Just-in-Time Logic Enforcement

A new paradigm of combining statistical and symbolic reasoning for network management

Hongyu He

Princeton University

Abstract

While ML can greatly aid network management, it often
makes glaring mistakes that contradict common sense or
domain-specific constraints, undermining its trustworthi-
ness and hindering adoption. To address this mismatch, this
paper advocates for enforcing logic during ML inference (or
Just-In-Time), rather than during training or post-inference
in prior work. We find that this approach offers correctness
guarantees without sacrificing statistical fidelity, thereby
maximizing the benefits of both ML and formal reasoning.

To achieve Just-In-Time Logic Enforcement, we interleave
an SMT solver into the language model’s inference process,
which guides generation step by step to enforce domain-
specific rules. Our proof-of-concept implementation, Le]JIT,
turns a generic GPT-2 model at inference time into either a
synthetic data generator or a telemetry imputer by apply-
ing different sets of logic rules and performs on par with
task-specific SOTA systems. LeJit paves the way for a net-
working foundation model networking that can be repur-
posed through logic rules, instead of costly retraining or
fine-tuning.

CCS Concepts

+ Networks — Network manageability; Network man-
agement; Network measurement; « Computing method-
ologies — Inductive logic learning; « Theory of compu-
tation — Automated reasoning.

Keywords

network management, LLM, formal methods, inference-time
reasoning, SMT solver, neuro-symbolic Al

ACM Reference Format:

Hongyu He and Maria Apostolaki. 2025. Just-in-Time Logic En-
forcement: A new paradigm of combining statistical and sym-
bolic reasoning for network management. In The 24th ACM Work-
shop on Hot Topics in Networks (HotNets ’25), November 17-18,

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

HotNets 25, College Park, MD, USA

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2280-6/25/11
https://doi.org/10.1145/3772356.3772406

Maria Apostolaki

Princeton University

2025, College Park, MD, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/lo.l145/3772356.3772406

1 Introduction

Machine learning (ML) has long shown potential for simpli-
fying network management, powering automation in tasks
such as router configuration [31], intent translation [50], in-
cident response [18], and scheduling [20, 52]. Large language
models (LLMs) have recently amplified this promise. Unlike
traditional ML, LLMs can learn from vast amounts of unla-
beled, multimodal data—ranging from traffic traces [7] and
time series [29] to technical documents such as RFCs [40].
Massive investments in data and compute continue to accel-
erate their capabilities, making them increasingly powerful
tools for reasoning and automation.

Despite this progress, network operators remain cautious.
LLMs still hallucinate [11, 21, 41, 61], struggle to follow
rules [3, 9, 23, 24], and are costly to train or fine-tune. As a re-
sult, the vision of a universal model for networking is giving
way to specialized, task-specific designs [22, 27, 42, 59].

Unlike fields such as biology, networking is entirely human-
engineered, not a natural phenomenon: almost every bit
transmitted reflects deliberate choices in protocol design,
hardware, and software. Solely relying on ML to infer all this
structure from data (and then criticizing it when it fails to
replicate or predict behaviors well-understood by experts)
is ill-conceived at best. As prior work has noted, a natural
solution is to combine ML with logic [6, 15, 60], i.e., explicit
rules. Existing approaches typically follow one of two de-
sign paradigms. At one paradigm, logic is taught through
training. For example, Zoom2Net [16] augments the loss
function with logic constraints inspired by physics-informed
neural networks [8, 37]. While this approach imposes no
inference overhead, it requires re-training hence white-box
access to the model, limits rules to differentiable forms, and
most importantly, does not guarantee rule compliance during
inference. At the another design paradigm, logic is enforced
post inference. NetDiffusion [24] takes this route, applying
rule-based corrections after generation to fix invalid outputs.
This method is model-agnostic and supports more expres-
sive rules, but it may fail to find a valid correction [23], as
often observed in NetDiffusion, which relies on a hard-coded
one-pass algorithm.

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3772356.3772406
https://doi.org/10.1145/3772356.3772406

HotNets "25, November 17-18, 2025, College Park, MD, USA

This paper argues that logic should guide ML autoregres-
sive models with discrete output space. For example, LLMs
are particularly well-suited to this approach, as their sequen-
tial token-by-token generation allows rules to be enforced
step-by-step. Concretely, we propose to use rules to guide
the model’s inference, dynamically pruning its token options
at each step to enforce rule compliance. This approach en-
ables easy repurposing of models by modifying the rules
rather than retraining or fine-tuning. It also allows network
operators to focus on defining useful rules without worrying
whether they are differentiable, whether they appear enough
in training, or whether they can be embedded in prompts.
Finally, as we show in our evaluation (§4), enforcing rules
during inference can be minimally invasive and preserve
statistical fidelity.

While conceptually straightforward, intercepting and guid-
ing an LLM’s inference using logic is highly challenging.
First, network rules are complex, as they involve arithmetic
constraints, conditional logic, and relationships across mul-
tiple input variables, making them incompatible with static
token masking, which is recently supported by some LLMs
to ensure syntactic compliance [2, 12, 13, 34, 38, 51]. To cope
with this complexity and leverage rich networking knowl-
edge, we posit that a true constraint solver must natively
join the LLM’s inference process. To this end, we built LeJIT,
a framework in which an SMT solver intersects the LLM’s
token-by-token inference to guide it towards rule-compliant
outputs. Before each token is generated, the solver dynami-
cally computes the set of valid next tokens, based on a con-
figurable set of logic rules, and the already generated tokens.
Critically, the solver also looks ahead before computing the
valid tokens to ensure that there is a path to a valid out-
put, namely a rule-compliant token sequence. As a result,
LeJIT is minimally invasive, gently nudging the LLM away
from mistakes that lead to dead ends without overwriting
decisions that would not have led to rule violations, thereby
preserving the LLM’s original (valid) decisions.

The tight integration of the SMT solver brings LeJIT sub-
stantially more flexibility and power but comes with its own
challenges. One such hurdle is the mismatch in granularity:
LLMs operate over vocabularies of tokens, while SMT solvers
reason over higher-level variables such as network measure-
ments and packet header fields. To bridge this gap, LeJIT
constructs a character-level transition system on the fly to
exert finer-grained control than the granularity of variable-
level network rules. Multiple challenges remain, particularly
in automatically discovering meaningful and useful rules at
scale and improving the performance of LeJIT.

Even in its proof-of-concept form, LeJIT shows significant
promise. LeJIT turns the same GPT-2 model into either a
synthetic data generator or a telemetry imputer by apply-
ing different sets of logic rules at inference time. Notably,

Hongyu Heé and Maria Apostolaki

LeJIT-guided GPT-2 delivers performance on par with heav-
ily engineered pipelines like Zoom2Net and NetShare, while
producing outputs that are more accurate from a knowledge-
consistency perspective. This result suggests a compelling
vision: rather than pursuing ever-larger opaque models, we
could develop a single reusable, task-adaptable foundation
model for networking—one guided by logic instead of raw
GPU power.!

2 Motivation

We begin with a motivating use case introduced in recent
work [16] to illustrate the benefits of combining ML with
logic in networking. We use this use case to highlight why
existing approaches fall short of fully realizing that potential
and validate our intuition in our preliminary results (§4).

2.1 Why Networking Needs Logic

Example. A datacenter operator seeks to analyze fine-
grained burst behavior [14], but only coarse-grained mea-
surements (e.g., ingress volume, ECN marked byte count) at
50 ms intervals are available. To recover missing millisecond-
level ingress bytes Iy..I4, the operator uses a telemetry imputer—
an ML model trained to infer fine-grained signals from coarse-
grained ones [16]. This task is feasible because many network
metrics are correlated [14, 16].

As illustrated in Fig. 1a, the operator chooses to use a
LLM, leveraging its recent advances. Given inputs such as
Totallngressy = 100 and Congestiony = 8 over a win-
dow T = 5, the LLM predicts Iy, ..., Iy = [20,15, 25,70, 8].
This output violates two key rules: I; = 70 exceeds the
bandwidth limit (BW= 60), and the total sum (138) exceeds
Totallngressr.

As prior work has noted [16, 24], rather than faulting an
ML model for violating known rules, a better solution is to
explicitly encode those rules into the model’s pipeline. In
our example, these include

Vt<T: 0<I <BW, (R1)
T-1
ZI, = Totallngressy, and (R2)
=0

(Congestiony > 0) = r@_ﬁé{{b} > %BW. (R3)

R1 ensures that the ingress volume (I;) at any given time
is non-negative and does not exceed the bandwidth (BW).
R2 states that the sum of all I; within a time window T must
equal the total observed ingress TotalIngressy. R3 specifies
that if ECN-markings (Congestion) are detected during the
window T, there must be a burst event where at least one I;

exceeds half the bandwidth [14].

The authors have nothing against GPUs—only a shortage of them.

Just-in-Time Logic Enforcement

LM Inference

LM Inference with LeJIT

&

e

R3: (Congestlon > 0) \I/‘LNII) A;l(;(WEd Gl"h‘l)(sen
ocal oken okKen
I i i1 ive i3 iv4 i+5
R1 XO 0ol) H H H H H H
Iy -(15}-(20}-(25}-(69]70[71}- Constraints —)| Solver |e 2015252]2]
Iy, I I, I Iy m m m
& Logic Enforcement 0 = 13 <10) V(30 < Iy < 40) n m
x> { %!E
Constraint: Distan
| 21(: I IIT Ij: I;: [+] (R? R2, R3S) Mefricj‘z I {5}-[10 30}
@ . ey
_Solver Constraints | =3 | Sol €& |20 |15|25]39 | 2 = 7 3
Softom 1 ¢ 30 10 R1,R2,R3 | oi,er | l Iy l I, l I, l I I I l
0"&0‘;2)[20[13 lZSlwlﬁ/l - L—1 e
OR gic Enforcement

AN J

e ARAEAR AN

Logic Enforcement

1,

L+ @ $
[0 [15 25 60 [o] [20 [15 JTas [30 [1]
Iy I I I3 n 0 1 I I3 Iy

(a) Post-inference correction. (b) Our Just-in-Time logic enforcement.

Figure 1: Example of using an LLM for network telemetry imputation under
three rules R1-R3. (a) A pure LLM (blue frame) generates imputed samples
[Lo, ..., I;] that violate fundamental networking rules such as R1-R3. We
can enforce logic post-inference (yellow frame), but not without hurting
the statistical fidelity of the imputed sample. (b) Instead of enforcing rules
post-inference, LeJIT invokes an SMT solver before every token generation
to filter out tokens, that if selected by the LLM, will result in rule violations,

R1:Vt <T:0<I; < BW
R2: ET ! I, = TotalIngress

3

= L [e) (2 & (=] [(=] =] =] [E

~-HEE
~ [[e[]]

HotNets "25, November 17-18, 2025, College Park, MD, USA

= [04 [2] & [=] [4] (5] & [

...EEH

3

- [e 2 G = = E EEE

I3

=

Figure 2: Character-level transi-
tion system constructed by LeJIT
on the fly when imputing 5 and
I;. LeJIT operates on tokens, while
the SMT solver on variables. Care-
fully aligning them allows LeJIT
to be minimally invasive.

effectively enforcing logic Just-In-Time.

2.2 Where Prior Methods Fall Short

Enforcing logical rules, such as R1-R3, on ML models in a
way that leverages their complementary strengths without
putting them at odds is challenging. To better understand this
problem, we examine three fundamentally different strate-
gies explored in prior networking and ML research: (1) cor-
recting model outputs after inference, (2) teaching model
rules at training time, and (3) constraining the model decod-
ing process. We omit the discussion on prompt engineering
for LLMs, which is inherently ad-hoc and provides no guar-
antees.

Enforcing rules post-inference. A natural way of inte-
grating logic rules in any ML task is to allow the generative
model to operate freely and then correct its output after gen-
eration to satisfy these rules. The correction can be done
using a fast deterministic algorithm [24], an ILP [16], or a
full constraint solver (e.g., an SMT solver) [5, 10, 45, 49].
We illustrate this post-inference approach in the lower
part of Fig. 1a, where the LLM’s invalid output is fed to an
SMT solver (®) together with R1-R3. We use an SMT solver
because it is the most general, supporting a wide range of
constraints. The solver’s job is to modify the LLM’s output
to make it compliant with all provided rules. Unless provided
with a specific optimization goal, the SMT solver would se-
lect an arbitrary solution among all compliant ones, not the
most likely solution based on historical data. In other words,
it will not respect the LLM’s learned distribution. One pos-
sible mitigation is to define a distance metric (fp) and ask
the solver to find a solution that satisfies the constraints

HotNets "25, November 17-18, 2025, College Park, MD, USA

while remaining as close as possible to the original output of
the LLM. While this method is relatively straightforward in
domains like vision (where metrics like L2 distance often suf-
fice), fields in network data are far more complex to compare.
In networking, semantic meaning does not necessarily align
with numerical distance [9, 23, 25], making it challenging to
define a meaningful metric for each field of interest.
Teaching the model to follow rules. One way to encour-
age constraint satisfaction (R1-R3) is to embed rules into
the training process, typically by adding them to the loss
function as regularization terms [3, 16, 26, 39, 54]. The model
is penalized for violations during training, with the hope that
it generalizes rule compliance at inference time.

However, this approach has major drawbacks. It offers no

guarantee of constraint satisfaction during inference, and ap-
plies only to differentiable rules or their approximations. This
limitation is especially problematic in networking, where
most rules are nondifferentiable. For instance, constraints
R1-R3 require approximations such as sigmoid functions or
fuzzy logic [58] to be included in the loss. Moreover, scal-
ing to many constraints is difficult: each rule must be man-
ually encoded and weighted, which complicates optimiza-
tion [3, 26]. This issue is especially limiting in domains like
networking, where describing a single protocol may involve
hundreds of rules [19, 23, 28, 55]. Lastly, training-time ap-
proaches lack flexibility: any update to the rule set requires
retraining or fine-tuning, making it ill-suited for dynamic
network environments.
Enforcing rules during decoding. The inability of ML and
LLMs in particular to follow explicit rules has prompted the
ML research community to develop specialized techniques to
help them adhere to structured output formats such as JSON
or knowledge triplets [2, 12, 13, 34, 38, 51]. Specifically, con-
straint decoding developed for this purpose cannot be used
to enforce networking rules because there is no theoretical
foundation for converting them into forms compatible with
such frameworks, such as context-free grammars, individual
automata or their unions. In other words, constrained decod-
ing typically filters tokens based on immediate validity (e.g.,
grammar-based parsing), but it cannot perform arithmetic
calculations or ensure that a future token can satisfy the
constraint model. For instance, encoding a constraint with),
as rule R2 into a decoding process would mean tracking the
running total and pruning any continuation that makes the
final sum impossible—essentially doing search or backtrack-
ing. Even keeping track of a single such rule is far beyond
the capability of standard token-by-token parsing.

Hongyu Heé and Maria Apostolaki

3 Just-in-Time Logic Enforcement

Having shown that enforcing logic during training post-
inference or compromises either correctness (compliance
with rules) or statistical fidelity (learned distributions), and
constraint encoding is inadequate to support network con-
straints, we propose LeJIT: a framework for Enforcing Logic
Just-In-Time. LeJIT intersects the LLM’s token-by-token in-
ference to guide it towards rule-compliant generation as
shown in Fig. 1b. While incorporating the SMT solver in-
troduces some inference delay, it provides a valuable col-
laboration between neural and symbolic reasoning. It max-
imizes the contribution of symbolic reasoning by enabling
the enforcement of arbitrary network rules, including arith-
metic, non-differentiable, and global constraints, without
placing additional burden on the operator. Moreover, LeJIT
preserves statistical fidelity by respecting the token distribu-
tion learned by the LLM.

To better understand how LeJIT works, let us revisit the

example of imputing [Io, ..., I;] but now generated with
LeJIT’s guidance. After generating a complete value (e.g., I
at @), LeJIT invokes the solver with the provided constraints,
instantiated using the values generated so far. This dynamic
partial instantiation is crucial for determining which con-
straints are active and what conditions must be met to ensure
valid output going forward. For example, suppose the LLM
had already produced values satisfying 3t < 3 : I; > 30;
in that case, R3 would already be met and thus deactivated
when determining the feasible region for 5. If no such value
has been generated—as is the case in our example—the solver
considers all three rules R1-R2 when computing the valid
range for I3 (@). Then, LeJIT invalidates all candidate val-
ues of I5 that fall outside this feasible region (@), effectively
guiding the model toward valid generation paths. As a re-
sult, the resulting model output I5 = 39 is always guaranteed
to satisfy all constraints (@). Moreover, in the presence of
global aggregation constraints such as R2, this guided infer-
ence process often concludes with only a single valid value
remaining for the LLM to emit (@).
LeJIT offers LLM-native generation with character-
level control. A key challenge in guiding an LLM with the
solver is the mismatch in granularity between the model’s
generation process and the solver’s reasoning. LLMs pro-
duce output token by token, and these tokens, defined by the
tokenizer, are often opaque and lack semantic clarity. In con-
trast, SMT solvers operate over well-defined, interpretable
variables (such as ingress bytes or ECN markings) expressed
through explicit logical constraints. This discrepancy makes
it difficult to enforce constraints without interfering with
the LLM’s native decoding behavior.

LeJIT addresses this issue by offering character-level guid-
ance that is finer-grained than the symbolic variables on which

Just-in-Time Logic Enforcement

solvers operate. To achieve this level of control, Le]JIT treats
numeric values as plain text [36] and uses a character-level
tokenization scheme [44], generating each number digit
by digit. As shown in Fig. 2, LeJIT constructs a character-
level transition system[4, 46, 48] on the fly during inference.
Specifically, given a feasible range for a target variable as
determined by the solver, LeJIT builds an unlabeled transi-
tion system where the current state reflects the last token
selected by the LLM, and the set of next states includes all
tokens that would maintain the value within the valid region.
LeJIT provides a little guidance, but it goes a long way.
Over-constraining the LLM, for example, through partial
completions or rigid templates, disrupts its natural reason-
ing path and undermines its generative strength. Still, even a
well-trained model is highly likely to produce invalid outputs,
since a single incorrect token can render the entire sequence
invalid. As illustrated in Fig. 1a, the sequence becomes in-
valid as early as the generation of I5. LeJIT strikes a balance
by filtering out rule-violating tokens at each generation step,
intervening only when the model is about to make a critical
mistake. This approach preserves the LLM’s natural behav-
ior while enforcing compliance with constraints whenever
necessary.

A single LLM to “rule” them all? A key side benefit of
applying rules at inference time is that modifying the rules
enables repurposing an existing LLM—originally trained for
one task—for a different task, without retraining or fine-
tuning. For example, an LLM trained to impute fine-grained
ingress volumes can be readily adapted to generate synthetic
coarse-grained signals by simply changing the constraints:
instead of enforcing rules on fine-grained ingress values I;
that rely on access to coarse-grained signals, we can sub-
stitute rules that capture relationships among the coarse-
grained signals themselves. In our preliminary evaluation
(§4.2), we demonstrate that a generic LLM trained for teleme-
try imputation can, under the guidance of LeJIT, achieve
competitive performance with SOTA specialized data gener-
ators.

4 Early Results

As a proof of concept, we prototype and empirically evaluate
the effectiveness of LeJIT in experiments.

Dataset. We conduct all experiments using the data center
data released by Meta [14], following the same evaluation
setup as that of Zoom2Net [16]. We use measurements from
the 10 random racks for testing and 80 racks for training.
The test set contains over 30,000 data points.

Network rules. For the network telemetry imputation task
(§4.1), we use 716 rules which describe relationships be-
tween coarse-grained signals (e.g., retransmissions) and fine-
grained ingress measurements I;. For the synthetic network

HotNets "25, November 17-18, 2025, College Park, MD, USA

data generation task (§4.2), we use 255 rules that capture
relationships among the coarse-grained signals themselves.
We obtain both sets of rules by applying NetNomos [23] on
the training data.

LeJIT implementation. Since LeJIT is LLM-agnostic, its
effectiveness does not rely on a specific language model ar-
chitecture. Therefore, for LeJIT we deliberately employ a
generic, less powerful LLM, GPT-2 [35], to demonstrate how
LeJIT can instill networking knowledge into the model at
inference time. We train GPT-2 from scratch on the afore-
mentioned datacenter dataset [14] and adopt character-level
tokenization [44] to enable fine-grained control. Importantly,
we repurpose the same trained model for two distinct tasks
by applying task-specific rule sets through Le]JIT, without
any retraining or fine-tuning.

Baselines. We use the following baselines for both use cases:
(i) Vanilla GPT-2: The original GPT-2 model without LeJIT;
(ii) Rejection Sampling: A naive approach that discards all
outputs violating network rules and repeatedly samples from
GPT-2 until a valid output is produced; (iii) “manual” rules:
Instead of using the automatically discovered rules from
NetNomos [23], this baseline enforces the four manually
specified rules (C4-C7) used by Zoom2Net [16]. For each use
case, we compare against SOTA task-specific frameworks.
For network measurement imputation (§4.1), we evaluate
against Zoom2Net [16]. For synthetic network data genera-
tion (§4.2), we compare against a diverse set of SOTA data
generators: NetShare [56], E-WGAN-GP [17], CTGAN [53],
TVAE [53], and the GPT-2-based REaLTabFormer [43]. For
both tasks, we omit comparisons with traditional statistical
methods such as kNN and regression, as previous studies
have demonstrated that our task-specific baselines achieve
superior performance [16, 43, 53, 56].

4.1 LeJIT for Network Telemetry
Imputation

Finding 1: Unlike task-specific models, which (at best) com-
ply with a few hand-picked rules, LeJIT comply with all 716
rules, while achieving on-par performance in imputation
accuracy and downstream tasks with Zoom2net.

We apply LeJIT on the task of network telemetry impu-
tation and evaluate its effectiveness in enforcing network
rules, overhead and accuracy.

Rule violation. Fig. 3 (left) reports rule violation rates.
Vanilla GPT-2, lacking any constraints, shows the highest
violation rate at 18%. Zoom2Net, despite using a constraint
enforcement module (CEM), relies on limited and soft manual
rules, resulting in over 7% violations—similar to LeJIT when

HotNets "25, November 17-18, 2025, College Park, MD, USA

Hongyu Hé and Maria Apostolaki

B Vanilla GPT2 EEN Rej. Samp. =R (ol N omos) =1 Zoom2Net
MSE Burst Height
EMD Burst Duration
Zoom2Net :lQ,OQ Zoom2Net :|1,37 B t Vol
urst Volume
Vanilla GPT-2 1818 Vanillal g 54 P99 Acc.
GPT2 :‘— ! Post-Burst Ingress
Rej. Samp. {0.00 Rej. Samp. >2 days Autocorr. N
manual manual
LelIT]) 0 LeJIT —‘5‘02 Total Ingress Burst Frequency
(NetNomos) (NetNomos) 0.0 05 10 0.0 05 10
5 10 15 20 2 4 6 8 10 : o . : - :
Rule Violation [%] Runtime [h] Normalized Error Normalized Error

Figure 3: Rule violations in imputed time series Figure 4: LeJIT improves both imputation accuracy (left)
(left) and runtime for 30K samples (right). LeJIT and downstream task performance (right) of the generic
ensures 100% rule compliance with a moderate GPT-2 via logic enforcement, achieving on-par results with

runtime overhead.

only manual rules are used. With the full set of NetNomos
rules, LeJIT reduces violations to 0%.

Runtime overhead. As shown in Fig. 3 (right), rejection
sampling achieves perfect compliance but takes over two
days. As rejection sampling simply discards invalid outputs
without guiding the model, the model repeatedly makes the
same mistakes. In contrast, LeJIT completes over 30K impu-
tations in 5 hours by guiding inference, achieving a more
than 10X speedup compared to simple rejection sampling.
Zoom2Net’s runtime performance is not directly compara-
ble, since it enforces a much smaller set of handcrafted rules
which allows post-inference enforcement. LeJIT trades in-
ference performance for correctness guarantees which is a
fair trade-off, in our view, given the importance of trustwor-
thiness and correctness in network management. Of course,
there also remain ample opportunities to improve the inte-
gration of the solver into the LLM to reduce the overhead as
we discuss in §5.

Imputation accuracy. LeJIT with manual rules substan-
tially improves GPT-2’s accuracy (Fig. 4, left), though it still
trails Zoom2Net due to limited rule coverage. Rejection sam-
pling hurts accuracy as it disrespects the LLM’s learned
distribution, suppressing near-correct outputs and forcing
sampling from unrelated regions. With full NetNomos rules,
LeJIT matches and even surpasses Zoom2Net on EMD and
p99 accuracy, while also improving burst analysis metrics
across the board. When guided by LeJIT, GPT-2 outperforms
Zoom2Net on all metrics except Burst Position. These re-
sults show that LeJIT enforces rules effectively at inference
time, with performance improving as rule quality increases.
The remaining gap on time-sensitive metrics (e.g., autocor-
relation, Burst Position) likely stems from GPT-2’s generic
architecture and the limited temporal expressiveness of the
extracted rules by NetNomos [23]. Advancing methods for
learning richer temporal constraints remains a key direction
for future work and will unlock more benefits for LeJIT.

Zoom2Net [16].

Ingress
Egress
In Rxmit
I CTGAN
Out Rxmit 3 TVAE
v o I NetShare
I E-WGAN-GP
In Congestion I RealTabFormer
B Vanilla GPT-2
c . H Rej. Samp.
onnections B LeJIT
0.0 0.2 0.4
JSD (1)

Figure 5: LeJIT generates samples of high fidelity (on-
par with SOTA) while complying with all 171 rules
(unlike SOTA)

4.2 LeJIT for Network Data Synthesis

Finding 2: LeJIT matches, and sometimes improves, the
statistical fidelity of synthetic time series generated by tai-
lored generators, while ensuring the time series follow hun-
dreds of rules (unlike tailored data generators). Importantly,
LeJIT’s underlying model is not task-specific.

We now apply LeJIT to the task of synthetic data gen-
eration and evaluate its effectiveness in enforcing network
rules. Unlike the imputation, this generation task is uncon-
ditional: the models are not provided with any input signals
(i.e., prompts no longer fed into GPT-2), and the data they
generate depends solely on the learned input distributions.

As shown in Fig. 5, we compare various GPT-2 variants
(vanilla, with rejection sampling, and with LeJIT’s guid-
ance) against five aforementioned SOTA data generators.
From each model, we draw 30K samples and compute the

Just-in-Time Logic Enforcement

Jensen-Shannon divergence (JSD) with respect to the origi-
nal data distribution. The results demonstrate that LeJIT pre-
serves the generative behavior of the base LLM while enforc-
ing all 255 network rules. Rejection sampling significantly
distorts the learned distribution, while the other data gener-
ators not only violate a large number of network rules [23],
but also fail to offer clear advantages in approximating the
target distribution. In contrast, LeJIT enables the base LLM to
outperform its vanilla counterpart in most cases. This result
suggests that enforcing domain knowledge during inference
can improve the quality of generated data distributions.

5 Research Agenda

Logic-Guided Foundation Models for Networking. We
envision a future where one LLM can power a broad range
of networking tasks (e.g., configuration generation, security
policy synthesis) simply by swapping in task-specific logic
rules. Such a foundational, logic-guided model for network-
ing would unify currently siloed ML efforts and vastly reduce
engineering overhead [52]. Key questions include: (1) how to
symbolically handle non-numeric or structured outputs (e.g.,
tables, topology graphs) in a single LLM, (2) how to tokenize
heterogeneous networking knowledge in a way that does
not create misalignment between the model output and sym-
bolic rules, and (3) how to efficiently switch or compose rule
sets for different tasks on the fly. Success in this direction
would be transformative—instead of maintaining bespoke
ML solutions for every networking problem, operators could
rely on a single powerful model that is made context-specific
and trustworthy via JIT logic “plug-ins.”

Constraint Learning and Solver Co-Design To improve
JIT logic enforcement, two key directions are (1) improving
LLM-solver integration and (2) improving the rule sets them-
selves. Current implementations depend on general-purpose
SMT solvers external to the LLM, which introduces substan-
tial inference delays [57]. This overhead makes large-scale
deployment impractical. Future work should enable tighter
coupling through token-level solvers, solver-aware decod-
ing paths, or hybrid neural-symbolic architectures, making
JIT enforcement feasible for latency-sensitive applications.
In parallel, network rules—which are currently static and
manually defined—must become more expressive (e.g., better
support for temporal logic), data-driven, and adaptable. Sys-
tems could learn constraints from logs, refine them over time,
or co-train them with model outputs. Ultimately, a LeJIT-
like framework should evolve its constraints dynamically,
improving accuracy while maintaining rule compliance in
changing network environments.

Generalizing LeJIT beyond LLMs. While LeJIT currently
targets autoregressive language models, many core network-
ing tasks (e.g., traffic forecasting, anomaly detection, routing,

HotNets "25, November 17-18, 2025, College Park, MD, USA

and protocol simulation) rely on non-language models like
time-series regressors, GNNs, and diffusion models. However,
this generalization is non-trivial. Unlike token-based LLMs,
these models often produce continuous, high-dimensional
outputs without an inherent notion of “next-step,” making it
unclear how to insert constraint checks or prune invalid pre-
dictions. One promising direction is to rethink the inference
process itself in networking as a constrained optimization
problem: for instance, projecting a model’s unconstrained
output onto the nearest point in the rule-compliant space
via differentiable solvers [1, 32, 47] or gradient-based cor-
rections. Similarly, generative models could be trained to
emit semantic concepts [30, 33] that are easier to steer via
symbolic logic, then decoded in a constraint-aware manner.

Acknowledgments

We thank the anonymous reviewers for their many helpful
comments. We appreciate Manoel Horta Ribeiro’s insightful
suggestion on constrained decoding. This work was sup-
ported by the National Science Foundation (NSF) through
Grants CNS-2442625, and CNS-231944.

References

[1] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven
Diamond, and J Zico Kolter. 2019. Differentiable convex optimization
layers. Advances in neural information processing systems 32 (2019).
Luca Beurer-Kellner, Marc Fischer, and Martin T. Vechev. 2024. Guiding
LLMs The Right Way: Fast, Non-Invasive Constrained Generation.
International Conference on Machine Learning (ICML) abs/2403.06988
(2024).

Elliot Chane-Sane, Pierre-Alexandre Leziart, Thomas Flayols, Olivier
Stasse, Philippe Souéres, and Nicolas Mansard. 2024. Cat: Constraints
as terminations for legged locomotion reinforcement learning. In 2024
IEEE/RS7 International Conference on Intelligent Robots and Systems
(IROS). IEEE, 13303-13310.

Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Hey-
mans, Axel Legay, and Jean-Francois Raskin. 2012. Featured transition

[2

—

3

[t

[4

flan)

systems: Foundations for verifying variability-intensive systems and
their application to LTL model checking. IEEE Transactions on Software
Engineering 39, 8 (2012), 1069-1089.

[5] Andrea Coletta, Sriram Gopalakrishnan, Daniel Borrajo, and Svitlana

—

Vyetrenko. 2023. On the constrained time-series generation problem.
Advances in Neural Information Processing Systems 36 (2023), 61048—
61059.

Davide Corsi, Enrico Marchesini, and Alessandro Farinelli. 2021. For-
mal verification of neural networks for safety-critical tasks in deep
reinforcement learning. In Uncertainty in Artificial Intelligence. PMLR,
333-343.

Tianyu Cui, Xinjie Lin, Sijia Li, Miao Chen, Qilei Yin, Qi Li, and Ke
Xu. 2025. TrafficLLM: Enhancing LLMs for Network Traffic Analysis.
arXiv preprint arXiv:2504.04222 (2025). Version 2025-04-05.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gi-
anluigi Rozza, Maziar Raissi, and Francesco Piccialli. 2022. Scientific
machine learning through physics—informed neural networks: Where
we are and what’s next. Journal of Scientific Computing 92, 3 (2022),
88.

—_
(=)
—

[7

—

8

—

HotNets "25, November 17-18, 2025, College Park, MD, USA

(9]

[10

[t

[11

—

[12

—

[13

[t

(14

=

(15

=

(16

—

(17

[

(18

[t

(19]

[21

—

[22

—

[23

[t

[24

=

[25]

Joscha Cuppers, Adrien Schoen, Gregory Blanc, and Pierre-Francois
Gimenez. 2024. FlowChronicle: Synthetic Network Flow Generation
through Pattern Set Mining. Proceedings of the ACM on Networking 2,
CoNEXT4 (2024), 1-20.

Priya L Donti, David Rolnick, and] Zico Kolter. 2021. DC3: A learn-
ing method for optimization with hard constraints. arXiv preprint
arXiv:2104.12225 (2021).

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. 2024.
Detecting hallucinations in large language models using semantic
entropy. Nature 630, 8017 (2024), 625-630.

Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. 2023.
Grammar-constrained decoding for structured NLP tasks without fine-
tuning. arXiv preprint arXiv:2305.13971 (2023).

Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. 2023.
Grammar-constrained decoding for structured NLP tasks without fine-
tuning. arXiv preprint arXiv:2305.13971 (2023).

Ehab Ghabashneh, Yimeng Zhao, Cristian Lumezanu, Neil Spring,
Srikanth Sundaresan, and Sanjay Rao. 2022. A microscopic view of
bursts, buffer contention, and loss in data centers. In Proceedings of the
22nd ACM Internet Measurement Conference. 567-580.

Fengchen Gong, Divya Raghunathan, Aarti Gupta, and Maria Apos-
tolaki. 2023. Towards Integrating Formal Methods into ML-Based
Systems for Networking. In Proceedings of the 22nd ACM Workshop on
Hot Topics in Networks. 48-55.

Fengchen Gong, Divya Raghunathan, Aarti Gupta, and Maria Aposto-
laki. 2024. Zoom?2net: Constrained network telemetry imputation. In
Proceedings of the ACM SIGCOMM 2024 Conference. 764-777.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin,
and Aaron C Courville. 2017. Improved training of wasserstein gans.
Advances in neural information processing systems 30 (2017).

Pouya Hamadanian, Behnaz Arzani, Sadjad Fouladi, Siva Kesava Reddy
Kakarla, Rodrigo Fonseca, Denizcan Billor, Ahmad Cheema, Edet
Nkposong, and Ranveer Chandra. 2023. A holistic view of ai-driven net-
work incident management. In Proceedings of the 22nd ACM Workshop
on Hot Topics in Networks. 180-188.

Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno. 2021.
Finding invariants of distributed systems: It’s a small (enough) world
after all. In 18th USENIX symposium on networked systems design and
implementation (NSDI 21). 115-131.

Zhiyuan He, Aashish Gottipati, Lili Qiu, Xufang Luo, Kenuo Xu, Yuging
Yang, and Francis Y Yan. 2024. Designing Network Algorithms via
Large Language Models. In Proceedings of the 23rd ACM Workshop on
Hot Topics in Networks. 205-212.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng,
Haotian Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing
Qin, et al. 2025. A survey on hallucination in large language models:
Principles, taxonomy, challenges, and open questions. ACM Transac-
tions on Information Systems 43, 2 (2025), 1-55.

Vojtéch Hudecéek and Ondfej Dusek. 2023. Are LLMs all you need for
task-oriented dialogue? arXiv preprint arXiv:2304.06556 (2023).
Hongyu He, Minhao Jin, and Maria Apostolaki. 2025. Making
Logic a First-Class Citizen in Network Data Generation with ML.
arXiv:2506.23964 [cs.NI] https://arxiv.org/abs/2506.23964

Xi Jiang, Shinan Liu, Aaron Gember-Jacobson, Arjun Nitin Bhagoji,
Paul Schmitt, Francesco Bronzino, and Nick Feamster. 2024. Netdiffu-
sion: Network data augmentation through protocol-constrained traffic
generation. Proceedings of the ACM on Measurement and Analysis of
Computing Systems 8, 1 (2024), 1-32.

Minhao Jin and Maria Apostolaki. 2025. Robustifying ML-powered
Network Classifiers with PANTS. In 34th USENIX Security Symposium
(USENIX Security 25).

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Hongyu Hé and Maria Apostolaki

Yunho Kim, Hyunsik Oh, Jeonghyun Lee, Jinhyeok Choi, Gwanghyeon
Ji, Moonkyu Jung, Donghoon Youm, and Jemin Hwangbo. 2024. Not
only rewards but also constraints: Applications on legged robot loco-
motion. IEEE Transactions on Robotics (2024).

Haitao Li, Qingyao Al, Jia Chen, Qian Dong, Zhijing Wu, and Yiqun
Liu. 2025. Blade: Enhancing black-box large language models with
small domain-specific models. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 39. 24422-24430.

Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos, Baris
Kasikei, and Karem A Sakallah. 2019. I4: incremental inference of
inductive invariants for verification of distributed protocols. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles.
370-384.

Sathiya Kumaran Mani, Yajie Zhou, Kevin Hsieh, Santiago Segarra,
Ranveer Chandra, Srikanth Kandula, Trevor Eberl, Eliran Azulai, and
Ido Frizler. 2023. Enhancing Network Management Using Code Gen-
erated by Large Language Models. In Proceedings of the 22nd ACM
Workshop on Hot Topics in Networks (HotNets °23). Cambridge, MA,
USA. doi:10.1145/3626111.3628183

Jiayuan Mao, Joshua B Tenenbaum, and Jiajun Wu. 2025. Neuro-
Symbolic Concepts. arXiv preprint arXiv:2505.06191 (2025).

Rajdeep Mondal, Alan Tang, Ryan Beckett, Todd Millstein, and George
Varghese. 2023. What do LLMs need to synthesize correct router
configurations?. In Proceedings of the 22nd ACM Workshop on Hot
Topics in Networks. 189-195.

Geoffrey Négiar, Michael W Mahoney, and Aditi S Krishnapriyan. 2022.
Learning differentiable solvers for systems with hard constraints. arXiv
preprint arXiv:2207.08675 (2022).

Sagar Patel, Dongsu Han, Nina Narodystka, and Sangeetha Abdu Jyothi.
2024. Toward Trustworthy Learning-Enabled Systems with Concept-
Based Explanations. In Proceedings of the 23rd ACM Workshop on Hot
Topics in Networks. 60—-67.

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo
Soares, Christopher Meek, and Sumit Gulwani. 2022. Synchromesh:
Reliable code generation from pre-trained language models. arXiv
preprint arXiv:2201.11227 (2022).

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. 2019. Language Models are
Unsupervised Multitask Learners. OpenAI Blog 1, 8 (2019).
https://cdn.openai.com/better-language-models/language_models_
are_unsupervised_multitask_learners.pdf.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020.
Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research 21, 140 (2020), 1-67.
Maziar Raissi, Paris Perdikaris, and George E Karniadakis. 2019.
Physics-informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics 378 (2019),
686-707.

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. PI-
CARD: Parsing incrementally for constrained auto-regressive decoding
from language models. arXiv preprint arXiv:2109.05093 (2021).
Sungyong Seo, Sercan O. Arik, Jinsung Yoon, Xiang Zhang, Kihyuk
Sohn, and Tomas Pfister. 2021. Controlling Neural Networks with Rule
Representations. arXiv:2106.07804 [cs.LG]

Prakhar Sharma and Vinod Yegneswaran. 2023. Prosper: Extracting
protocol specifications using large language models. In Proceedings of
the 22nd ACM Workshop on Hot Topics in Networks. 41-47.

Rahul Anand Sharma, Ishan Sabane, Maria Apostolaki, Anthony Rowe,
and Vyas Sekar. 2022. Lumen: a framework for developing and eval-
uating ML-based IoT network anomaly detection. In Proceedings of

https://arxiv.org/abs/2506.23964
https://arxiv.org/abs/2506.23964
https://doi.org/10.1145/3626111.3628183
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2106.07804

[t

Just-in-Time Logic Enforcement

the 18th International Conference on emerging Networking EXperiments
and Technologies. 59-71.

Junhong Shen, Neil Tenenholtz, James Brian Hall, David Alvarez-Melis,
and Nicolo Fusi. 2024. Tag-LLM: Repurposing general-purpose LLMs
for specialized domains. arXiv preprint arXiv:2402.05140 (2024).
Aivin V. Solatorio and Olivier Dupriez. 2023. REaLTabFormer: Gener-
ating Realistic Relational and Tabular Data using Transformers. arXiv
preprint arXiv:2302.02041 (2023).

HotNets "25, November 17-18, 2025, College Park, MD, USA

[60] Yedi Zhang, Yufan Cai, Xinyue Zuo, Xiaokun Luan, Kailong Wang, Zhe

Hou, Yifan Zhang, Zhiyuan Wei, Meng Sun, Jun Sun, et al. 2024. The
Fusion of Large Language Models and Formal Methods for Trustworthy
Al Agents: A Roadmap. arXiv preprint arXiv:2412.06512 (2024).

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu,
Xinting Huang, Enbo Zhao, Yu Zhang, Yulong Chen, et al. 2023. Siren’s
song in the Al ocean: a survey on hallucination in large language
models. arXiv preprint arXiv:2309.01219 (2023).

[44] Yi Tay, Vinh Q Tran, Sebastian Ruder, Jai Gupta, Hyung Won Chung,

Dara Bahri, Zhen Qin, Simon Baumgartner, Cong Yu, and Donald

Metzler. 2021. Charformer: Fast character transformers via gradient-

based subword tokenization. arXiv preprint arXiv:2106.12672 (2021).

Paul Temple, José A Galindo, Mathieu Acher, and Jean-Marc Jézéquel.

2016. Using machine learning to infer constraints for product lines. In

Proceedings of the 20th International Systems and Software Product Line

Conference. 209-218.

[46] Jan Tretmans. 2008. Model based testing with labelled transition
systems. In Formal Methods and Testing: An Outcome of the FORTEST
Network, Revised Selected Papers. Springer, 1-38.

[47] Kiwon Um, Robert Brand, Yun Raymond Fei, Philipp Holl, and Nils
Thuerey. 2020. Solver-in-the-loop: Learning from differentiable physics
to interact with iterative pde-solvers. Advances in neural information
processing systems 33 (2020), 6111-6122.

[48] Johan Van Benthem and Jan Bergstra. 1994. Logic of transition systems.
Journal of Logic, Language and Information 3 (1994), 247-283.

[49] David Wan, Chris Kedzie, Faisal Ladhak, Marine Carpuat, and Kathleen
McKeown. 2020. Incorporating Terminology Constraints in Automatic
Post-Editing. In Conference on Machine Translation.

[50] Changjie Wang, Mariano Scazzariello, Alireza Farshin, Simone Ferlin,

Dejan Kosti¢, and Marco Chiesa. 2024. Netconfeval: Can llms facilitate

network configuration? Proceedings of the ACM on Networking 2,

CoNEXT?2, 1-25.

Brandon T Willard and Rémi Louf. 2023. Efficient guided generation

for large language models. arXiv preprint arXiv:2307.09702 (2023).

[52] Duo Wu, Xianda Wang, Yaqi Qiao, Zhi Wang, Junchen Jiang, Shuguang
Cui, and Fangxin Wang. 2024. NetLLM: Adapting Large Language
Models for Networking. In Proceedings of the ACM SIGCOMM 2024
Conference. Sydney, NSW, Australia, 661-678. doi:10.1145/3651890.
3672268

[53] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veera-

machaneni. 2019. Modeling tabular data using conditional gan. Ad-

vances in neural information processing systems 32 (2019).

Chenxi Yang and Swarat Chaudhuri. 2022. Safe neurosymbolic learning

with differentiable symbolic execution. arXiv preprint arXiv:2203.07671

(2022).

Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh. 2022. {DuoAI}:

Fast, automated inference of inductive invariants for verifying dis-

tributed protocols. In 16th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 22). 485-501.

Yucheng Yin, Zinan Lin, Minhao Jin, Giulia Fanti, and Vyas Sekar.

2022. Practical gan-based synthetic ip header trace generation using

netshare. In Proceedings of the ACM SIGCOMM 2022 Conference. 458—

472.

Yifei Yuan, Soo-Jin Moon, Sahil Uppal, Limin Jia, and Vyas Sekar. 2020.

{NetSMC}: A Custom Symbolic Model Checker for Stateful Network

Verification. In 17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 20). 181-200.

Lotfi Asker Zadeh. 1988. Fuzzy logic. Computer 21, 4 (1988), 83-93.

Jiali Zeng, Fandong Meng, Yongjing Yin, and Jie Zhou. 2024. Teaching

large language models to translate with comparison. In Proceedings of

the AAAI Conference on Artificial Intelligence, Vol. 38. 19488-19496.

[45

=

(51

—

[54

=

[55

=

(56

—

(57

—

[58

—
wl
O

=

https://doi.org/10.1145/3651890.3672268
https://doi.org/10.1145/3651890.3672268

	Abstract
	1 Introduction
	2 Motivation
	2.1 Why Networking Needs Logic
	2.2 Where Prior Methods Fall Short

	3 Just-in-Time Logic Enforcement
	4 Early Results
	4.1 LeJIT for Network Telemetry Imputation
	4.2 LeJIT for Network Data Synthesis

	5 Research Agenda
	References

