A Case for Learned Cloud Emulators
Archit Bhatnagar, Yiming Qiu’, Sarah McClure*, Sylvia Ratnasamy*, Ang Chen

University of Michigan 'The University of Hong Kong

ABSTRACT

Creating and maintaining cloud infrastructure via “DevOps
programs” is essential to using the cloud. However, develop-
ing and testing the DevOps programs requires resource pro-
visioning in the cloud, which is time-consuming and costly.
Cloud emulators seek to enable high velocity development by
emulating cloud-level APIs to DevOps programs, enabling
frictionless testing locally without going through the cloud.
However, developing these emulators today is tedious and
error-prone: engineers need to digest extensive documenta-
tion, and hand-craft emulation logic for each service and
service interactions. We make a case for a fundamentally
different approach: to “learn” emulation logic from cloud
documentation via automated code synthesis. We observe
that this task is particularly amenable to Al automation, and
that we can constrain the code generation using principled
abstractions for accurate synthesis at scale. We report our
preliminary findings and discuss new opportunities that our
approach will enable. check

CCS CONCEPTS

* Networks — Cloud computing; * Software and its engi-
neering — Orchestration languages.

KEYWORDS

Cloud Management, Emulation, Code Generation, Neural
Synthesis, Formal Design

ACM Reference Format:
Archit Bhatnagar, Yiming Qiu’, Sarah McClure*, Sylvia Ratnasamy?,
Ang Chen . 2025. A Case for Learned Cloud Emulators. In The 24th

ACM Workshop on Hot Topics in Networks (HotNets ’25), November
17-18, 2025, College Park, MD, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3772356.3772404

1 INTRODUCTION

As cloud computing gains popularity, DevOps engineering
has become an essential task. DevOps engineers create and

This work is licensed under a Creative Commons Attribution 4.0 International
License.

HotNets °25, November 17-18, 2025, College Park, MD, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2280-6/25/11
https://doi.org/10.1145/3772356.3772404

tUniversity of California, Berkeley

maintain resources for a cloud infrastructure; and to achieve
scalable management, they do this programmatically using
cloud development frameworks [4, 9, 10]. These programs
eventually invoke low-level APIs [5, 12] exposed by providers
to manipulate cloud resources (e.g., creating virtual machines
or gateways). Like any other program, DevOps programs
need to be tested and debugged before deployment ; however,
testing against the cloud is expensive [14], and resource provi-
sioning can be time-consuming. Prices and provisioning time
can further increase for resources in high demand [50].

To enable no-risk, no-cost, and high-velocity cloud develop-
ment, cloud emulators [6, 8, 11] are quickly gaining traction.
Emulators mimic the cloud by exposing identical API inter-
faces to DevOps programs and simulating their execution in a
mock environment, providing a lightweight backend without
going through the real cloud. In order to emulate a resource
(e.g., VM), emulator developers sift through cloud documen-
tation, identify target APIs, and handcraft the mockup logic
based on their understanding of the expected behavior. Inter-
dependent resources (e.g., VM is associated with Subnet and
VPC) further need to be emulated in relation to each other.

While this is a laudable effort, existing practices of em-
ulator development cannot catch up to the complexity and
dynamicity of the cloud ecosystem. For instance, AWS alone
provides 240 services [2], and a service can expose up to 200
APIs; Azure and GCP exhibit a similar level of complexity.
Market competition means that providers often add new ser-
vices and upgrade existing ones, making the cloud a moving
target [13]. Each cloud provider also features a different set
of services and APIs, and more players are entering the cloud
market (e.g., Oracle, Alibaba). Tenants often construct multi-
cloud deployments to use best-of-breed features [20]; as a
result, DevOps testing needs to emulate each of the clouds.
Hence, manual emulator development—a tedious process that
needs to be repeated for each provider—will be increasingly
difficult. The stark reality is that even the most advanced em-
ulator [6] today only covers 95 out of over 240 AWS services,
and only with partial API coverage for these services; and no
mature multi-cloud emulators exist to our knowledge.

In this paper, we make a case for a new approach to build-
ing cloud emulators—by "learning" emulation logic from
cloud documentation through automated code synthesis. We
observe that publicly available cloud documentation provides
a treasure trove of information. No matter how complex a

https://doi.org/10.1145/3772356.3772404
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3772356.3772404

HotNets '25, November 17-18, 2025, College Park, MD, USA

cloud’s services may be, their usage and behavior is often de-
scribed in painstaking detail by the cloud provider. This is fun-
damental to the cloud’s business model, as providers need to
sufficiently describe their interfaces to the tenants. The incen-
tives are strong for providers to comprehensively document
their services and keep the information up to date. Therefore,
at least in principle, we should be able to develop “learned
emulators” that read cloud documentation using Large Lan-
guage Models (LLMs) and generate emulation code for the
described behavior automatically. This new kind of emulators
will potentially not only achieve higher service coverage, but
can also easily adapt to service changes, and generalize across
cloud providers without multiplying the engineering effort.

We aim to enable this by designing an Al agent that mim-
ics the workflow of a (human) emulator developer: digesting
swaths of information from documentation, coding emulation
logic for each resource and its interactions, detecting incor-
rect API invocations from buggy DevOps programs, returning
useful error logs for DevOps troubleshooting, and finally, test-
ing the emulator against the actual cloud to find and close
any gaps. Obviously, this is a challenging task, not least be-
cause LLM may hallucinate and generate arbitrarily buggy
emulation code. However, we observe that cloud emulation
logic follows a highly-structured style—we can view each
resource as a state machine (hereby referred to as SM), where
transitions are triggered by API invocations and may further
affect the states and transitions of other resources. Through
this formal model, we can impose aggressive constraints on
code generation for high assurance.

From cloud documentation, we insist that the LLM articu-
late its knowledge using the abstraction of a hierarchy of state
machines. Each SM can only perform transitions encoded
in the documentation (e.g., creation, deletion, and updates).
The hierarchy enables capturing resource containment rela-
tions (e.g., VM and Subnet are contained by their parent
VPC), which scope the impact of SM operations; these can
be likewise extracted from the documentation, as correctness
checks: e.g., resource creation APIs should not be allowed
to delete their parent resources; resource deletion must en-
sure that all children have been reclaimed. By targeting this
narrow abstraction, we can drastically narrow the range of
errors in an otherwise unfettered generation. Additional Al
techniques [25, 43] can further ensure that generated outputs
comply to a specified grammar. The SMs serve as an “exe-
cutable specification,” whose instructions are interpreted by
an emulator framework that we will build as a one-time effort.
Cloud changes can be captured by re-executing this process
periodically against the latest documentation versions.

Aligning the behavior of this synthesized emulator to the
actual cloud presents another interesting challenge. Thanks
to the above abstraction, we can symbolically execute the

Archit Bhatnagar, Yiming Qiu, Sarah McClure, Sylvia Ratnasamy, Ang Chen

Table 1: The coverage of existing emulator (Moto) is low,
even for critical resources like Network Firewall.

Services APIs Emulated Coverage
Compute (ec2) 571 177 31%
DB (dynamodb) 57 39 68%
Network Firewall 45 5 11%
Kubernetes (eks) 58 15 26%
Overall (subset) 731 236 ~32%

SMs to produce high-coverage traces that exercise all possi-
ble behaviors. Alignment means that permissible behaviors
should produce the same effects in the emulator and the cloud,
and forbidden behaviors should fail in both; ideally, failures
should also result in identical error codes and useful error
messages to assist with DevOps debugging. By testing the
effect of these traces in both environments, we can detect
divergence, track down the source of errors, e.g., to a specific
SM implementation, a specific interaction, or even back to the
cloud documentation, and fix them. This alignment process
also enables us to learn how the cloud produces error logs
for each situation, so that our emulator can decode errors in
a similar (or even richer!) style, e.g., by passing the specific
failure contexts to LLMs to generate an informative response,
further helping with the user with debugging.

We report preliminary results from our prototype, and de-
scribe new avenues of research. For instance, counting the
number of state transitions could quantify cloud complexity,
understanding the hierarchy of state machines could measure
and improve interoperability, and identifying “anti-patterns”
in state machines would help improve documentation qual-
ity. In short, we believe that a full realization of “learned
emulators” will shed much new light on cloud manageability.

2 MOTIVATION

Emulation: Why and how. To enable high velocity cloud
development, emulators such as LocalStack [6] (with Moto
as the backend) have garnered immense popularity (60k+
Github stars). They mock up cloud APIs—e.g., responding
to CreateVM() calls in a DevOps program by adding a mock
VM name, state, and location to the internal state, but without
actually creating anything else. Obviously, this mock cloud
infrastructure cannot host real workloads, but it enables devel-
oping and testing in a frictionless environment without cloud
provisioning. This requires extensive work, however, and
cloud providers themselves prioritize building actual cloud
features to stay competitive in the market, rather than emulat-
ing them. Providers also have stronger incentives for DevOps
testing to occur in the actual cloud, since this would gener-
ate revenue. Hence, emulators are primarily developed by
third-party developers based on the cloud’s documentation.

A Case for Learned Cloud Emulators

Limitations of existing work. These emulators are Sisyphean
efforts, struggling to keep pace with the ever-expanding cloud
ecosystem. Analysis of LocalStack, the most mature emula-
tor, shows over 800 contributors making 10k+ commits over
10 years. Missing features and behavioral discrepancies are
commonplace [7], requiring continuous development. This
leads to two significant limitations for cloud emulation.
Coverage: The cloud is simply too vast. As Table 1 shows,
even popular resources like Amazon EKS (Elastic Kubernetes
Service) have incomplete support, and some key resources
(e.g., Network Firewall) have even lower coverage, e.g., only
CreateFirewall() but not DeleteFirewall(). This forces devel-
opers to maintain complex and brittle testing setups that use
the emulator for some resources and the real cloud for others.
Correctness: Manual implementation is not infallible, and
subtle behavioral differences between the emulator and the
real cloud are common. For example, a known issue of this
emulator is that it allows the DeleteVpc() call to succeed even
if it contained an Internet Gateway, while the real AWS API
would reject this API with a “DependencyViolation™ error.
Such errors/inconsistencies can seriously undermine the re-
liability of the emulator as a testing tool, allowing incorrect
code to pass through the emulator.
Need for a new approach. Hence, it is time to rethink the
design of cloud emulators using a new approach, leveraging
the power of LLMs and opting for automated code synthesis.

3 AN ILLUSTRATIVE EXAMPLE

We provide an illustrative example to establish intuition. At
the heart of our design is the abstraction of a hierarchy of
state machines that capture cloud operations. By orienting our
design this way, we reap the benefits of good abstractions [35]:
encapsulating info within modules to separate concerns, and
composing modules for programming at scale. Each cloud
resource is viewed as a SM, where a collection of state vari-
ables represents its attributes, and transitions are caused by
API invocations which may modify internal (i.e., within the
SM) and external state. Consider a Public IP address that can
be used by a Network Interface (NIC).

The Toy Doc

A Public IP address allows Internet resources to communicate inbound to
resources in our cloud. Also, Public IP addresses enable our resources to
communicate to the Internet and public-facing cloud services. It exposes APIs
for creation, deletion, and it can be associated with a Network Interface resource
for network connectivity. In the latter case, the Publiclp, and the associated
NIC must be located in the same cloud region. API signatures follow:
o CreatePublicIP(arg): arg is a string and specifies the cloud region:
‘us-east’ or ‘us-west’.
o AssociateNIC(arg): arg is an NIC identifier and refers to an already-
created NIC.
o DestroyPublicIP(): PublicIPs cannot be deleted if they are still at-
tached to their NICs.

For information about creating a NIC and associated APIs, refer to page 2500.

HotNets '25, November 17-18, 2025, College Park, MD, USA

s € State, t € StateType, v € Value, pred: Predicates

prog ::= SM states transitions state machine

states = Syt Sp ity typed state

transitions = expr transitions
| if pred then expr else expr write expr

expr = primitive | primitive, expr

primitive ::= read(s,v) read
| write(s,v) write
| assert(pred) assertion
| call(transition) call

Figure 1: The grammar for specifying an emulator.

PublicIP’s state would include its status (assigned/idle),
cloud zone, IP version and it could further include another
state parameter representing the attached resource (NIC),
defined elsewhere in the documentation. Transitions occur
through well-defined APIs that eventually modify this state.

I /+ An abstract state machine x/

2 SM sm {

3 States S; //A collection of state vars

4 Transitions T; //Transitions modify state
5 1

Further, both state and transitions can be sourced from the
documentation, whether by an emulator engineer or by an
LLM. Although this example describes the state variables
implicitly, cloud documentation often contains explicit defi-
nitions of resource states alongside their types (e.g., string/-
boolean/enum). Likewise, transitions correspond to the APIs
exposed by the resource, and they may be regulated by certain
constraints, e.g., a PublicIP and attached NIC must have the
same zone. Generally, these APIs fall into four categories:
create(), which initiates a resource, destroy(), which does the
opposite, describe(), which reads resource attribute, and mod-
ify(), which changes an existing state. The modify() class has
the most variety, since resources have tens or hundreds of
state variables and may further affect other resources. Hence,
a general way to model them is to treat the SM as symbolic.
A symbolic transition, e.g., modifyX(), will change the state
variable named ‘X’, which is a resource attribute. Resource
states can also be captured using a symbolic form.

For a given resource, we can refine the generic SM model
using information extracted from the documentation. Figure 1
shows the grammar, and an example spec for the PublicIP is
shown below. The read & write primitives operate on state
variables within a SM (e.g., Lines 9-10 modify PublicIP status
and zone); the call primitive triggers a state transition on
an external NIC SM (e.g., Line 14 bidirectionally associates
the NIC with the PublicIP); an assert primitive encodes
constraints (e.g., Lines 13 and 18).

HotNets '25, November 17-18, 2025, College Park, MD, USA

I SM public_ip {

2 States status:enum, zone:str, NIC: SM

3 Transitions {

4 CreatePublicIP (arg); //Creates PublicIP

5 AssociateNIC (arg); //attach with a NIC

6 DestroyPublicIP(); } //unassign
CreatePublicIP (region:str) {

8 write (status, ASSIGNED) ;

9 write(loc, region); 1}

10 AssociateNIC (nic_ref:SM) {

11 assert (loc == nic_ref.loc);

12 call (nic_ref.AttachPublicIP (self));
13 write (NIC, nic_ref); }

14 DestroyPublicIP () {

15 a rt (INIC);

16 write (status, IDLE); } }

4 RESEARCH AGENDA

We now describe our technical workflow (Fig. 2), a novel
neuro-symbolic approach to automatically generate high-
fidelity emulation code based on the SM abstraction. We
also discuss new use cases our approach will enable.

4.1 Documentation wrangling

The first step of our workflow is to identify or curate au-
thoritative cloud documentation. We call this preprocessing
step documentation wrangling. Cloud providers have varying
practices in maintaining and structuring their documentation.
As an example, AWS documents its cloud usage in a set of
PDFs, spanning hundreds to thousands of pages; just the EC2
compute instance alone has over 4000 pages [1]. These PDFs
also have clear pagination with marked sections indexed on
resource names (mapping each API to a resource) with API
signatures and error codes. On the other hand, for Azure and
GCEP, relevant information is scattered across websites, and
no consolidated PDF files exist. The pagination styles are also
markedly different. Hence, ideally, we need an automated pre-
processing step, aided by LLMs, to comprehensively identify
the set of documentation for each cloud.

The scale and complexity of the cloud ensures that docu-
mentation will always be extensive. As a practical challenge,
present-day LLMs have context window limitations. To ad-
dress this challenge, the classic ML solution is to use Retrieval
Augmented Generation (RAG) [33], but the semi-structured
nature of cloud docs provides a unique opportunity: we should
be able to create a symbolic parser, based on documentation
structure, to preprocess information. The documentation fol-
lows a set template indexed by resource type and has ordered
information (request, response types) for each API. This pre-
processing can build resource-specific information, reducing
amount of context that the LLMs have to process and improv-
ing the generation accuracy.

Archit Bhatnagar, Yiming Qiu, Sarah McClure, Sylvia Ratnasamy, Ang Chen

Resource: @ @
OB poring| S, G- Py
L@J Actions(), SM@ Spec
] Error types Cloud SM grammar
scraping Cloud docs | docs & checks

Doc Wrangling (LLM + SM Spec Generation (LLM)
Automated Scraping) /

Symbolic| SM translation —]
pass > Spec >
tests exec.(py/cpp/rs)
Code Generation ()

Automated alignment
(Symbolic Guided Test)

Figure 2: Our envisioned workflow.

4.2 Specification extraction

We envision that the resource SMs would serve as an “ex-
ecution specification.” They not only capture the intended
cloud behavior but due to the constrained nature, can also
be executed in an interpreter to emulate cloud behavior. This
interpreter is the emulator framework that we need to manu-
ally engineer, representing a one-time effort. It maps the spec
rules to code blocks, leveraging the grammar.

Ensuring structured generation comprises our next chal-
lenge. After all, LLMs are not guaranteed to generate outputs
that conform to any grammar. While we can use iterative
prompting by supplying the grammar in the prompt to ensure
that the output is a legal spec, a more principled approach is
to use constrained decoding [43], to constrain the next-token
prediction process so that the token will only be generated if
it does not violate predefined structures.

Due to the large number of cloud resources, we envision
an incremental extraction to generate the SM specs. We first
symbolically extract a resource-level dependency graph from
API input/output dependencies. The LLM iterates over re-
sources in a structured manner in multiple passes: generating
individual SMs while leaving stubs corresponding to certain
dependent resources that have not been generated—e.g., while
generating CreateDefaultVPC() for VPC, it may call Create-
Subnet(), which wouldn’t have been processed yet. Finally,
these incrementally-generated “modules” are spliced together,
with a generation pass mimicking a specification linking pro-
cess, patching unfinished stubs with the actual information,
while also mapping failed assertions to error codes.

Next, before executing these specifications, we perform
consistency checks with the goal of achieving completeness
on resource type coverage and soundness against arbitrary
errors. Our definition of completeness here is that all resource-
types that we wish to generate code for are captured in the
specification, e.g., if a resource A depends on resource B,
then both are present in the specification. This again is en-
abled by the resource dependency structure by computing a

A Case for Learned Cloud Emulators

transitive closure. Soundness against arbitrary invalid specifi-
cation is another consideration: although our grammar con-
strains the representation of the SMs, Al could still produce
syntactically-valid but semantically-incorrect states and tran-
sitions. Therefore, we check the resource-level specification
against behavioral requirements in the documentation—e.g.,
a describe() API will be flagged if it inadvertently modifies
some state, or a transition attempts to make a call to SMs
unreachable in its dependency graph hierarchy. We currently
manually capture these template-based checks since it’s a
limited set, and envision that if needed, the check generation
can be automated using LLMs with manual verification. Er-
roneous components will trigger another round of targeted
correction until the spec passes our checks.

4.3 Automated alignment

Thus far, we have used the cloud documentation as the single
source of truth. However, it is possible that documentation
may contain slight errors or does not stay perfectly in sync
with the actual cloud behavior [41]. Hence, the fidelity of the
generated emulation program is predicated upon the compre-
hensiveness and correctness of the documentation. Hence, we
need an automated alignment step for refining the emulation
behavior. Whereas prior work has found emulator discrep-
ancy using API fuzzing [26, 53], randomly fuzzing the entire
emulator is inefficient and can make check mining inefficient.

Our approach involves performing symbolic passes [19, 31]
over the SMs to divide the search space into symbolically
equivalent classes, based on the check/assert conditions for
each state transition. This enables guided searching and test-
ing for each symbolic class. For validating existing checks,
the SM ensures that there is a singular check violation in
the generated test traces, which helps us pinpoint the failure
root cause. Further, for mining missing semantic checks (by
testing programs and tracing differences), we leverage the SM
abstraction to find the minimal API traces that could trigger
the discrepancies. If any discrepancy is identified by the above
step, we feed the LLM with the delta to diagnose the error: are
the differences attributed to the extracted spec, or the cloud
documentation? Eventually, based on the diagnoses, the LLM
updates the emulator to align with the cloud behavior. This
phase closes the loop, allowing the emulator to continuously
and autonomously improve its fidelity over time.

Ideally, we want the emulator to produce similar or identi-
cal error responses as the cloud, to further aid DevOps debug-
ging. We hypothesize that “error codes” and “error messages”
need to be treated differently. While the former needs to be
identically aligned with the cloud response, the messages
are for developer consumption and can deviate in its exact
wording. Further, we may be able to provide even more infor-
mative responses than the cloud, by “decoding” the API call
sequences using LLMs to suggest root causes and repairs.

HotNets '25, November 17-18, 2025, College Park, MD, USA

4.4 New opportunities of this approach

We now reflect on the broader implications of taking a new
approach to cloud emulation. By formalizing cloud API be-
havior into a machine-readable model, our approach enables
novel ways to analyze and improve cloud services themselves.

Quantifying cloud complexity: The extracted specification
comprises a graph of interacting state machines. This provides
objective metrics (e.g., number of nodes, edge density) for a
quantitative analysis of cloud service complexity. This allows
for comparisons, for example, between the complexity of
AWS Lambda and Azure Functions, and could assist cloud
providers to modularize their resources.

Cloud gym: This emulation framework can also act as a
playground for learning and testing cloud services for Al
agents. There has been a recent line of work on building Al
agents for cloud management [49], with the goal of automat-
ing DevOps engineering. To train these agents, we need a
high-fidelity gym with a no-cost and zero-risk environment.

Documentation engineering: By analyzing the specifica-
tions, we can detect potential design flaws and anti-patterns.
For instance, a modify() call that requires a long and com-
plex chain of actions updating multiple dependencies across
resources may indicate a poorly designed API; or, documenta-
tion that consistently leads the Al to generate incorrect logic
may be flagged as ambiguous and in need of refinement. This
will improve API and documentation engineering [3].

Multi-cloud emulation: Our approach is provider-agnostic
and can generalize to any cloud backend. By consuming dif-
ferent cloud providers’ documentation, we can generate a
standardized formal model for all of them, and generate a
“universal emulator” for testing multi-cloud DevOps programs.
Our approach also enables formal, automated comparisons
of equivalent services—e.g., whether Azure’s CreateVM() re-
quires the same dependency checks as AWS’s Runlnstance()
in AWS—and can help improve cross-cloud portability.

S PRELIMINARY EVALUATION

We have built a preliminary prototype based on our method-
ology, and present initial results benchmarking it against a)
the state-of-the-art emulator LocalStack, which is manually
engineered, and b) an approach that directly prompts an LLM
to read cloud documentation and generate emulator code.
Prototype setup. For a fair comparison with direct code
generation, we evaluate the emulator version using direct
prompting (i.e., without RAG) to generate SM specs using the
grammar. We currently don’t employ constrained decoding
but enforce syntactic checks in the interpreter and re-prompt
in case of issues. The interpreter is a shim layer that maps
SM blocks to Python code with some neural-assisted refac-
toring and helper code generation. We also showcase results

HotNets '25, November 17-18, 2025, College Park, MD, USA

for the workflow without any alignment, but see significant
improvements with alignment.

Basic functionality. We wrote an AWS DevOps program
that creates a VPC, attaches it with a subnet, and then modi-
fies the subnet to enable the MapPubliclpOnLaunch attribute,
which assigns a PublicIP to all instances on launch. Our em-
ulator was able to successfully maintain the required state
(e.g., vpc_id, subnet_id) and process the API calls (e.g., emu-
late ModifySubnetAttribute()). The code synthesis only took
a couple of minutes; moreover, our emulator’s responses
aligned with the actual cloud responses for this case.

Versus manual engineering. As discussed before, despite
extensive efforts, manually-engineered emulators struggle to
cover the diverse range of resources and APIs. Whereas Moto
only covers 11% APIs for Network Firewall (and Localstack
doesn’t emulate that service at all), our preliminary prototype
captures all 45 API calls through automated generation. Our
prototype also captures all EC2 and DynamoDB API calls.
Versus direct-to-code. We then tested the direct-to-code
(D2C) baseline, where the same LLM (i.e., Gemini 2.5 Pro) is
prompted to generate the emulation logic directly from cloud
docs. While D2C has achieved similar API coverage, the gen-
erated code is prone to critical logic and state manipulation
errors that our system prevents by design. To evaluate accu-
racy, we compare the response alignment against the cloud for
4 traces across 3 scenarios: provisioning, state updates, and
edge cases that target subtle underspecified checks. Overall,
the D2C emulator aligned in only 3 out of 12 traces (as shown
in Fig. 3), primarily due to two categories of issues:

(i) State errors: The D2C emulator fails to capture the im-
portant state variables, such as the InstanceTenancy or Cred-
itSpecification attributes, rendering it incapable of testing
certain resource update scenarios that could happen in pro-
duction scenarios. It also missed state checks, like ensuring
that no gateways/endpoints exist in a VPC before processing
a DeleteVPC() call. Other errors include a lack of resource
context, like allowing DNS hostnames to be enabled on a
VPC where DNS support is disabled.

(ii) Transition errors. For instance, when tested with a
StartInstances() call on an already-running instance, the D2C
emulator failed silently; instead of returning the expected “In-
correctInstanceState” error, it returned a success code. This
creates a dangerous state inconsistency that the DevOps pro-
gram cannot detect. Furthermore, its check validation logic
is shallow; while it can check for simple CIDR conflicts, it
incorrectly allows the creation of a subnet with an invalid
prefix size (e.g., /29). Other notable issues include failure to
return the specific error codes required by client-side tooling.
Quantifying service complexity. Our approach can be used
to quantify the complexity of cloud services by the number of
state variables and transitions for a given state machine. We
show the distribution for several AWS services in Figure 4: as

Archit Bhatnagar, Yiming Qiu, Sarah McClure, Sylvia Ratnasamy, Ang Chen

))
100 100% SV E 100%
D2C Emu
= 75%
D\\.i 80 o
>
g 60 50%
5
3 40
< 25%
20
0 0%

Provisioning Edge Cases State Updates

Figure 3: Accuracy of learned emulators across scenarios

c 100 e aeen o .
kel
g .
8 078 Service
lI — EC2
> Network Firewall
5 N —— DynamoDB
)
E Metric
:E; 0.25 4 | Metle __|
© ./ // —=~— Transitions
E

o
o
S

5 10 15 20 25 30 35
State Parameters & Transitions

Figure 4: CDF of SM complexity across services

we can observe, the SMs in the EC2 service are more complex
than others. Overall, our generated specs included 28 SMs for
EC2, 8 for network firewall, and 7 for DynamoDB services.
This complexity distribution, given that we can handle more
complex services like EC2 well, is a positive sign indicating
that our SM generation, for all services scaling across the
cloud, is amenable to LLM-based generation.

Multi-cloud We replicated the same workflow on Azure and
achieved comparable accuracy. The primary additional effort
in generalizing to other cloud providers lies in documentation
wrangling: whereas AWS offers a centralized repository of
API definitions, Azure distributes definitions across resource-
specific web pages. We need to adapt our information gather-
ing workflow according to such provider-specific patterns.

6 CHALLENGES & LIMITATIONS

Underspecified Documentation. For resources with under-
specified information (mainly the description of API specific
behavior), our emulator relies solely on the alignment phase to
gather concrete resource behavior. We’re also exploring scrap-
ing information from cloud-specific resources (like for SDK)
for further information about API behaviors and checks.
Alignment Completeness. The objective of the alignment
phase is to harden the frequently executed paths. Given the un-
bounded number of programs that can be used for alignment,
we do not aim to offer completeness guarantees.

A Case for Learned Cloud Emulators

7 RELATED WORK

Specification mining. Our work builds on a rich history of
techniques for automatically extracting API specifications [32,
37, 42, 44, 54], especially those that leveraged the advent of
LLMs to directly translate informal natural language com-
ments and documents into checkable assertions [22, 52], tem-
poral properties [21, 36], and other formal specifications [29,
39, 40]. While we draw heavily from these advances, most of
them stop at inferring invariants for existing implementations,
rather than generating end-to-end emulation code.

Within the domain of spec mining, our work is most re-

lated to active automata learning, or “model learning” [46, 47],
where an algorithm interactively queries a black-box system
to infer a state machine model of its behavior using traces or
documentation. The most related work, Hermes [15] synthe-
sizes FSMs from network protocol documents for security
analysis, while other works have focused on attack synthe-
sis [45], automated testing [34], or bug detection in proto-
cols [23, 24]. To the best of our knowledge, our work is the
first to use LLMs to translate API documentation into com-
plete, executable SMs to emulate cloud services.
Cloud testing. Most cloud testing works have focused on
finding bugs and vulnerabilities in the cloud service imple-
mentation itself, using stateful fuzzing [16, 17, 26, 28, 30, 48]
(more so with LLMs [53]) or differential testing [27]. The
closest work to ours [41] aims to find behavioral gaps be-
tween real cloud and emulators, but does not fix them in a
principled manner. Our key contribution is to close the loop:
use the discrepancies to refine our learned model itself. We
take inspiration from the prior work on protocol reverse engi-
neering [18, 38, 51] for efficient automated alignment.

8 SUMMARY

The development of modern cloud infrastructure needs emu-
lation for better testing and validation. Historically, this task
requires constant, error-prone manual efforts. We make a
case for a new approach, using LLMs to learn the emulation
logic from cloud documentation and automatically generating
emulation code. Specifically, we argue for modeling cloud
resources as state machines, paving the way toward principled
code generation. This further opens up new avenues for Al-
assisted cloud operations, e.g., for automated cloud testing,
or building gym environments for cloud agents.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd, Barath
Raghavan, for their insightful feedback. This work is partially
supported by a VMware Early Career Faculty Grant, a Cisco
grant, and NSF grants CNS-1942219, CNS-2106751, CNS-
2107147, CNS-2214272.

HotNets '25, November 17-18, 2025, College Park, MD, USA

REFERENCES

[1] Amazon elastic compute cloud - api reference. https://docs.aws.ama
zon.com/pdfs/AWSEC2/latest/ APIReference/ec2-api.pdf. [Accessed
09-07-2025].

[2] Amazon Web Services — aboutamazon.com. https://www.aboutamazo
n.com/what-we-do/amazon-web-services. [Accessed 29-06-2025].

[3] API Design Guide | Google Cloud — cloud.google.com. https://cloud.
google.com/apis/design. [Accessed 09-07-2025].

[4] AWS CloudFormation. https://aws.amazon.com/cloudformation/.

[5] cloudcontrolapi — aws.amazon.com. https://aws.amazon.com/cloudco
ntrolapi/. [Accessed 05-07-2025].

[6] LocalStack for AWS — localstack.cloud. https://www.localstack.cloud
/localstack-for-aws. [Accessed 29-06-2025].

[7] localstack/localstack — github.com. https://github.com/localstack/loca
Istack/issues. [Accessed 05-07-2025].

[8] Moto: Mock AWS Services &x2014; Moto 5.1.7.dev documentation
— docs.getmoto.org. https://docs.getmoto.org/en/latest/. [Accessed
02-07-2025].

[9] Pulumi: Infrastructure as code in any programming language. https:
/Iwww.pulumi.com/.

[10] Terraform by Hashicorp. https://www.terraform.io/.

[11] Use Azurite emulator for local Azure Storage development —
learn.microsoft.com. https://learn.microsoft.com/en-us/azure/storage
/common/storage-use-azurite?tabs=visual-studio%2Cblob- storage.
[Accessed 02-07-2025].

[12] What is Terraform | Terraform | HashiCorp Developer — devel-
oper.hashicorp.com. https://developer.hashicorp.com/terraform/intro.
[Accessed 05-07-2025].

[13] What’s New at AWS — Cloud Innovation & News — aws.amazon.com.
https://aws.amazon.com/new/. [Accessed 05-07-2025].

[14] How can i experiment with cloud (azure, aws, google, etc) without
going broke? https://devops.stackexchange.com/questions/1002/how-
can-i-experiment- with-cloud-azure-aws- google-etc- without-going-
broke?noredirect=1&lq=1, 2021. [Accessed 09-07-2025].

[15] A. AlIshtiag, S. S. S. Das, S. M. M. Rashid, A. Ranjbar, K. Tu, T. Wu,
Z. Song, W. Wang, M. Akon, R. Zhang, et al. Hermes: unlocking
security analysis of cellular network protocols by synthesizing finite
state machines from natural language specifications. In 33rd USENIX
Security Symposium (USENIX Security 24), pages 4445-4462, 2024.

[16] V. Atlidakis, P. Godefroid, and M. Polishchuk. Restler: Stateful rest api
fuzzing. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pages 748-758. IEEE, 2019.

[17] V. Atlidakis, P. Godefroid, and M. Polishchuk. Checking security
properties of cloud service rest apis. In 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST),
pages 387-397. IEEE, 2020.

[18] G. Bossert, F. Guihéry, and G. Hiet. Towards automated protocol
reverse engineering using semantic information. In Proceedings of the
9th ACM symposium on Information, computer and communications
security, pages 51-62, 2014.

[19] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. vol-
ume 8, pages 209-224, 01 2008.

[20] S. Chasins, A. Cheung, N. Crooks, A. Ghodsi, K. Goldberg, J. E. Gon-
zalez, J. M. Hellerstein, M. I. Jordan, A. D. Joseph, M. W. Mahoney,
A. Parameswaran, D. Patterson, R. A. Popa, K. Sen, S. Shenker, D. Song,
and I. Stoica. The sky above the clouds, 2022.

[21] M. Cosler, C. Hahn, D. Mendoza, F. Schmitt, and C. Trippel. nl2spec: In-
teractively translating unstructured natural language to temporal logics
with large language models. In International Conference on Computer
Aided Verification, pages 383-396. Springer, 2023.

https://docs.aws.amazon.com/pdfs/AWSEC2/latest/APIReference/ec2-api.pdf
https://docs.aws.amazon.com/pdfs/AWSEC2/latest/APIReference/ec2-api.pdf
https://www.aboutamazon.com/what-we-do/amazon-web-services
https://www.aboutamazon.com/what-we-do/amazon-web-services
https://cloud.google.com/apis/design
https://cloud.google.com/apis/design
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudcontrolapi/
https://aws.amazon.com/cloudcontrolapi/
https://www.localstack.cloud/localstack-for-aws
https://www.localstack.cloud/localstack-for-aws
https://github.com/localstack/localstack/issues
https://github.com/localstack/localstack/issues
https://docs.getmoto.org/en/latest/
https://www.pulumi.com/
https://www.pulumi.com/
https://www.terraform.io/
https://learn.microsoft.com/en-us/azure/storage/common/storage-use-azurite?tabs=visual-studio%2Cblob-storage
https://learn.microsoft.com/en-us/azure/storage/common/storage-use-azurite?tabs=visual-studio%2Cblob-storage
https://developer.hashicorp.com/terraform/intro
https://aws.amazon.com/new/
https://devops.stackexchange.com/questions/1002/how-can-i-experiment-with-cloud-azure-aws-google-etc-without-going-broke?noredirect=1&lq=1
https://devops.stackexchange.com/questions/1002/how-can-i-experiment-with-cloud-azure-aws-google-etc-without-going-broke?noredirect=1&lq=1
https://devops.stackexchange.com/questions/1002/how-can-i-experiment-with-cloud-azure-aws-google-etc-without-going-broke?noredirect=1&lq=1

HotNets '25, November 17-18, 2025, College Park, MD, USA

[22])

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

M. Endres, S. Fakhoury, S. Chakraborty, and S. K. Lahiri. Can large
language models transform natural language intent into formal method
postconditions? Proceedings of the ACM on Software Engineering,
1(FSE):1889-1912, 2024.

P. Fiterau-Brostean, B. Jonsson, K. Sagonas, and F. Taquist. Automata-
based automated detection of state machine bugs in protocol implemen-
tations. In NDSS, 2023.

P. Fiterdu-Brostean, B. Jonsson, K. Sagonas, and F. Taquist. Sm-
bugfinder: An automated framework for testing protocol implementa-
tions for state machine bugs. In Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 1866—
1870, 2024.

Y. Fu, E. Baker, Y. Ding, and Y. Chen. Constrained decoding for secure
code generation, 2024.

P. Godefroid, B.-Y. Huang, and M. Polishchuk. Intelligent rest api data
fuzzing. In Proceedings of the 28th ACM joint meeting on European
software engineering conference and symposium on the foundations of
software engineering, pages 725-736, 2020.

P. Godefroid, D. Lehmann, and M. Polishchuk. Differential regression
testing for rest apis. In Proceedings of the 29th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, pages 312-323,
2020.

P. Godefroid, H. Peleg, and R. Singh. Learn&fuzz: Machine learning
for input fuzzing. In 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 50-59. IEEE, 2017.
N. Jain, S. Vaidyanath, A. Iyer, N. Natarajan, S. Parthasarathy, S. Raja-
mani, and R. Sharma. Jigsaw: Large language models meet program
synthesis. In Proceedings of the 44th International Conference on
Software Engineering, pages 1219-1231, 2022.

M. Kim, Q. Xin, S. Sinha, and A. Orso. Automated test generation
for rest apis: No time to rest yet. In Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis,
pages 289-301, 2022.

J. C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385-394, July 1976.

I. T. Leong and R. Barbosa. Generation of oracles using natural lan-
guage processing. In 2021 28th Asia-Pacific Software Engineering
Conference Workshops (APSEC Workshops), pages 25-31. IEEE, 2021.
P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Kiit-
tler, M. Lewis, W.-t. Yih, T. Rocktischel, et al. Retrieval-augmented
generation for knowledge-intensive nlp tasks. Advances in neural
information processing systems, 33:9459-9474, 2020.

H. Li, Z. Dong, S. Wang, H. Zhang, L. Shen, X. Peng, and D. She.
Extracting formal specifications from documents using Ilms for test
automation. In 2025 IEEE/ACM 33rd International Conference on
Program Comprehension (ICPC), pages 1-12. IEEE Computer Society,
2025.

B. Liskov and S. Zilles. Programming with abstract data types. In
Proceedings of the ACM SIGPLAN Symposium on Very High Level
Languages, page 50-59, New York, NY, USA, 1974. Association for
Computing Machinery.

J. X. Liu, Z. Yang, B. Schornstein, S. Liang, I. Idrees, S. Tellex, and
A. Shah. Lang2ltl: Translating natural language commands to temporal
specification with large language models. In Workshop on Language
and Robotics at CoRL 2022, 2022.

M. Liu, X. Peng, A. Marcus, C. Treude, X. Bai, G. Lyu, J. Xie, and
X. Zhang. Learning-based extraction of first-order logic representations
of api directives. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 491-502, 2021.

Z. Luo, K. Liang, Y. Zhao, F. Wu, J. Yu, H. Shi, and Y. Jiang. Dynpre:
Protocol reverse engineering via dynamic inference. In Proc. NDSS,

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

Archit Bhatnagar, Yiming Qiu, Sarah McClure, Sylvia Ratnasamy, Ang Chen

pages 1-18, 2024.

L.Ma, S. Liu, Y. Li, X. Xie, and L. Bu. Specgen: Automated generation
of formal program specifications via large language models. arXiv
preprint arXiv:2401.08807, 2024.

S. Mandal, A. Chethan, V. Janfaza, S. Mahmud, T. A. Anderson,
J. Turek, J. J. Tithi, and A. Muzahid. Large language models
based automatic synthesis of software specifications. arXiv preprint
arXiv:2304.09181, 2023.

A. Mazhar, S. S. Alam, W. X. Zheng, Y. Chen, S. Nath, and T. Xu.
Fidelity of cloud emulators: The imitation game of testing cloud-based
software. In 2025 IEEE/ACM 47th International Conference on Soft-
ware Engineering (ICSE), pages 614—614. IEEE Computer Society,
2025.

M. Motwani and Y. Brun. Automatically generating precise oracles
from structured natural language specifications. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE), pages
188-199, 2019.

N. Miindler, J. He, H. Wang, K. Sen, D. Song, and M. Vechev. Type-
constrained code generation with language models. Proc. ACM Pro-
gram. Lang., 9(PLDI), June 2025.

H. A. Nguyen, R. Dyer, T. N. Nguyen, and H. Rajan. Mining precon-
ditions of apis in large-scale code corpus. In Proceedings of the 22nd
ACM SIGSOFT international symposium on foundations of software
engineering, pages 166-177, 2014.

M. L. Pacheco, M. von Hippel, B. Weintraub, D. Goldwasser, and
C. Nita-Rotaru. Automated attack synthesis by extracting finite state
machines from protocol specification documents. In 2022 IEEE Sym-
posium on Security and Privacy (SP), pages 51-68. IEEE, 2022.

A. Tran Van, O. Levillain, and H. Debar. Mealy verifier: An automated,
exhaustive, and explainable methodology for analyzing state machines
in protocol implementations. In Proceedings of the 19th International
Conference on Availability, Reliability and Security, pages 1-10, 2024.
F. Vaandrager. Model learning. Communications of the ACM, 60(2):86—
95, 2017.

H. Wu, L. Xu, X. Niu, and C. Nie. Combinatorial testing of restful
apis. In Proceedings of the 44th International Conference on Software
Engineering, pages 426437, 2022.

Z. Yang, A. Bhatnagar, Y. Qiu, T. Miao, P. T. J. Kon, Y. Xiao, Y. Huang,
M. Casado, and A. Chen. Cloud infrastructure management in the age
of ai agents. arXiv preprint arXiv:2506.12270, 2025.

Z. Yang, Z. Wu, M. Luo, W.-L. Chiang, R. Bhardwaj, W. Kwon,
S. Zhuang, F. S. Luan, G. Mittal, S. Shenker, and I. Stoica. SkyPilot:
An intercloud broker for sky computing. In 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 23), pages
437455, Boston, MA, Apr. 2023. USENIX Association.

Y. Ye, Z. Zhang, F. Wang, X. Zhang, and D. Xu. Netplier: Probabilistic
network protocol reverse engineering from message traces. In NDSS,
2021.

J. Zhai, Y. Shi, M. Pan, G. Zhou, Y. Liu, C. Fang, S. Ma, L. Tan,
and X. Zhang. C2s: translating natural language comments to formal
program specifications. In Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2020, page 25-37,
New York, NY, USA, 2020. Association for Computing Machinery.

T. Zheng, J. Shao, J. Dai, S. Jiang, X. Chen, and C. Shen. Restless:
Enhancing state-of-the-art rest api fuzzing with llms in cloud service
computing. IEEE Transactions on Services Computing, 2024.

H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring resource specifica-
tions from natural language api documentation. In 2009 IEEE/ACM
International Conference on Automated Software Engineering, pages
307-318, 2009.

	Abstract
	1 Introduction
	2 Motivation
	3 An Illustrative Example
	4 Research Agenda
	4.1 Documentation wrangling
	4.2 Specification extraction
	4.3 Automated alignment
	4.4 New opportunities of this approach

	5 Preliminary Evaluation
	6 Challenges & Limitations
	7 Related Work
	8 Summary
	References

