GPUnion: Autonomous GPU Sharing on Campus

Yufang Li
HKUST(GZ)

Deke Guo

Sun Yat-sen University

Abstract

A pronounced imbalance in GPU resources exists on campus,
where some laboratories own underutilized servers while
others lack the compute needed for Al research. GPU sharing
can alleviate this disparity, while existing platforms typically
rely on centralized oversight and persistent allocation mod-
els, conflicting with the voluntary and autonomous nature
of academic resource ownership. We present GPUnion, a
campus-scale GPU sharing platform enabling voluntary par-
ticipation while preserving full provider autonomy. GPUnion
incorporates three core mechanisms: i) container-based task
dispatching and execution, ii) resource provider-first archi-
tecture, and iii) resilient execution featuring automatic check-
pointing and migration. Case studies across multiple campus
scenarios demonstrate 30% more GPU utilization improve-
ment, 40% increase in interactive sessions, and 94% successful
workload migration during provider departures.

CCS Concepts

« Computer systems organization — Cloud computing.

Keywords
GPU Sharing, Provider Autonomy, Containerization

ACM Reference Format:

Yufang Li, Yuanbo Zhang, Hanlong Liao, Deke Guo, and Guoming
Tang. 2025. GPUnion: Autonomous GPU Sharing on Campus. In
The 24th ACM Workshop on Hot Topics in Networks (HotNets "25),
November 17-18, 2025, College Park, MD, USA. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3772356.3772403

“Correspondence to: Guoming Tang (guomingtang@hkust-gz.edu.cn).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HotNets °25, College Park, MD, USA

© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-2280-6/25/11
https://doi.org/10.1145/3772356.3772403

Yuanbo Zhang

Sun Yat-sen University

Hanlong Liao
Sun Yat-sen University

Guoming Tang"
HKUST(GZ)

1 Introduction

With the rapid development of artificial intelligence (AI),
GPU resources have become a key infrastructure driving
modern scientific computing and Al model serving. On com-
munities like university campuses, however, GPU usage re-
mains highly imbalanced. This imbalance manifests in mul-
tiple dimensions. (i) Unequal resource distribution among
faculties and departments, where some laboratories run size-
able GPU clusters while others have only minimal capacity.
(i) Temporal underutilization, as research teams often expe-
rience significant idle periods between experiment cycles or
during semester breaks. (iii) Heterogeneous platform require-
ments, where different research groups need diverse GPU
architectures, from consumer-grade RTX cards to high-end
A100s, for varied computational workloads. (iv) Accessibility
barriers for students, particularly undergraduates and early
stage researchers who lack institutional funding for dedi-
cated hardware but require GPU resources for coursework
and independent research projects.

Ideally, a campus-wide GPU platform should democratize
access to computing resources while improving overall uti-
lization. Such a system would enable temporary borrowing
of idle GPUs within a trusted network environment (e.g.,
campus LAN), reduce waste from hardware idleness, and
support green research by maximizing the utility of existing
devices instead of increasing hardware procurement. A plat-
form like this would also foster collaboration and lower the
cost of innovation for a broader academic community.

However, existing solutions fall short in supporting this
vision. Comprehensive IaaS platforms like OpenStack [8]
offer rich feature sets but impose prohibitive complexity and
resource overhead for voluntary environments, requiring
specialized expertise that conflicts with campus autonomy
principles. While lightweight alternatives such as Apache
CloudStack [5] and OpenNebula [6] reduce operational bur-
den, their focus on traditional VM orchestration and rigid
architectural assumptions fail to address the dynamic, con-
tainerized GPU sharing requirements of modern campus
workloads. Container orchestration platforms like Kuber-
netes [4], despite supporting GPU scheduling through de-
vice plugins [9], fundamentally rely on centralized control
models that expect persistent node availability and stable


https://doi.org/10.1145/3772356.3772403
https://doi.org/10.1145/3772356.3772403

HotNets "25, November 17-18, 2025, College Park, MD, USA

connectivity, which is incompatible with the voluntary par-
ticipation patterns in campus environments [3]. Commercial
cloud services such as AutoDL [10] and academic cluster
systems like Slurm [11] operate on reservation based mod-
els that conflict with the spontaneous, revocable nature of
campus resource sharing.

To this end, a dedicated GPU-sharing platform for campus
environments is essential, and it must address several tech-
nical challenges. First, how to achieve secure isolation while
maintaining near-native GPU performance across heteroge-
neous hardware configurations without requiring extensive
system administration. Second, how to design provider au-
tonomy mechanisms that allow resource owners to maintain
full control over their machines while ensuring reliable ser-
vice for users. Third, how to implement resilient execution
that transparently handles the inherent volatility of volun-
tary participation, including graceful migration and recovery
from unexpected provider departures. Finally, how to create
lightweight integration that minimizes deployment friction.

In this paper, we propose GPUnion, a campus-scale GPU
sharing platform that enables voluntary resource contribu-
tion while preserving provider autonomy. GPUnion is de-
signed specifically for intra-campus environments, leverag-
ing the trust and network proximity within local university
networks. It employs containerized execution, strong host-
guest isolation, and fault-tolerant mechanisms to support
temporary, revocable, and secure GPU sharing.

To be specific, we make the following major contributions:

e Containerized Execution Model: We design a se-
cure, lightweight execution framework based on OCI
containers with GPU passthrough that provides near-
native performance while maintaining strict isolation
between guest workloads and host systems across het-
erogeneous hardware platforms.

e Provider Supremacy Architecture: We introduce
a novel autonomy-first design that grants resource
providers absolute control through kill-switch mecha-
nisms and graceful departure protocols, enabling vol-
untary participation without sacrificing providers’ ex-
perience.

e Resilient Execution Mechanism: We develop a com-
prehensive fault-tolerance system combining state-
aware checkpointing and rapid migration capabilities
to handle resource fluctuation in voluntary sharing en-
vironments. Users can specify specific nodes for data
storage and backup according to their own needs.

2 Related Work

The landscape of distributed computing platforms has evolved
significantly to address various deployment scenarios and

Yufang Li, Yuanbo Zhang, Hanlong Liao, Deke Guo, and Guoming Tang

organizational needs. Understanding the strengths and limi-
tations of existing solutions provides important context for
positioning GPUnion’s unique contribution.

2.1 Infrastructure-as-a-Service Platforms

OpenStack represents the most comprehensive approach to
cloud infrastructure management, providing a full-featured
TaaS platform with interrelated services for compute, net-
working, storage, and identity management [8]. While Open-
Stack’s modular design and extensive ecosystem have proven
successful at managing millions of cores in production clouds
worldwide, its high complexity and heavy resource footprint
make it unsuitable for the voluntary, lightweight sharing
model required in campus environments. The platform re-
quires significant expertise to deploy and operate, with steep
learning curves for coordinating upgrades across multiple
services, which conflicts with the autonomous participation
principle central to GPUnion.

Apache CloudStack takes a contrasting approach, empha-
sizing simplicity and quick deployment through a monolithic
architecture where all core services come pre-integrated [5].
CloudStack’s user-friendly design and support for multi-
ple hypervisors make it more accessible than OpenStack
for small-to-medium deployments. However, its less modu-
lar and extensible nature limits customization possibilities,
while its smaller community and slower development pace
restrict the availability of specialized features needed for
dynamic GPU sharing scenarios.

OpenNebula positions itself as a lightweight alternative
to OpenStack, designed for simplicity while maintaining
enterprise-grade capabilities [6]. The platform supports both
virtual machines and containers, offers hybrid cloud inte-
gration, and can be managed by small teams. Despite these
advantages, OpenNebula’s focus on traditional VM orches-
tration and its smaller developer community limit its applica-
bility to the containerized, GPU-centric sharing model that
GPUnion requires.

2.2 Container Orchestration Platforms

Kubernetes has emerged as the dominant container orches-
tration platform, with approximately 96% of organizations
using or evaluating it for cloud-native workloads by 2022 [2].
Kubernetes provides powerful automation for container de-
ployment, scaling, and recovery, along with extensive APIs
and a rich ecosystem of add-ons. The platform supports GPU
scheduling through device plugins and can accommodate
diverse workloads through its flexible resource model.
However, Kubernetes’ centralized control model funda-
mentally conflicts with principle that drives voluntary par-
ticipation in campus environments. The platform expects
stable connectivity and persistent node availability, poorly



GPUnion: Autonomous GPU Sharing on Campus

Table 1: Comparison of Distributed Computing Platforms for Campus GPU Sharing

HotNets "25, November 17-18, 2025, College Park, MD, USA

Platform OpenStack CloudStack OpenNebula Kubernetes GPUnion
Community Support Extensive Limited Limited Extensive Academic
Deployment Complexity Very High Medium Medium High Low
Resource Footprint Very Heavy Medium Light Heavy Minimal
Learning Curve Steep Moderate Gentle Steep Gentle
Provider Autonomy None None Limited None Full
Workload Focus VMs/Mixed VMs VMs/Mixed Containers GPU Containers
Voluntary Participation No No No No Yes
Dynamic Node Joining Limited Limited Limited Limited Native
GPU Specialization Add-on Limited Add-on Plugin Core Feature
Campus Network Optimization No No No No Yes
Target Environment Data Center SME Clouds Private Clouds Large Clusters Campus LANs
Fault Tolerance Model Infrastructure Infrastructure Infrastructure Infrastructure Workload

tolerating the dynamic participation patterns characteristic
of voluntary resource sharing [3]. Additionally, Kubernetes’
complexity introduces operational overhead that exceeds
the lightweight integration requirements of campus environ-
ments, where resource providers may have limited systems
administration expertise.

Positioning GPUnion. Table 1 summarizes the key char-
acteristics of existing distributed computing platforms in
comparison to GPUnion’s requirements for campus-scale vol-
untary GPU sharing. Unlike existing platforms that prioritize
either centralized control (OpenStack, Kubernetes) or sim-
plicity through rigid architectures (CloudStack), GPUnion
introduces a novel governance model that preserves provider
autonomy while ensuring system reliability. Our container-
ized execution approach combines Kubernetes’ workload
isolation benefits with a decentralized participation model
that respects the voluntary nature of campus resource shar-
ing. The platform’s resilient execution mechanism specifi-
cally addresses GPU workload characteristics—checkpoint
frequency optimization for intensive memory training, rapid
migration for interactive sessions, and state-aware recov-
ery for long-running jobs—capabilities absent from general
purpose cloud platforms.

GPUnion shares philosophical roots with earlier volun-
teer computing projects such as SETI@home [1] and Fold-
ing@home [7], where individuals contribute idle compute
resources to large-scale scientific efforts. However, these
systems typically operate in untrusted wide-area networks
and rely on coarse-grained task splitting and result valida-
tion. In contrast, GPUnion operates within a trusted campus
LAN, enabling fine-grained, stateful workload migration and
stronger accountability. More importantly, while past vol-
unteer systems focused on user-side incentives (e.g., leader-
board rankings, badges), GP Union shifts focus to provider-
side empowerment. Instead of asking users to donate cycles,

we ask labs to share underutilized infrastructure, making
provider control not just a feature, but a foundational design
principle. This reflects a broader trend toward community-
driven resource pooling in academia [12].

3 GPUnion Design

Building a cooperative GPU sharing platform within a cam-
pus network requires reconciling a set of conflicting goals:
i) giving resource providers full autonomy while ensuring
reliability for resource users, ii) maintaining security while
avoiding administrative burden, and iii) achieving broad com-
patibility while minimizing system overhead. To guide the
design of GPUnion, we set the following core principles.

3.1 Design Principles

e Autonomous Participation. Unlike data center clus-
ters, campus resources are inherently decentralized
and independently managed. GPUnion adopts an au-
tonomy first paradigm. Every server node can indepen-
dently decide when to join, pause, or leave the network.
This ensures that faculty or lab-owned servers, per-
sonal workstations, or idle lab GPUs can be shared on a
voluntary and revocable basis. Each resource provider
retains full authority, and the platform operates in a
non-intrusive manner, respecting individual owner-
ship boundaries.

e Lightweight and Transparent Usage. To encour-
age adoption among both contributors and consumers,
GPUnion is designed to be frictionless. For users, sub-
mitting a job to the system should feel no more com-
plex than running it locally, while the underlying sched-
uling, migration, and checkpointing remain invisible.
For providers, hosting workloads should not require re-
configuring their machines or permanently dedicating
resources. The platform is based on containerization



HotNets "25, November 17-18, 2025, College Park, MD, USA

technology, enabling seamless encapsulation of work-
loads with minimal performance overhead and strong
host-guest isolation.

o Reliability, Resilience, and Security. Given the vol-
untary and dynamic nature of participation, the system
must be robust against unpredictable resource churn.
GPUnion is designed to ensure user workloads remain
resilient to interruptions through automatic check-
pointing and migration mechanisms. At the same time,
it enforces strict sandboxing for all external workloads,
ensuring that guest code cannot access or interfere
with the host system. These mechanisms uphold user
trust and maintain system stability despite fluctuating
resource availability.

3.2 GPUnion Overview

This section provides an overview of GPUnion system ar-
chitecture, which is also illustrated by Fig. 1.

Central Scheduler and Coordinator. The central sched-
uler serves as the coordination hub for resource discovery,
allocation decisions, and workload management. It main-
tains a real-time view of available GPU resources across
the campus network through periodic status updates from
provider agents. The scheduler implements multiple alloca-
tion strategies, including distribution for fairness and assign-
ment based on priority for time-sensitive workloads. Unlike
traditional cluster schedulers that assume persistent resource
availability, GPUnion’s scheduler is designed to handle dy-
namic resource volatility, incorporating provider reliability
predictions and degradation mechanisms.

Provider Agents and Local Control. Each participating
node runs a lightweight agent that implements the provider
supremacy model through local control mechanisms and
real-time monitoring. The agent exposes REST APIs for re-
source advertisement, workload lifecycle management, and
emergency controls while maintaining absolute provider au-
thority through “kill-switch” functionality. Providers can
instantly terminate running workloads, pause further alloca-
tions, or disconnect from the platform without coordination
overhead. The agent automatically handles node registra-
tion, authentication token management, and secure network
connectivity through the network APIL.

Containerized Execution Environment. All GPU work-
loads execute within Docker containers configured with
NVIDIA Container Toolkit for direct GPU access. The sys-
tem supports both interactive research environments and
batch execution modes for production workloads with cus-
tomizable container images and entry points.

Distributed State Management and Monitoring. A
comprehensive monitoring and state management system
collects real-time telemetry from all participating nodes

Yufang Li, Yuanbo Zhang, Hanlong Liao, Deke Guo, and Guoming Tang

User Clients

= IR
Interface
|
1

GPUnion
Coordination

Command
=l Interface

:]\@ Task Data
Store

@ Network API
T

Central ]

chedular
@"g Task Data Store

GPU Nodes
hd Monitor = = =

4 Provider Nodes

D

©

@ Provider Agent
E: Lifecycle
3 Management

() Heartbeat

Monitoring
System

91100/
18UIRUOD NdD

System
Database

Figure 1: GPUnion system architecture diagram.

through metrics exporters. The system captures both hard-
ware metrics and application metrics. State persistence is
handled through a centralized database that maintains node
registrations, resource allocations, and historical monitoring
data, enabling both operational decision making and capacity
planning.

Data Storage Architecture. GPUnion implements a flex-
ible data storage model that accommodates both centralized
and distributed storage needs across client and provider en-
vironments. On the client side, users can specify preferred
storage locations for their workload data, checkpoints, and
outputs, enabling them to maintain control over sensitive
datasets while using distributed compute resources. Provider
servers offer local storage capabilities for temporary data
and intermediate results, while supporting integration with
campus-wide distributed file systems for persistent storage.

Technical Challenges. Designing GPUnion introduces
three core technical challenges. First, achieving secure and
performant execution across heterogeneous hardware re-
quires a containerization solution that delivers near-native
GPU performance while maintaining strong isolation, de-
spite variations in drivers, OS configurations, and security
policies. Second, preserving provider autonomy, such as
through an immediate kill-switch, must be reconciled with
user experience, as abrupt resource reclamation risks disrupt-
ing ongoing workloads, necessitating graceful termination
protocols that balance control and fairness. Third, ensuring
resilient execution under arbitrary node departures demands
transparent checkpointing and fast migration mechanisms,
since provider-initiated exits make failure prediction impos-
sible and workload continuity must be maintained without
relying on infrastructure-level redundancy.

3.3 Containerized GPU Execution

To achieve transparent and lightweight usage across a wide
variety of machines, GPUnion adopts containerized execu-
tion based on OCI standards (e.g., Docker) combined with
GPU passthrough using the NVIDIA Container Toolkit. Each



GPUnion: Autonomous GPU Sharing on Campus

job is deployed inside an isolated user-space container, lever-
aging Linux kernel primitives such as namespaces, cgroups,
and Seccomp profiles to ensure strict resource boundaries.

This approach offers several advantages. First, it provides
near-native GPU performance by allowing user workloads
to access the GPU directly, avoiding the overhead of full
virtualization. Second, it guarantees security and isolation,
preventing any container from affecting the host environ-
ment or neighboring workloads. Third, it ensures portability:
Containers can be deployed on a wide range of machines
regardless of driver or OS variations, a critical feature given
the hardware diversity in campus networks.

Implementation Details. Our containerization layer sup-
ports both interactive and batch execution modes through
standardized Docker runtime environments configured with
GPU passthrough capabilities. For interactive research, the
system automatically provisions Jupyter notebook environ-
ments with pre-configured deep learning frameworks and
GPU access through the NVIDIA Visible Devices environ-
ment variable. For production workloads, it supports ar-
bitrary container images with customizable entry points
and environment configurations. Container images must
pass SHA256 verification before deployment, and the sys-
tem maintains an allow list of trusted base images to ensure
security compliance.

3.4 Provider Supremacy and Autonomy

A core principle of GPUnion is the rejection of centralized
control in favor of provider supremacy. In contrast to tradi-
tional cluster or edge platforms, where compute nodes are
centrally managed and statically allocated, GPUnion enables
each provider to freely join, leave, or pause participation at
any time, without prior negotiation.

This autonomy is enabled by a lightweight agent running
on each provider’s machine. The agent exposes the machine’s
availability status and GPU capacity to the central scheduler,
but always allows the provider to immediately override the
system via a local "kill-switch." At any point, a provider can
terminate running workloads, pause further task scheduling,
or disconnect entirely.

Implementation Details. Each provider node runs a
lightweight agent that implements provider supremacy by
building an API server to handle resource advertisement,
workload lifecycle management, and emergency controls.
The agent integrates with PyYNVML to collect real-time GPU
telemetry including memory utilization, temperature, and
power consumption. Provider supremacy is implemented
through “kill-switch” mechanism. When providers trigger
voluntary exit, the agent performs workload termination
with configurable periods for checkpoint creation. New nodes
join the platform through automatic registration scripts that

HotNets "25, November 17-18, 2025, College Park, MD, USA

generate unique machine identifiers, establish network con-
nectivity, and obtain authentication credentials.

3.5 Resilient Execution Mechanism

Because provider autonomy introduces inherent volatility,
GPUnion must ensure task continuity in a setting where
nodes may leave arbitrarily. To address this, the platform
incorporates a resilient execution mechanism with the fol-
lowing capabilities:

State-Aware Checkpointing. For long-running or state-
ful workloads, the platform periodically captures full applica-
tion state—CPU and memory snapshot, file system state, and
GPU memory if feasible—via container-level checkpointing
backup. These checkpoints can be stored in a LAN-accessible
file system or a specific node.

Rapid Migration and Recovery. When a provider volun-
tarily exits or fails, the central scheduler is notified via heart-
beat loss. The workload is then automatically relaunched on
another available machine using the latest checkpoint. For
stateless tasks, the process simply involves requeuing and
redispatching the job. In both cases, GPUnion hides provider
side volatility from end-users, offering a consistent service
experience.

Implementation Details. The resilient execution mech-
anism operates through a modular architecture supporting
multiple allocation strategies via a round-robin scheduler
(which processes pending resource requests from a priority
queue stored in the central database). Resource allocation de-
cisions consider GPU memory requirements, CUDA compute
capability constraints and provider volatility predictions. The
system implements heartbeat-based failure detection with
configurable timeouts, i.e., nodes that miss three consecutive
heartbeats are marked as unavailable, triggering automatic
workload migration. Comprehensive monitoring is achieved
through Prometheus metrics exporters that collect both hard-
ware metrics (GPU utilization, memory usage, temperature,
etc.) and application metrics (container lifecycle events, re-
source allocation history, etc.) for real-time operational deci-
sions and historical capacity planning.

GPUnion ensures continuity during provider departure
via application-level checkpoints (ALC). On voluntary exit,
workloads save user-specified state to designated storage.
The scheduler then relaunches the task on a compatible
node with the latest checkpoint, enabling fast and reliable
migration with minimal downtime.

A critical challenge in building a resilient yet lightweight
sharing platform lies in choosing the right mechanism for
state preservation and migration. We evaluated several al-
ternatives before settling on ALC as the cornerstone of our
design. System level solutions like CRIU (Checkpoint/Restore
in Userspace), while powerful, fail to support CUDA contexts



HotNets "25, November 17-18, 2025, College Park, MD, USA

. Research Group GPU Utilizati p Compari

Before Deployment
~e— After Deployment

~
S

Y
3

N
S

GPU Utilization (%)
o
3

-
~

3 4 5 6

Interactive Session Count Changes

Before Deployment
20.0 After Deployment

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6
Observation Week

Figure 2: Research group GPU utilization comparison.

reliably and impose strict requirements on kernel versions
and driver compatibility. More importantly, they cannot sup-
port cross-GPU architecture migration, which is common
in heterogeneous campus environments. Alternative replica-
tion schemes based on P2P would require complex coordina-
tion logic and additional networking layers, contradicting
GPUnion’s goal of minimal intrusion. In contrast, ALC shifts
responsibility to users who already manage their own train-
ing scripts and data persistence to define what constitutes
recoverable state. This aligns with real world Al development
practices where models are routinely saved incrementally,
and thus reduces system complexity while increasing practi-
cality across diverse hardware configurations.

4 Case Studies

We deploy GPUnion in a campus network environment com-
prising 11 GPU services. Among these, 8 servers functioned
as workstations, each equipped with a single NVIDIA 3090
GPU; one server featured 8 4090 GPUs; another two servers
housed 2 A100 and 4 A6000, respectively. An additional
CPU-only server served as the central coordinator. Prior
to the deployment, all resources are managed through man-
ual coordination. Each server is equipped with the GPUnion
agent alongside existing job management tools, allowing for
a smooth transition and incremental adoption.

As shown in Fig. 2, after a six-week period, the average
GPU utilization of all servers increased from 34% to 67%. This
improvement was primarily attributed to enhanced visibil-
ity of resource availability and the automated allocation of
opportunistic workloads during idle periods. Furthermore,
interactive debugging sessions increased by 40% compared
to the manual coordination phase, as students were able to
access temporarily idle GPUs more conveniently.

Yufang Li, Yuanbo Zhang, Hanlong Liao, Deke Guo, and Guoming Tang

Migration Performance Under Different Interruption Scenarios
100 94%

120s

60 80
40 455

40
20
15s 20
. |

Scheduled Departure Emergency Disconnect Temporary Unavailable
Interruption Scenario

Success Rate (%)
Migration Time (seconds)

Recovery Success Rate for Different Workloads

100.0 99%
98%

97.5

96%
95.0

925

90.0 89%
87.5

85.0

825

80.0

CNN Training Transformer Training Interactive Session
Workload Type

Recovery Success Rate (%)

Inference Task

Figure 3: Migration performance under different inter-
ruption scenarios.

To evaluate GPUnion’s resilience mechanisms, we con-
ducted controlled experiments simulating realistic provider
interruption patterns. These experiments involved 20 deep
learning training jobs (PyTorch CNN and transformer mod-
els) distributed across 2 volunteer provider nodes over a
week period.

Interruption Scenarios: We simulated three classes of
provider behavior: scheduled departure (provider initiates
graceful shutdown), emergency departure (immediate dis-
connection), and temporary unavailability. Interruption fre-
quency varied from 0.5 to 3.2 events per day per node, re-
flecting realistic campus usage patterns. For scheduled de-
partures, 94% of workloads successfully migrated within the
specified time and with minimal data loss. Emergency de-
partures resulted in work loss equivalent to the checkpoint
interval. Temporary unavailability scenarios demonstrated
the value of provider return 67% of displaced workloads were
automatically migrated back to their original nodes in time
when providers reconnected. Fig. 3 provides a comprehen-
sive analysis of these migration performance characteristics
across different interruption scenarios and workload types.

Training Impact: Despite frequent interruptions, train-
ing convergence was minimally affected. Jobs experiencing
2-4 interruptions showed only 3-7% increases in total train-
ing time compared to uninterrupted execution. Memory-
intensive models showed higher sensitivity to interruption
due to longer checkpoint creation times, suggesting the value
of workload-specific checkpoint strategies.

Network Traffic Analysis: Given that frequent check-
pointing and migration operations could potentially satu-
rate campus network infrastructure and interfere with other
critical applications, we conducted comprehensive network
traffic analysis during backup operations. Our measurements



GPUnion: Autonomous GPU Sharing on Campus

across various workload types revealed that the incremen-
tal checkpointing mechanism produces negligible network
overhead, with backup traffic consuming less than 2% of
available campus bandwidth during peak operation periods.
The incremental nature of state synchronization—where only
modified memory pages and file system deltas are transmit-
ted—ensures that GPUnion’s resilience mechanisms oper-
ate transparently without impacting concurrent network-
intensive research activities or administrative services.

5 Discussions and Opportunities
5.1 Rethinking the Novelty of GPUnion

While individual components of GPUnion (containerization,
checkpointing, and agent-based coordination) are built upon
existing technologies, its novelty lies in the recombination
around a new design principle: provider autonomy as the
foundation of resource sharing. The "kill-switch" is not merely
a feature but an embodiment of this principle, enabling
providers to instantly reclaim resources without negotiation
or penalty. This contrasts sharply with traditional platforms
(e.g., Kubernetes, Slurm), where nodes are expected to remain
stable and available, often under centralized administrative
control. In those systems, volatility is treated as failure; in
GPUnion, it is first-class behavior.

Why has such a mechanism not been widely adopted be-
fore? Prior efforts in cloud and cluster computing prioritize
service reliability over provider flexibility, assuming either
commercial incentives or institutional mandates for resource
contribution. In contrast, campus environments operate on
trust and mutual benefit rather than payment. Here, the mar-
ginal cost of electricity and maintenance is low, reducing
economic barriers to sharing. Yet, psychological and oper-
ational barriers remain high: researchers hesitate to share
if they cannot immediately regain control during urgent
experiments. By placing autonomy at the center, GPUnion
reframes voluntary sharing not as a technical problem of
scheduling, but as a socio-technical alignment between trust,
convenience, and utilization. We find that the simplest mech-
anism, the kill switch, is precisely what enables adoption,
demonstrating that in trusted settings, minimalism can be
more powerful than complexity.

5.2 Opportunities in the Future

GPUnion also opens several research avenues that address
fundamental challenges in distributed computing and volun-
tary resource sharing.

Heterogeneous Large Model Deployment. The hetero-
geneous resource environment in which GPUnion operates
offers unique opportunities for large model deployment. Un-
like homogeneous clusters, GPUnion deploys in campus
networks, which host a variety of GPU architectures whose

HotNets "25, November 17-18, 2025, College Park, MD, USA

memory capacity, compute capability, and interconnect band-
width differ substantially. This heterogeneity calls for new
approaches to model partitioning, layer placement, and load
balancing that simultaneously respect hardware constraints
and the fluctuating availability of contributors.

User-Transparent Resource Invocation. GPUnion cur-
rently requires users to estimate their own resource needs
and then request those resources. This process is cumber-
some, and inaccurate estimates can easily lead to resource
waste. Exposing GPUnion through a programming inter-
face, such as a Python package, and incorporating intelligent
mechanisms for resource estimation, requesting, and sched-
uling would greatly improve both efficiency and utilization.

Scalability. GPUnion is designed for mid-sized campus
environments (tens to hundreds of GPUs), where trust and
proximity enable lightweight coordination. In our deploy-
ment, the central coordinator handles up to 50 nodes with
sub-second scheduling latency. However, beyond 200 nodes,
heartbeat monitoring and database contention could become
bottlenecks. For larger deployments, future work will explore
hierarchical coordination or gossip-based decentralization
while preserving autonomy. We believe there exists a "sweet
spot": large enough to benefit from resource pooling, yet
small enough to maintain low-latency communication and
social cohesion among providers.

6 Conclusion

This paper presented GP Union, a campus-scale GPU-sharing
platform to prioritize the autonomy of resource providers
in a volunteer computing environment. The main features
of GPUnion including a container-based execution model
that strikes a balance between performance and security
in heterogeneous hardware settings, a provider-centric de-
sign that allows providers to reclaim their GPUs instantly
through a kill-switch mechanism, and an elastic execution
mechanism that offers transparent fault tolerance. We vali-
dated the platform in a campus scenario, and the results show
significant benefits in real deployments. GPUnion demon-
strates that provider autonomy and platform reliability can
coexist, challenging conventional centralized paradigms and
democratizing access to scattered computational resources.

Acknowledgments

We thank the reviewers and our shepherd for their valuable
and insightful feedback. We are also grateful to our lab mem-
bers, Hemu Liu, Kunming Zhang, Junyu Xue, and Yuxi Zhao,
for their support and fruitful discussions during the develop-
ment of GPUnion. This work was supported in part by the
National Natural Science Foundation of China under Grant
No. U23B2004.



HotNets "25, November 17-18, 2025, College Park, MD, USA

References
[1] David P Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan

—

—

Werthimer. 2002. SETI@ home: an experiment in public-resource
computing. Commun. ACM 45, 11 (2002), 56-61.

Sanjay Hardikar, Pradeep Ahirwar, and Sameer Rajan. 2021. Container-
ization: Cloud Computing based Inspiration Technology for Adoption
through Docker and Kubernetes. 2021 Second International Conference
on Electronics and Sustainable Communication Systems (ICESC) (2021),
1996-2003. https://api.semanticscholar.org/CorpusID:237619826
Paridhika Kayal. 2020. Kubernetes in fog computing: Feasibility demon-
stration, limitations and improvement scope. In 2020 IEEE 6th World
Forum on Internet of Things (WF-IoT). IEEE, 1-6.

T Kubernetes. 2019. Kubernetes. Kubernetes. Retrieved May 24 (2019),
2019.

Rakesh Kumar, Kanishk Jain, Hitesh Maharwal, Neha Jain, and Anjali
Dadhich. 2014. Apache cloudstack: Open source infrastructure as a
service cloud computing platform. Proceedings of the International
Journal of advancement in Engineering technology, Management and
Applied Science 111, 116 (2014), 1820.

nebula: A cloud management tool. IEEE Internet Computing 15, 2 (2011),

Yufang Li, Yuanbo Zhang, Hanlong Liao, Deke Guo, and Guoming Tang

[7

—

8

—

[9

—

[10]

[11]

[12]

11-14.

Vijay S Pande, Ian Baker, Jarrod Chapman, Sidney P Elmer, Siraj Khaliq,
Stefan M Larson, Young Min Rhee, Michael R Shirts, Christopher D
Snow;, Eric J Sorin, et al. 2003. Atomistic protein folding simulations on
the submillisecond time scale using worldwide distributed computing.
Biopolymers: Original Research on Biomolecules 68, 1 (2003), 91-109.
Tiago Rosado and Jorge Bernardino. 2014. An overview of openstack
architecture. In Proceedings of the 18th international database engineer-
ing & applications symposium. 366-367.

Khaldoun Senjab, Sohail Abbas, Naveed Ahmed, and Atta ur Rehman
Khan. 2023. A survey of Kubernetes scheduling algorithms. Journal of
Cloud Computing 12, 1 (2023), 87.

Tencent Cloud. 2023. AutoDL: Automated Deep Learning Platform.
https://intl.cloud.tencent.com/product/autodl

Andy B Yoo, Morris A Jette, and Mark Grondona. 2003. Slurm: Simple
linux utility for resource management. In Workshop on job scheduling
strategies for parallel processing. Springer, 44-60.

Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmele-
egy, Scott Shenker, and Ion Stoica. 2010. Delay scheduling: a simple
technique for achieving locality and fairness in cluster scheduling.
In Proceedings of the 5th European conference on Computer systems.
265-278.


https://api.semanticscholar.org/CorpusID:237619826
https://intl.cloud.tencent.com/product/autodl

	Abstract
	1 Introduction
	2 Related Work
	2.1 Infrastructure-as-a-Service Platforms
	2.2 Container Orchestration Platforms

	3 GPUnion Design
	3.1 Design Principles
	3.2 GPUnion Overview
	3.3 Containerized GPU Execution
	3.4 Provider Supremacy and Autonomy
	3.5 Resilient Execution Mechanism

	4 Case Studies
	5 Discussions and Opportunities
	5.1 Rethinking the Novelty of GPUnion
	5.2 Opportunities in the Future

	6 Conclusion
	References

