration, based on where the update is
inserted. The basic idea of our approach is to leverage this
observation by asking the LLM to synthesize a config snippet
in isolation given the intent of a change, and then to use a
new component that we call a disambiguator to determine
where to place the snippet to satisfy the full user intent.

Figure 1 shows the flow diagram of our proposed approach.
Like prior work on LLM-based network configuration synthe-
sis [20], we iterate synthesis with verification. However, our
approach performs synthesis incrementally: each synthesis
call produces a single new stanza to add to an existing config-
uration policy (route-map or ACL). This stanza is specified
and synthesized in isolation, which dramatically simplifies
the jobs of both the user (in specifying behavior) and the
LLM (in synthesizing a correct stanza). We then introduce a
new component called a disambiguator, which asks targeted
behavioral questions to determine where to place the new
stanza within the existing configuration, effectively eliciting
the full specification from the user in an incremental fashion.

2 Disambiguation workflow
In the cyclic workflow shown in Figure 1, the user starts
with a simple natural language intent to add a stanza to an
existing route-map or access-list. The intended behavior is
then clarified through differential examples shown to the
user over multiple interactions.

2.1 LLM Query and Verification
Consider the following routing policy named ISP_OUT writ-
ten in Cisco IOS syntax [5]. Cisco route-maps (Cisco’s name
for routing policies) can use various ancillary lists for match-
ing against specific BGP attributes. For example, in this con-
figuration, the as-path list D0 checks whether a BGP route
originates from ASN 32, while the prefix-list D1 looks
for specific prefixes in the route advertisement. The route-
map ISP_OUT contains 3 stanzas, which are evaluated in
order, and a BGP route is compared against each stanza until
a match occurs. Stanza 10 denies all routes matching the
as-path list D0, stanza 20 denies any prefix specified in D1,
and stanza 30 permits all routes with a local-preference value
of 300. Any route that fails to match one of these stanzas is
implicitly denied due to a default termination rule.

ip as-path access-list D0 permit _32$

ip prefix-list D1 seq 10 permit
10.0.0.0/8 le 24

ip prefix-list D1 seq 20 permit
20.0.0.0/16 le 32

ip prefix-list D1 seq 30 permit
1.0.0.0/20 ge 24

route-map ISP_OUT deny 10
match as-path D0

route-map ISP_OUT deny 20
match ip address prefix-list D1

route-map ISP_OUT permit 30
match local-preference 300

We want to add a new stanza that permits routes with
community 300:3 and prefix 100.0.0.0/16 with mask length
≤ 23, setting their metric to 55. So we write the following
prompt in simple English language (note that we refrain from
including any ISP_OUT specific information in the prompt):

Write a route -map stanza that permits
routes containing the prefix
100.0.0.0/16 with mask length less
than or equal to 23 and tagged with
the community 300:3. Their MED value
should be set to 55.

To prevent LLM errors, we augment the system prompt
with a task description (e.g., generate only one route-map
stanza in Cisco IOS syntax) and few-shot examples contain-
ing similar prompts and their translations.
When the user submits a query, we first invoke an inter-

mediate LLM call (1 in Figure 1) to classify it as either an
ACL or route-map synthesis query. Based on this classifi-
cation, we retrieve the corresponding system prompts and
examples from a database (2) and select the appropriate
synthesis pipeline. For the given example, the classifier iden-
tifies a route-map synthesis query. GPT-4 then generates the
following output (3):

ip community-list expanded COM_LIST
permit _300:3_

ip prefix-list PREFIX_100 permit
100.0.0.0/16 le 23

route-map SET_METRIC permit 10
match community COM_LIST
match ip address prefix-list PREFIX_100
set metric 55

To verify the generated snippet’s correctness, we use GPT-
4 again to to produce a JSON specification from the modified
user prompt (3 in Figure 1) as:

Tackling Ambiguity in User Intent for LLM-based Network Configuration Synthesis HotNets ’25, November 17–18, 2025, College Park, MD, USA

1

2

2

3

4

5

6

Figure 1: Incremental synthesis with verification: The user first provides an intent for a single new config rule
or stanza, which is used to identify the query type and retrieve context. The LLM generates the corresponding
configuration snippet, which is verified for correctness. The disambiguator takes this and the original route-map or
ACL as inputs. It searches for the correct insertion point, generating differential examples to highlight behavioral
differences across candidate locations and resolve ambiguities through user feedback.

{
" pe rmi t " : t rue ,
" p r e f i x " : [" 1 0 0 . 0 . 0 . 0 / 1 6 : 1 6 − 2 3 "] ,
" community " : " / _300 : 3 _ / " ,
" s e t " : { " me t r i c " : 5 5 }

}

The user checks the specification manually to ensure that
it has semantics equivalent to the original intent, which for
one stanza is easy to cross-check. We then verify that the
synthesized stanza meets the synthesized specification us-
ing existing Batfish analysis methods for proving behavioral
properties of ACLs and route maps (searchFilters and
searchRoutePolicies). The automated verification and feed-
back cycle continues until the LLM finally produces the cor-
rect output or we reach a threshold and punt to the user (5
in Figure 1) who starts over or provides more information.

2.2 Disambiguation
After verifying syntactic and semantic correctness for the
LLM-generated stanza in isolation, the next step is to insert
it into the correct location in the original route-map (6
in Figure 1). Figure 2 shows 4 possible insertion scenarios.
To help the user determine intent, we use a tool called a
disambiguator that compares different scenarios (using the
compareRoutePolicies analysis in Batfish) and helps the

user to clarify their preferences through differential exam-
ples. Currently, our disambiguator prototype only supports
stanza insertions at the top or bottom of the initial route-map
(a and b in Figure 2). For example, it finds the following input
route (among others) that leads to differential behavior with
respect to the route-maps of Figures 2(a) and 2(b):

Network: 100.0.0.0/16
AS Path: [{ "asns": [32],

"confederation ": false }]
Communities: ["300:3"]
Local Preference: 100
Metric: 0
Next Hop IP: 0.0.0.1
Tag: 0
Weight: 0

There are two possible behaviors, depending on where the
new stanza is inserted.
OPTION 1:

ACTION: permit
Network: 100.0.0.0/16
AS Path: [{ "asns": [32],

"confederation ": false }]
Communities: ["300:3"]
Local Preference: 100
Metric: 55
Next Hop IP: 0.0.0.1

HotNets ’25, November 17–18, 2025, College Park, MD, USA Rajdeep Mondal, Nikolaj Bjørner, Todd Millstein, Alan Tang, and George Varghese

ip community-list expanded D2 permit

300:3

ip prefix-list D3 permit 100.0.0.0/16

le 23

route-map ISP_OUT permit 10

match community D2

match ip address prefix-list D3

set metric 55
route-map ISP_OUT deny 20

match as-path D0

route-map ISP_OUT deny 30

match ip address prefix-list D1

route-map ISP_OUT permit 40

match local-preference 300

(a)

ip community-list expanded D2 permit

300:3

ip prefix-list D3 permit 100.0.0.0/16

le 23

route-map ISP_OUT deny 10

match as-path D0

route-map ISP_OUT deny 20

match ip address prefix-list D1

route-map ISP_OUT permit 30

match local-preference 300
route-map ISP_OUT permit 40

match community D2

match ip address prefix-list D3

set metric 55

(b)

ip community-list expanded D2 permit

300:3

ip prefix-list D3 permit 100.0.0.0/16

le 23

route-map ISP_OUT deny 10

match as-path D0
route-map ISP_OUT permit 20

match community D2

match ip address prefix-list D3

set metric 55
route-map ISP_OUT deny 30

match ip address prefix-list D1

route-map ISP_OUT permit 40

match local-preference 300

(c)

ip community-list expanded D2 permit

300:3

ip prefix-list D3 permit 100.0.0.0/16

le 23

route-map ISP_OUT deny 10

match as-path D0

route-map ISP_OUT deny 20

match ip address prefix-list D1
route-map ISP_OUT permit 30

match community D2

match ip address prefix-list D3

set metric 55
route-map ISP_OUT permit 40

match local-preference 300

(d)
Figure 2: Possible insertion points for the LLM-synthesized stanza within the route-map ISP_OUT. Snippets high-
lighted in yellow show the new stanza’s location. The AS path list D0 and prefix list D1 are omitted for brevity. Data
structure names are automatically updated by the tool during insertion.

Tag: 0
Weight: 0

OPTION 2:

ACTION: deny

The user is given this information and asked to select which
behavior they want. For instance, if the user selects the first
option, then disambiguation is complete and we get the final
route-map as shown in Figure 2(a). In general, the disam-
biguation process can require multiple such queries to the

user in order to uniquely identify where the new stanza
should be placed.

3 How common are overlaps?
Ambiguity is a real problem only if route maps and ACLs
used in practice have considerable overlap. We developed
a Batfish extension to analyze the frequency and scope of
overlaps in them within the WAN of a major cloud provider
and a university campus network. Two ACL rules are said to
have a conflicting overlap if they perform different actions
on a packet containing a header that is successfully matched
by both. For route-maps, we define two stanzas to have an

Tackling Ambiguity in User Intent for LLM-based Network Configuration Synthesis HotNets ’25, November 17–18, 2025, College Park, MD, USA

Figure 3: Network topology used for evaluation

overlap if there is at least one route advertisement that suc-
cessfully matches both. We ignore actions for route maps
because a route-map stanza may be linked to other route-
maps using goto, continue and call statements. Thus the
route map overlap calculation is an upper bound.

3.1 Overlaps in a Cloud Network
Unfortunately, Batfish did not have support for all vendors
used in the cloud network. As a result, we only ran experi-
ments on the configurations that could be parsed. We exam-
ined 237 non-identical ACLs, some of which may be created
from the same template, and determined that 69 had at least
one overlap; 48 of these had an overlap count of more than
20. In one case, an ACL that processes nodes entering the
network from an outside network contained dozens of rules
permitting and denying combinations of source prefixes, des-
tination prefixes, and protocols. This results in over 100 pairs
of overlapping rules. In this case, the ordering of the rules
can have a large effect on the behavior of the ACL.

Turning to route maps, the ones applied to routes from or
to external neighbors perform fairly complex logic; thus sev-
eral contain overlapping stanzas. We examined 800 policies
and found 140 contain overlaps. Of these, three were found
to have more than 20 overlaps each. In the campus network,
each BGP neighbor typically used one route map for import-
ing and one for exporting. In routers we examined in the
cloud, it was more common to use a sequence of multiple
route maps. Hence, there can be overlaps not just between
different stanzas within a single route map, but also between
different route maps applied to the same neighbor.

3.2 Overlaps in a Campus Network
In the campus network consisting of 1421 device configura-
tions, we analyzed 169 route-maps. We found 2 route-maps
with overlapping stanzas. One route-map had three overlap-
ping stanza pairs, of which two were conflicting.

Access-control lists were more widely used in the campus
network with 11,088 ACLs. Of these, 37.7% had conflicting
rule overlaps. Further, 27% of such ACLs had more than
20 conflicts. This analysis included pairs where one rule’s
match condition is a proper subset of the other (e.g. permit
tcp host 1.1.1.1 host 2.2.2. and deny ip any any).
If we ignore such cases, then the percentage of ACLs with
non-trivial overlaps comes out to be approximately 18.6%.
Of these, 16.3% show an overlap count of greater than 20.
In summary, overlaps are very common making manual

incremental changes perilous whether done by an LLM based
system or a human operator. A small error in intent can break
existing policies and cause major network downtime [19].

4 Disambiguation Algorithm
In this section we formalize the disambiguation problem and
our approach. Let 𝐼𝑛𝑝𝑢𝑡 denote the set of all possible input
routes or packets to a route map or ACL. We model each
of these components abstractly as a sequence of rules. Let
𝑅𝑢𝑙𝑒 be the set of all possible rules. A rule 𝑆 matches against
an input 𝑟 based on specified conditions and performs some
action on it. If there is a successful match, then the function
matches(𝑟, 𝑆) returns true, otherwise false.

A route map or ACL is then modeled as a list of rules 𝑆 =

[𝑆1, 𝑆2, ..., 𝑆𝑛], and its semantics is defined by the function
𝑀 : 𝐼𝑛𝑝𝑢𝑡 → 𝑅𝑢𝑙𝑒 defined as follows:

∀𝑟 ∈ 𝐼𝑛𝑝𝑢𝑡, 𝑀 (𝑟) = argmin
𝑆∈𝑆 | matches(𝑟, 𝑆)

𝑀 formalizes which rule each route is handled by — the
leftmost rule that matches. Note that route maps and ACLs
have an implicit deny statement in the end, which we can
model by adding an explicit rule at the end of 𝑆 .

Wemodel the disambiguation problem as follows. The user
would like to insert a new rule,S∗, into 𝑆 , and the intent is for
the resulting list of rules to satisfy a new semantic function
𝑀 ′ : 𝐼𝑛𝑝𝑢𝑡 → 𝑅𝑢𝑙𝑒 . Of course, 𝑀 ′ cannot be arbitrary — it
must have a strong relationship to 𝑀 in order for it to be
possible to be constructed solely by inserting a single new
rule. We formalize the required relationship between𝑀 and
𝑀 ′ in the following three conditions that𝑀 ′ must satisfy:

• ∀𝑟 ∈ 𝐼𝑛𝑝𝑢𝑡, 𝑀 ′ (𝑟) = 𝑀 (𝑟) ∨𝑀 ′ (𝑟) = 𝑆∗
• ∀𝑟 ∈ 𝐼𝑛𝑝𝑢𝑡, 𝑀 ′ (𝑟) = 𝑆∗ ⇒ matches(𝑟, 𝑆∗)
• ∀𝑟, 𝑟 ′ ∈ 𝐼𝑛𝑝𝑢𝑡, matches(𝑟, 𝑆∗) ∧ matches(𝑟 ′, 𝑆∗) ∧
𝑀 ′ (𝑟) = 𝑀 (𝑟) ∧ 𝑀 ′ (𝑟 ′) = 𝑆∗ ⇒ 𝑀 (𝑟) ≤ 𝑀 (𝑟 ′)

The first condition formalizes the incremental nature of
the update: every route is either handled as it was before or
is handled by the new rule 𝑆∗. The second condition ensures
that any route handled by the new rule is in fact matched by
that rule. The final condition is perhaps the most interesting:
it ensures that there is at least one location where 𝑆∗ can be
inserted into 𝑆 in order to implement𝑀 ′. Specifically, if there
are two inputs 𝑟 and 𝑟 ′ that match the new stanza 𝑆∗ but

HotNets ’25, November 17–18, 2025, College Park, MD, USA Rajdeep Mondal, Nikolaj Bjørner, Todd Millstein, Alan Tang, and George Varghese

Router #Route-maps #LLM calls #Disambiguation

M 4 9 5
R1 5 12 6
R2 5 12 6

Figure 4: Statistics for generating and disambiguating
the route-maps for Figure 3 incrementally.

only 𝑟 ′ should be handled by the new stanza, then the origi-
nal stanza handling 𝑟 must come before the original stanza
handling 𝑟 ′, so we can place 𝑆∗ somewhere in between.

Given these conditions on𝑀 ′, we can use binary search to
solve the disambiguation problem and determine where to
insert S∗ into 𝑆 . First, we collect all rules {S} (maintaining
their relative order) in 𝑆 for which ∃𝑟 ∈ 𝐼𝑛𝑝𝑢𝑡 such that
matches(𝑟, 𝑆) ∧ matches(𝑟, 𝑆∗). Then, we extract the mid-
dle rule from {S}, and ask the user to clarify the desired
behavior by showing them differential examples. Based on
the user’s choice, one half of the subset is discarded and
search continues in the other half. Hence, users are queried a
logarithmic number of times to fully disambiguate insertion.
Note that we do not assume a single fixed location for

inserting a new rule. If the initial assumptions hold, our
algorithm will find one valid insertion point, with all such
locations being equivalent in terms of the resulting route-
map or ACL behavior. However, this can pose a problem
when inserting multiple rules sequentially. There can be
situations where the order in which they are added, and the
choices made by our algorithm on where to insert them, can
cause the approach to fail even though there is a solution.
For the special case where all the inserted rules should be
contiguous, our algorithm would still succeed. Lastly, Clarify
does not yet have support for deleting or modifying existing
rules in the configuration. That is left as future work.

5 Evaluation
To validate Clarify’s efficacy in implementing router config-
urations incrementally from scratch, we created a synthetic
topology (Figure 3) inspired by an example from Lightyear
[30] and implemented the following global policies on it:
• Reused prefixes within the datacenter and management
should be mutually invisible.

• The special prefix 10.1.0.0/16 (which is a service within
the datacenter) should be visible to M.

• M should prefer the path through R1 to reach 10.1.0.0/16.
• No bogon prefixes should be advertised.
• ISP1 and ISP2 should be mutually unreachable via our
network
These policies are similar to those used in wide-area net-

works [30]. Following Lightyear, we decomposed these global
policies into local policies for each router, and incrementally
synthesized the configurations for 𝑅1, 𝑅2 and 𝑀 . Figure 4

shows statistics for the number of route-maps per router,
number of calls made to the LLM and the number of times
the user had to clarify their choice during updates. Some
route-maps were reused because similar policies were ap-
plied on interfaces, reducing the number of LLM calls.
Using the prompting technique of Section 2, GPT-4 was

able to synthesize the correct stanza every time in a single
pass and no errors were detected. While promising, this is a
simple topology with only a few stanzas in each route-map.
Much more experience is required with real operators.

6 Related Work
Recent work [27] discusses the critical need for specifications
for LLM-based systems and identifies ambiguity as a key chal-
lenge. They propose multiple strategies for disambiguation,
taking inspiration from regular human interactions. These
approaches aim to improve the LLM’s ability to handle ambi-
guities. We instead observe that semantic comparison, com-
mon in differential verification [9, 31, 37], can instead be used
to interactively resolve ambiguities efficiently and correctly.

There are several prior approaches to network configura-
tion synthesis. Closest to our work are the techniques that
also employ generative AI to translate English intents [10,
14, 16, 18, 20, 32, 33]. Some of these approaches tackle the
problem of LLM errors, for example by including a verifier in
the loop [20, 21], by pretraining on a networking dataset [16],
or by leveraging existing configuration templates to reduce
the search space [12, 18, 38]. Some of these methodologies
have been used in the broader domain of software synthe-
sis [28, 34]. However, none of these techniques handle the
issue that we address, namely ambiguity in the user intent.

Other work on network configuration synthesis uses two
main approaches: (1) users specify intents in a domain-specific
language (DSL), and these intents are then automatically
compiled to device configurations[1, 3, 4, 8, 22, 23]; and (2)
users specify intents through an existing set of configura-
tion templates [7, 29]. These techniques eliminate ambiguity
by using a precise intent language. However, the first ap-
proach requires users to be conversant with the DSL, while
the second requires mapping arbitrary intents to templates.

7 Conclusion and Future Work
While much research has focused on handling hallucinations
in LLM produced code, our paper deals with incorrect code
produced by ambiguity in user-specified intent. We address
this problem via a form of incremental synthesis. An LLM
writes a formal snippet based on natural language intent, and
Clarify employs semantic comparisons to interact with the
user to determine where the new snippet should be placed.
A natural question is whether the LLM itself could play

the role of the disambiguator. While this would be possible

Tackling Ambiguity in User Intent for LLM-based Network Configuration Synthesis HotNets ’25, November 17–18, 2025, College Park, MD, USA

to explore, we believe that symbolic reasoning tools are a bet-
ter fit, since at that point in the process we have structured
inputs with well-defined semantics (candidate configuration
updates) and a precise goal (identifying behavioral differ-
ences). Our approach still leverages the LLM for what it does
better than any other technology — turning natural language
specifications into configuration stanzas.

Our paper is only a toy demonstration, and there is much
work to be done to make it a practical tool for network con-
figuration updates. First, the tool needs support for inserting
entries into other data structures that can have conflicts like
prefix lists, community-lists and AS-path lists. Second, the
disambiguator presently only handles two insertion loca-
tions. Third, we have only used one form of LLM augmen-
tation (few-shot examples). Can chain-of-thought, retrieval-
augmented generation, graph RAG or agentic AI do better?

Finally, we note that the problem of intent disambiguation
is very general, so our solution is potentially applicable to
other settings. For example, disambiguation is required for
code generation tasks beyond network configurations, and
it can be useful for network configuration updates even if
they are performed manually rather than via an LLM.

8 Acknowledgement
The work of Rajdeep Mondal, Todd Millstein and George
Varghese at UCLA was partly supported by the National
Science Foundation under award CNS-2402958.

References
[1] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya

Akella. 2020. AED: incrementally synthesizing policy-compliant and
manageable configurations. In Proceedings of the 16th International
Conference on Emerging Networking EXperiments and Technologies
(Barcelona, Spain) (CoNEXT ’20). Association for Computing Machin-
ery, New York, NY, USA, 482–495. doi:10.1145/3386367.3431304

[2] Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh
Hajishirzi. 2023. Self-RAG: Learning to Retrieve, Generate, and Critique
through Self-Reflection. arXiv:2310.11511 [cs.CL] https://arxiv.org/
abs/2310.11511

[3] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and
David Walker. 2016. Don’t Mind the Gap: Bridging Network-wide
Objectives and Device-level Configurations. In Proceedings of the 2016
ACM SIGCOMM Conference (Florianopolis, Brazil) (SIGCOMM ’16).
Association for Computing Machinery, New York, NY, USA, 328–341.
doi:10.1145/2934872.2934909

[4] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and
David Walker. 2017. Network configuration synthesis with abstract
topologies. SIGPLAN Not. 52, 6 (June 2017), 437–451. doi:10.1145/
3140587.3062367

[5] Cisco Systems, Inc. [n. d.]. Cisco IOS Configuration Fundamentals
Command Reference. https://www.cisco.com/c/en/us/td/docs/ios/
fundamentals/command/reference/cf_book.html. Accessed 05-10-
2025.

[6] Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao,
Apurva Mody, Steven Truitt, Dasha Metropolitansky, Robert Osazuwa
Ness, and Jonathan Larson. 2025. From Local to Global: A Graph RAG

Approach to Query-Focused Summarization. arXiv:2404.16130 [cs.CL]
https://arxiv.org/abs/2404.16130

[7] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin
Vechev. 2018. NetComplete: Practical Network-Wide Configuration
Synthesis with Autocompletion. In 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 18). USENIX Asso-
ciation, Renton, WA, 579–594. https://www.usenix.org/conference/
nsdi18/presentation/el-hassany

[8] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin T.
Vechev. 2017. Network-Wide Configuration Synthesis. In Computer
Aided Verification - 29th International Conference, CAV 2017, Heidelberg,
Germany, July 24-28, 2017, Proceedings, Part II (Lecture Notes in Com-
puter Science, Vol. 10427), Rupak Majumdar and Viktor Kuncak (Eds.).
Springer, 261–281. doi:10.1007/978-3-319-63390-9_14

[9] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh
Govindan, Ratul Mahajan, and Todd Millstein. 2015. A General Ap-
proach to Network Configuration Analysis. In 12th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 15).
USENIX Association, Oakland, CA, 469–483. https://www.usenix.
org/conference/nsdi15/technical-sessions/presentation/fogel

[10] Ahlam Fuad, Azza H. Ahmed, Michael A. Riegler, and Tarik Čičić.
2024. An Intent-based Networks Framework based on Large Language
Models. In 2024 IEEE 10th International Conference on Network Soft-
warization (NetSoft). 7–12. doi:10.1109/NetSoft60951.2024.10588879

[11] Yunfan Gao, Yun Xiong, Meng Wang, and Haofen Wang. 2024. Modu-
lar RAG: Transforming RAG Systems into LEGO-like Reconfigurable
Frameworks. arXiv:2407.21059 [cs.CL] https://arxiv.org/abs/2407.
21059

[12] Zhenbei Guo, Fuliang Li, Jiaxing Shen, Tangzheng Xie, Shan Jiang, and
Xingwei Wang. 2024. ConfigReco: Network Configuration Recommen-
dation With Graph Neural Networks. IEEE Network 38, 1 (2024), 7–14.
doi:10.1109/MNET.2023.3336239

[13] Yaojie Hu, Qiang Zhou, Qihong Chen, Xiaopeng Li, Linbo Liu, Dejiao
Zhang, Amit Kachroo, Talha Oz, and Omer Tripp. 2025. QualityFlow:
An Agentic Workflow for Program Synthesis Controlled by LLM Qual-
ity Checks. doi:10.48550/arXiv.2501.17167

[14] Beni Ifland, Elad Duani, Rubin Krief, Miro Ohana, Aviram Zilber-
man, Andres Murillo, Ofir Manor, Ortal Lavi, Hikichi Kenji, Asaf
Shabtai, Yuval Elovici, and Rami Puzis. 2024. GeNet: A Multi-
modal LLM-Based Co-Pilot for Network Topology and Configuration.
arXiv:2407.08249 [cs.NI] https://arxiv.org/abs/2407.08249

[15] Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni,
Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-
tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.
CoRR abs/2005.11401 (2020). arXiv:2005.11401 https://arxiv.org/abs/
2005.11401

[16] Fuliang Li, Haozhi Lang, Jiajie Zhang, Jiaxing Shen, and Xingwei
Wang. 2024. PreConfig: A Pretrained Model for Automating Network
Configuration. arXiv:2403.09369 [cs.NI] https://arxiv.org/abs/2403.
09369

[17] Alisa Liu, Zhaofeng Wu, Julian Michael, Alane Suhr, Peter West,
Alexander Koller, Swabha Swayamdipta, Noah A. Smith, and Yejin
Choi. 2023. We’re Afraid Language Models Aren’t Modeling Ambi-
guity. In Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguis-
tics, Singapore, 790–807. doi:10.18653/v1/2023.emnlp-main.51

[18] Jianmin Liu, Li Chen, Dan Li, and Yukai Miao. 2025. CEGS: Configura-
tion Example Generalizing Synthesizer. In 22nd USENIX Symposium
on Networked Systems Design and Implementation (NSDI 25). USENIX
Association, Philadelphia, PA, 1327–1347. https://www.usenix.org/
conference/nsdi25/presentation/liu-jianmin

https://doi.org/10.1145/3386367.3431304
https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2310.11511
https://doi.org/10.1145/2934872.2934909
https://doi.org/10.1145/3140587.3062367
https://doi.org/10.1145/3140587.3062367
https://www.cisco.com/c/en/us/td/docs/ios/fundamentals/command/reference/cf_book.html
https://www.cisco.com/c/en/us/td/docs/ios/fundamentals/command/reference/cf_book.html
https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2404.16130
https://www.usenix.org/conference/nsdi18/presentation/el-hassany
https://www.usenix.org/conference/nsdi18/presentation/el-hassany
https://doi.org/10.1007/978-3-319-63390-9_14
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/fogel
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/fogel
https://doi.org/10.1109/NetSoft60951.2024.10588879
https://arxiv.org/abs/2407.21059
https://arxiv.org/abs/2407.21059
https://arxiv.org/abs/2407.21059
https://doi.org/10.1109/MNET.2023.3336239
https://doi.org/10.48550/arXiv.2501.17167
https://arxiv.org/abs/2407.08249
https://arxiv.org/abs/2407.08249
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2403.09369
https://arxiv.org/abs/2403.09369
https://arxiv.org/abs/2403.09369
https://doi.org/10.18653/v1/2023.emnlp-main.51
https://www.usenix.org/conference/nsdi25/presentation/liu-jianmin
https://www.usenix.org/conference/nsdi25/presentation/liu-jianmin

HotNets ’25, November 17–18, 2025, College Park, MD, USA Rajdeep Mondal, Nikolaj Bjørner, Todd Millstein, Alan Tang, and George Varghese

[19] Declan McCullagh. [n. d.]. How Pakistan knocked YouTube offline
(and how to make sure it never happens again).

[20] Rajdeep Mondal, Alan Tang, Ryan Beckett, Todd Millstein, and George
Varghese. 2023. What do LLMs need to Synthesize Correct Router
Configurations? (HotNets ’23). Association for Computing Machinery,
New York, NY, USA, 189–195. doi:10.1145/3626111.3628194

[21] Sean Welleck Pranjal Aggarwal, Bryan Parno. 2024. AlphaVerus: Boot-
strapping Formally Verified Code Generation through Self-Improving
Translation and Treefinement. arXiv:2405.19616 [cs.AI] https://arxiv.
org/abs/2412.06176

[22] Sivaramakrishnan Ramanathan, Ying Zhang, Mohab Gawish, Yogesh
Mundada, Zhaodong Wang, Sangki Yun, Eric Lippert, Walid Taha,
Minlan Yu, and Jelena Mirkovic. 2023. Practical Intent-driven Routing
Configuration Synthesis. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). USENIX Association,
Boston, MA, 629–644. https://www.usenix.org/conference/nsdi23/
presentation/ramanathan

[23] Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever. 2021. Snow-
cap: synthesizing network-wide configuration updates. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference (Virtual Event, USA) (SIG-
COMM ’21). Association for Computing Machinery, New York, NY,
USA, 33–49. doi:10.1145/3452296.3472915

[24] Anastasiia Sedova, Robert Litschko, Diego Frassinelli, Benjamin Roth,
and Barbara Plank. 2024. To Know or Not To Know? Analyz-
ing Self-Consistency of Large Language Models under Ambiguity.
arXiv:2407.17125 [cs.CL] https://arxiv.org/abs/2407.17125

[25] Amazon Web Services. [n. d.]. Validate your Automated Reason-
ing policy test results. https://docs.aws.amazon.com/bedrock/latest/
userguide/validate-automated-reasoning-policy-results.html. Ac-
cessed 17-10-2025.

[26] Aditi Singh, Abul Ehtesham, Saket Kumar, and Tala Talaei Khoei. 2025.
Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG.
arXiv:2501.09136 [cs.AI] https://arxiv.org/abs/2501.09136

[27] Ion Stoica, Matei Zaharia, Joseph Gonzalez, Ken Goldberg, Koushik Sen,
Hao Zhang, Anastasios Angelopoulos, Shishir G. Patil, Lingjiao Chen,
Wei-Lin Chiang, and Jared Q. Davis. 2024. Specifications: The miss-
ing link to making the development of LLM systems an engineering
discipline. arXiv:2412.05299 [cs.SE] https://arxiv.org/abs/2412.05299

[28] Chuyue Sun, Ying Sheng, Oded Padon, and Clark Barrett. 2024. Clover:
Closed-Loop Verifiable Code Generation. In Proceedings of the First
International Symposium on AI Verification (SAIV ’24). Springer-Verlag,
134–155. doi:10.1007/978-3-031-65112-0_7 Montreal, Canada.

[29] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky H.Y.Wong, andHongyi Zeng.
2016. Robotron: Top-down Network Management at Facebook Scale.
In Proceedings of the 2016 ACM SIGCOMM Conference (Florianopolis,
Brazil) (SIGCOMM ’16). Association for Computing Machinery, New
York, NY, USA, 426–439. doi:10.1145/2934872.2934874

[30] Alan Tang, Ryan Beckett, Steven Benaloh, Karthick Jayaraman, Tejas
Patil, Todd Millstein, and George Varghese. 2023. Lightyear: Using
Modularity to Scale BGP Control Plane Verification. In Proceedings
of the ACM SIGCOMM 2023 Conference (ACM SIGCOMM ’23). ACM.
doi:10.1145/3603269.3604842

[31] Alan Tang, Siva Kesava Reddy Kakarla, Ryan Beckett, Ennan Zhai,
Matt Brown, Todd Millstein, Yuval Tamir, and George Varghese. 2021.
Campion: debugging router configuration differences. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference (Virtual Event, USA) (SIG-
COMM ’21). Association for Computing Machinery, New York, NY,
USA, 748–761. doi:10.1145/3452296.3472925

[32] Changjie Wang, Mariano Scazzariello, Alireza Farshin, Simone Ferlin,
Dejan Kostic, and Marco Chiesa. 2024. NetConfEval: Can LLMs Facili-
tate Network Configuration? Proc. ACM Netw. 2, CoNEXT2 (2024), 7:1–
7:25. http://dblp.uni-trier.de/db/journals/pacmnet/pacmnet2.html#

WangSFFKC24
[33] Changjie Wang, Mariano Scazzariello, Alireza Farshin, Dejan Kostic,

and Marco Chiesa. 2023. Making Network Configuration Human
Friendly. arXiv:2309.06342 [cs.NI] https://arxiv.org/abs/2309.06342

[34] Ke Wang, Jiahui Zhu, Minjie Ren, Zeming Liu, Shiwei Li, Zongye
Zhang, Chenkai Zhang, Xiaoyu Wu, Qiqi Zhan, Qingjie Liu, and
Yunhong Wang. 2024. A Survey on Data Synthesis and Augmen-
tation for Large Language Models. arXiv:2410.12896 [cs.CL] https:
//arxiv.org/abs/2410.12896

[35] Zilong Wang, Zifeng Wang, Long Le, Steven Zheng, Swaroop Mishra,
Vincent Perot, Yuwei Zhang, Anush Mattapalli, Ankur Taly, Jingbo
Shang, Chen-Yu Lee, and Tomas Pfister. 2025. Speculative RAG:
Enhancing Retrieval Augmented Generation through Drafting. In
The Thirteenth International Conference on Learning Representations.
https://openreview.net/forum?id=xgQfWbV6Ey

[36] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian
Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. 2023. Chain-
of-Thought Prompting Elicits Reasoning in Large Language Models.
arXiv:2201.11903 [cs.CL] https://arxiv.org/abs/2201.11903

[37] Xieyang Xu, Yifei Yuan, Zachary Kincaid, Arvind Krishnamurthy, Ratul
Mahajan, David Walker, and Ennan Zhai. 2024. Relational Network
Verification. In Proceedings of the ACM SIGCOMM 2024 Conference (Syd-
ney, NSW, Australia) (ACM SIGCOMM ’24). Association for Computing
Machinery, New York, NY, USA, 213–227. doi:10.1145/3651890.3672238

[38] Xiaofeng Zhang, Xianming Gao, Peilin Tao, and Tao Feng. 2025. Graph-
Synth: Synthesis of Network Configuration Templates Using Large Lan-
guage Models. Association for Computing Machinery, New York, NY,
USA, 108–114. https://doi.org/10.1145/3728725.3728742

https://doi.org/10.1145/3626111.3628194
https://arxiv.org/abs/2405.19616
https://arxiv.org/abs/2412.06176
https://arxiv.org/abs/2412.06176
https://www.usenix.org/conference/nsdi23/presentation/ramanathan
https://www.usenix.org/conference/nsdi23/presentation/ramanathan
https://doi.org/10.1145/3452296.3472915
https://arxiv.org/abs/2407.17125
https://arxiv.org/abs/2407.17125
https://docs.aws.amazon.com/bedrock/latest/userguide/validate-automated-reasoning-policy-results.html
https://docs.aws.amazon.com/bedrock/latest/userguide/validate-automated-reasoning-policy-results.html
https://arxiv.org/abs/2501.09136
https://arxiv.org/abs/2501.09136
https://arxiv.org/abs/2412.05299
https://arxiv.org/abs/2412.05299
https://doi.org/10.1007/978-3-031-65112-0_7
https://doi.org/10.1145/2934872.2934874
https://doi.org/10.1145/3603269.3604842
https://doi.org/10.1145/3452296.3472925
http://dblp.uni-trier.de/db/journals/pacmnet/pacmnet2.html#WangSFFKC24
http://dblp.uni-trier.de/db/journals/pacmnet/pacmnet2.html#WangSFFKC24
https://arxiv.org/abs/2309.06342
https://arxiv.org/abs/2309.06342
https://arxiv.org/abs/2410.12896
https://arxiv.org/abs/2410.12896
https://arxiv.org/abs/2410.12896
https://openreview.net/forum?id=xgQfWbV6Ey
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://doi.org/10.1145/3651890.3672238
https://doi.org/10.1145/3728725.3728742

	Abstract
	1 Introduction
	2 Disambiguation workflow
	2.1 LLM Query and Verification
	2.2 Disambiguation

	3 How common are overlaps?
	3.1 Overlaps in a Cloud Network
	3.2 Overlaps in a Campus Network

	4 Disambiguation Algorithm
	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	8 Acknowledgement
	References

