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Abstract
Industrial networks are undergoing a radical shift from closed,
static OT environments towards open networks that inte-
grate IT and OT. This shift applies IT operation principles to
OT environments, such as virtualizing Programmable Logic
Controllers and using Artificial Intelligence to increase pro-
duction and process efficiency. While there is a huge ef-
fort to integrate IT principles, this paper demonstrates that
IT/OT convergence remains an underexplored area of re-
search, leaving out critical research opportunities for future
networking systems. We identify three core challenges: tim-
ing constraints, service availability, and changing network
traffic characteristics. For each challenge, we provide a con-
crete use case that demonstrates early findings and opens
up new avenues for research within SIGCOMM.

CCS Concepts
• Networks → Data center networks; Cyber-physical
networks; •Computer systems organization→Depend-
able and fault-tolerant systems and networks.
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1 Introduction
A Data Center in Steel-Toed Boots. Industrial networks
are on the brink of a radical transformation. For the first
time in history, they are converging with modern data center
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Figure 1: Industrial networking terms are underrepre-
sented in recent SIGCOMM and HotNets proceedings.

infrastructure—pushing computation, control, and commu-
nication into a virtualized and cloud-native domain. This
shift, driven by the convergence of Information Technology
(IT) and Operational Technology (OT), opens up a unique
opportunity: to apply decades of advances in data center net-
working, virtualization, traffic engineering, and distributed
systems to the physical backbone of manufacturing, energy,
and critical infrastructure. The SIGCOMM community, with
its expertise in building robust, scalable, and efficient net-
worked systems, is perfectly positioned to shape the next
generation of industrial networks—if it chooses to engage.
The Research Opportunity. IT/OT convergence is trans-
forming factories into software-defined, data-driven envi-
ronments—but today’s networking and software stacks are
not ready (see § 2). Industrial networks impose strict avail-
ability and real-time guarantees: delays or jitter can halt
production or damage machinery. Unlike cloud or enter-
prise networks, even short communication stops can have
physical consequences, demanding ultra-high availability.
Their network topologies are also fundamentally different—
decentralized, tightly coupled to physical layouts, and not
optimized for fat trees or Clos designs. At the same time,
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this shift opens the door for the SIGCOMM community to
apply proven ideas from data center networking. In future
factories, production cells may be designed and networked
much like data center pods—modular, scalable, and software-
defined. IT/OT convergence reveals profound, unresolved
challenges at the intersection of real-time communication,
resilience, and topology design, presenting SIGCOMM with
a compelling research agenda.
New Topic at SIGCOMM. We analyzed the full papers
from recent editions of ACM SIGCOMM [2, 4] and ACMHot-
Nets [1, 3], searching for terminology related to industrial
networks and their communication protocols. As shown in
Figure 1, the results are striking: virtually no papers in these
top venues engage with the domain of industrial networking.
Even the HotNets 2025 HotCRP omits industrial networks en-
tirely from its list of topic areas while explicitly mentioning
cellular, data center, enterprise, oceanic, social, and space net-
works. This silence is not a coincidence; it reveals a blind spot
in our community. At a time when industrial networks are
undergoing a once-in-a-generation transformation through
IT/OT convergence, this lack of engagement risks leaving
critical innovation on the table. Now is the moment for the
SIGCOMMcommunity to step up and bring its deep expertise
to a domain that is ripe for disruption.
Contributions. This paper puts IT/OT convergence on the
networking research agenda. We identify a critical gap: de-
spite its growing relevance, this space remains largely un-
explored by the SIGCOMM community. We outline key re-
search challenges arising from strict timing requirements,
extreme availability demands, and fundamentally different
network topologies. To ground these challenges, we present
three motivating use cases: (1) revealing the hidden non de-
terminism in modern software stacks, demonstrated through
Traffic Reflection—a method exposing timing variabil-
ity in eBPF-XDP (§ 3); (2) the potential of programmable
networks to boost availability by gracefully handling infras-
tructure changes such as VM restarts (§ 4); and (3) the clash
between deterministic OT control loops and the non deter-
ministic, data-hungry nature of AI workloads in automation
(§ 5). Each case reveals concrete opportunities where net-
working research can make a lasting impact.

1.1 Present and Future Industrial Networking
What is an Industrial Network? An industrial control
network (or simply an industrial network) is a specialized
communication network that connects equipment for moni-
toring and controlling physical machinery and processes in
industrial environments. Industrial networks have strict per-
formance requirements, such as predictable, deterministic,
and reliable communication. They must also fulfill demand-
ing safety requirements that protect humans, machinery, and
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Figure 2: Factories are shifting from closed to open,
adaptable systems that integrate IT and OT.

the environment. Often, separate dedicated safety networks
and special safety protocols, such as PROFIsafe, are used
for this purpose [41]. Industrial networks are the backbone
of many sectors and are used, for example, in manufactur-
ing, utilities (water, electricity, etc.), transportation, and even
nuclear plants [41]. Our focus is on networks for factories.
Present Factory. To understand what makes factories work,
we look at the core of industrial automation: the so-called
Programmable Logic Controllers (PLCs). Traditionally, fac-
tory floors rely on on-site control systems consisting of net-
works of PLCs connected to Input/Output (I/O) devices, re-
sponsible for collecting sensor readings and instructing ac-
tuators [10]. Meanwhile, Industry 4.0 envisions intelligent
production environments that rely on Artificial Intelligence
(AI) and are, in addition, flexible and adaptable [7, 49, 56].
Flexibility and adaptability can mean that when products are
updated, production processes must also be updated accord-
ingly. This happens today more frequently, thus requiring
more changes.
Traditional hardware-based PLCs do not offer this level

of flexibility, adaptability, and scalability [56]. This makes it
challenging to accommodate frequent changes, future appli-
cations, and resource-intensive tasks [56], and the increasing
demands of modern data-driven manufacturing [44].
Future Factory. To increase flexibility, adaptability, and scal-
ability in factories, there is a growing interest in (see Fig. 2):
(1) cloud computing and virtualization for industrial automa-
tion [18, 45, 82, 83, 101, 102, 104]; (2) virtual-PLCs [27, 43,



Data Centers Manufacturing Steel HotNets ’25, November 17–18, 2025, College Park, MD, USA

56, 89] running in a data center on off-the-shelf servers;
and (3) intelligence in factory floors using AI, such as Large
Language Models (LLMs), or Tiny Language Models (TLMs)
for factory configuration and control tasks [59, 62, 64, 79,
111, 112]. These developments require the convergence of IT
and OT, integrating hardware, software, emerging technolo-
gies, and physical processes. As a result, industrial networks
must become flexible, presenting significant challenges [24].
However, automation applications increasingly demand de-
terministic networks [24], which contradicts traditional IT
networks.
TSN in the wild. Time Sensitive Networking (TSN) was
introduced to advance industrial networks. Traditionally, the
industrial communication market has been dominated by
multiple Ethernet-based systems that, despite having similar
requirements, have different implementations and ecosys-
tems, creating high costs and limiting the adoption of Indus-
trial Internet of Things (IIoT) [20]. In response, TSN emerged
to provide real-time communication, while addressing inter-
operability challenges [119]. TSN enables new configuration
freedom. For example, by enabling the usage of arbitrary
scheduling algorithms [95] that define pre-computed trans-
mission schedules for pre-defined flows to meet real-time
requirements. While TSN provides new freedom, it does not
address all open problems. Problems such as faulty packets—
those lost or arriving outside scheduled times–can lead to
delays and switch congestion [33]. Moreover, configuring
TSN switches is complex, requiring schedules to be set up
initially and adjusted as devices change within the network
[96]. Furthermore, TSN does not inherently address the chal-
lenges that arise from the convergence of IT and OT systems.

2 Research Challenges
2.1 Timing: Going Down to 1 μs Jitter
The first challenge involves realizing (virtualization) stacks
that meet strict timing requirements with very low jitter.
Requirements.Manufacturing and process automation sys-
tems both have specific timing requirements [67]: machine
tools demand cycle times as low as 500 μs [37], while high-
speedmotion control, e.g., for batterymanufacturing, require
latencies as low as 250 μs [42, 75] and jitter less than 1 μs [42].
In contrast, process automation can handle more relaxed cy-
cle times, typically ranging from 10 ms to 100 ms [42]. Tomeet
such strict timing demands, specialized dedicated hardware
is used; for example, using Application-Specific Integrated
Circuits (ASICs) [11], or Field Programmable Gate Arrays
(FPGAs) [28]. In contrast, vPLCs do not rely on special hard-
ware but instead rely on host networks and virtualization
stacks.
Current stacks do not meet these requirements. First,
host networks introduce various contention sources that

impact application performance [107]. Poor coordination
among processors, memory, and peripheral interconnects
creates contention [107]. Additionally, IO memory manage-
ment can reduce the available NIC-to-CPU bandwidth, re-
sulting in hundreds of microseconds of delays and packet
drops [8]. This contention is potentially further intensified
by the growing complexity of modern data center host net-
works [107].

Second, PCIe, the de-facto standard I/O interconnect used
in servers, has a heavy latency toll for small packets—common
in industrial automation—contributing to more than 90% to
the overall NIC latency [9, 77].
Third, multiple flows sharing host resources, such as the

same NUMA node or packets from different flows arriving
at the same NIC, lead to increased packet processing over-
head [22]. Even mixing long and short flows on the same
CPU core leads to lower per-core throughput [22].
Prior work does not achieve OT requirements. Recent
work redesigns host network stacks to isolate latency-critical
traffic, achieving microsecond-scale latencies at the 99.9𝑡ℎ
percentile [23]. However, they do not consider OT require-
ments, such as even stricter timing requirements or tiny
packet payloads, down to 20 bytes (see § 2.3).

Receiving a packet from and sending a packet to a NIC are
just two factors; the kernel also impacts real-time applica-
tion performance. Although dual-kernel solutions typically
outperform Linux with the PREEMPT_RT patch [84], they
increase complexity by requiring applications to use special-
ized dual-kernel system calls [84]. On the other hand, Linux
kernels with the PREEMPT_RT patch cannot be considered
hard real-time—particularly in safety-critical scenarios—due
to unpredictable kernel-induced latencies [84].

Existing work evaluating robot control with Robot Operat-
ing System (ROS)-2 [81, 116]—software tools and libraries for
robot control—on Linux (with the PREEMPT_RT patch) or
vPLCs [39, 40, 47, 56] have several limitations. They either do
not perform independent evaluations over extended periods
of time, or collect insufficient data to draw conclusions.

Additionally, they only consider basic application scenar-
ios, such as simple ping-pong tests. They do not evaluate
realistic industrial automation applications, e.g., a produc-
tion line or robot arms. To make things worse, existing work
also often fails to report critical performance metrics such as
jitter and worst-case latency/jitter. Importantly, consecutive
jitter events—periods where jitter repeatedly occurs cycle af-
ter cycle—or bursts are not reported. This, however, is critical
because industrial devices halt operation (for safety reasons)
when no packets arrive for several consecutive cycles (known
as a watchdog counter expiration in PROFINET [14]). Finally,
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current evaluations omit how systems scale; e.g., how perfor-
mance changes when multiple robot applications, vPLCs, or
other sources of network traffic are running simultaneously.
Research challenge. Industrial control systems require
ultra-low jitter and tightly bounded latency—properties at
odds with cloud-native and virtualized networking stacks.
As virtual PLCs move into containerized environments, the
lack of timing guarantees across software layers and virtual-
ization boundaries becomes a major challenge. These stacks
often fail to deliver or even expose their timing behavior,
and measuring microsecond-level jitter is non-trivial. We
propose Traffic Reflection, a diagnostic technique that
reveals hidden timing drift in eBPF/XDP pipelines (§ 3)—a
first step toward meeting real-time demands in future stacks.

2.2 Service Availability: ≥ 99.9999
Requirements. For industrial automation, high-availability
is an absolute necessity [7]. With use cases such as motion
control, mobile robots, and process monitoring requiring
extreme service availability—at least 99.9999 [5, 42]. This
corresponds to a downtime of less than 31.5 s per year [42]. In
process automation, even if a failure occurs, operation must
continue in a safe mode. In contrast, despite the importance
of networking, failures happen regularly in data centers,
which typically aim for monthly downtime of a few minutes,
potentially multiples of 31.5 s [46, 66]. The reliability of data
center networks heavily depends on fiber links. These fiber
links differ widely in reliability, with large variations in how
often they fail (mean time between failures) and how quickly
they can be repaired (mean time to repair) [72].
Research challenge. Achieving this level of availability in
virtualized, cloud-native environments poses a fundamental
challenge. Classical OT systems rely on distributed, fault-
tolerant architectures where automation cells can continue
operating independently during failures. However, consol-
idating virtual PLCs in centralized data centers increases
potential for failures: even a short-lived outage can simulta-
neously affect dozens of production cells. Current virtualiza-
tion stacks are not designed to isolate or gracefully recover
from such disruptions in real-time control contexts. In § 4,
we explore how programmable networks can help restore
fault containment by enabling seamless switchovers and
minimizing disruption during infrastructure failures.

2.3 New Traffic Mix: Deterministic
Never-Ending Microflows at Scale

Requirements. Industrial networks are built for predictabil-
ity and determinism. Their topologies—line, ring, star, or
tree—are carefully engineered to support a fixed number
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Figure 3: Benchmarking methodology for measuring
the timing overhead introduced by eBPF code.

of devices (e.g., switches, I/O devices, and PLCs) with guar-
anteed timing, and remain largely static after commission-
ing [41]. Time-critical traffic involves small, periodic packets
with tight latency and jitter constraints. Time-critical traffic
varies from very short cycle times (< 2 ms) with small pay-
loads (20− 50 bytes), to slightly longer cycles (1− 10 ms) and
larger payloads (40 to 250 bytes) [5].
In contrast, data center networks today feature highly

diverse and dynamic topologies, such as Clos, fat trees, leaf-
spine, BCube, or DCell. Data center topologies might have to
change on-the-fly to best meet traffic type and demand [48].
Additionally, data center traffic is inherently diverse [48], al-
though themajority of flows tend to be relatively small in size
and typically last only a few milliseconds [15]. Flows within
data centers can be categorized (with slight variations in
definition across previous work) into three general types: (1)
Small flows (mice flows), typically short in duration, latency-
sensitive, and small in size—around 5KB [48] or less than
10KB [114], (2) Medium flows, typically around 0.5MB [48],
(3) Large flows (elephant flows), flows that are large in size,
larger than 1 GB [48]. However, with vPLCs, a new type of
flow appears. This new flow type blends characteristics of
existing categories: it exhibits both latency sensitivity (part
of 1) and continuous traffic (part of 3). Specifically, it is cyclic,
with the transmission of small packets, strict deterministic
timing requirements, and is never-ending.
Research challenge. This emerging class of never-ending,
deterministic micro-flows creates a mismatch with data cen-
ter traffic engineering practices, which are typically opti-
mized for flow completion and throughput [6, 12, 32]. Ad-
ditionally, dynamic topologies and link aggregation mech-
anisms may further disrupt the timing properties critical
to vPLC operation. In § 5, we discuss how these network
mismatches complicate the co-existence of latency-critical
control and data-intensive ML workloads—an increasingly
common scenario in next-generation industrial automation.
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3 Revealing eBPF’s Hidden Delays
To take a first step toward addressing the timing challenges
outlined in § 2.1, we propose Traffic Reflection, a light-
weight measurement method to reveal timing drift and nano-
second-level jitter in eBPF/XDP-based packet processing.
Context. XDP and eBPF are used to address timing chal-
lenges, such as those described in § 2.1, bymoving packet pro-
cessing closer to NICs [54, 60, 91, 93, 115]. XDP’s and eBPF’s
main advantages are that they provide a flexible and safe pro-
grammable environment within the Linux kernel [55, 105].
While XDP and eBPF try to avoid non-deterministic behav-
ior, for instance, by restricting floating-point arithmetic [78]
there are no guaranteed latency and jitter upper bounds. Such
guarantees however, are essential in industrial automation.
Previous work studied the performance impact of using

XDP and eBPF for packet filtering [54, 60, 91, 93], forwarding
latency [13, 55, 99], and system overhead [106]. Measuring
the exact timing overhead (jitter and latency) introduced
by eBPF is challenging [106], but an absolute necessity to
guarantee the timings in § 2.1.
Contribution. Traffic Reflection reveals the non de-
terministic behavior of eBPF and XDP applications. It uses
a network tap and a “reflection point” in the eBPF code
(see Fig. 3). This has the advantage that all packet capture
timestamps come from a single clock (the tap’s clock), avoid-
ing measurement errors caused by clock synchronization
problems. Even though IEEE 1588 Precision Time Protocol
(PTP) can achieve synchronization accuracy below 1 μs, it
encounters challenges related to asymmetric delays and net-
work inconsistencies, affecting precision [63]. Note that the
network taps have their own timestamping precision, which
is acceptably low with 8𝑛𝑠 . Additionally, our test end-hosts
have the Linux PREEMPT_RT patch.
We evaluate six eBPF programs running in XDP native

mode to demonstrate unpredictability when processing real-
time TSN flows. Each program builds on a base version: (1)
the base program reflects packets back to the NIC (Base),
(2) adds one timestamp (TS), (3) adds two timestamps (TS-
TS), (4) adds timestamps to a ring buffer (TS-RB), (5) adds
timestamps into the packet’s payload (TS-OW), and (6) adds
the difference of two timestamps to the ring buffer (TS-D-
RB). All results are presented as Cumulative Distribution
Functions (CDFs). Our experiments show that (see Fig. 4):
(1) small code changes in eBPF/XDP applications lead to
noticeable delay differences; and (2) more real-time flows
handled by eBPF/XDP lead to increased jitter.
Discussion. Traffic Reflection is a first step in under-
standing how specific eBPF code and execution environ-
ments relate to execution time, enabling the development of
eBPF applications with predictable timing guarantees, even
if it is not possible for the underlying kernel.
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Figure 4: Even minor code changes in an eBPF applica-
tion cause noticeable delays (left), whilemore real-time
flows handled by XDP and eBPF increase jitter (right).

4 High-Availability with SDN
Industrial automation achieves the strict service availability
requirements described in § 2.2 by using redundant PLC pairs:
one active primary and one passive secondary on standby.
If the primary PLC fails, the secondary PLC takes over, de-
pending on manufacturer and device typically within 50 ms
to 300 ms [98]. Note that this setup requires special hardware
settings such as dedicated links between the PLC pairs for
synchronization and heartbeats [98].
Existing work replicates this availability approach for

vPLCs as standalone applications [58], or as Kubernetes
pods [57]. However, existingwork introduces high switchover
delays (≈ 110 ms to ≈ 55.4 s) [57] or require three dedicated
links between vPLCs for synchronization and preventing
both controllers from simultaneously assuming the primary
role [58].
Contribution. We propose InstaPLC, an in-network appli-
cation that uses programmable networks to address the high-
availability of vPLCs. Programmable networks have shown
advantages in industrial control scenarios [61, 90, 103, 109],
including enabling seamless vPLC migration [73]. InstaPLC
enables seamless switchovers between vPLC pairs without
requiring dedicated links between the vPLCs for synchro-
nization.

InstaPLC, built with the Data Plane Development Kit
(DPDK) Software Switch (SWX) pipeline [31] and P4 [16] for
the data plane, and Python for the control plane, works as
follows:When a vPLC attempts to connect to an I/O device, it
is designated as the primary vPLC for this specific I/O device.
It also adds table entries to the switch, allowing the vPLC
and I/O device to establish a communication relationship. A
communication relationship means that the vPLC configures
what data is exchanged with the I/O device and how often. It
also configures how long each device can continue working
without receiving new data from each other. During this,
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InstaPLC extracts information from the exchanged packets
and, with this information, creates a digital twin of the I/O
device. Once the configuration is complete, real-time data
transmission between the vPLC and I/O device begins.
If another vPLC subsequently attempts to connect to an

already controlled I/O device, this new vPLC is designated
as a secondary. The secondary vPLC establishes a communi-
cation relationship with the digital twin I/O device. From the
perspective of the secondary vPLC, communicating with the
digital twin is identical to communicating with the actual I/O
device. After the configuration of the digital-twin I/O device,
real-time communication flow through InstaPLC is as fol-
lows: (1) packets from the digital twin to the secondary vPLC
are dropped at the switch; (2) packets from the secondary
vPLC are forwarded to the digital twin only; (3) packets from
the physical I/O device are forwarded to both primary and
secondary vPLCs; this ensures both vPLCs know the exact
state of the I/O; and (4) packets sent by the primary vPLC
are forwarded directly to the physical I/O device.
Finally, InstaPLC continuously monitors packets in the

data plane. If the primary vPLC stops sending packets for
a configurable number of I/O cycles InstaPLC dynamically
triggers a switchover, in the data plane, handing control from
the primary to the secondary vPLC (see Fig. 5).
Discussion. InstaPLC represents an important first step
towards programmable networks that enable vPLC high
availability. It opens new research directions on efficiently
ensuring high availability across heterogeneous industrial
environments, each with distinct communication protocols,
configuration models, and timing requirements.

5 Towards Machine Learning Aware
Industrial Networks

Finally, it is not only about virtualizing PLCs, but also about
integrating new technologies such asMachine Learning (ML).
More and more, PLCs and ML are expected to work together.
For instance, PLCs are controlling a robot while receiving
input fromML applications, e.g., detecting the objects moved
by a robot. However, the networking requirements of both
PLCs and ML stand traditionally in stark contrast leading to
severe challenges [38, 113]. PLCs have cyclic, deterministic
network traffic (PLCs), whereas ML produce data-intensive,
non-deterministic, dynamic network traffic [21, 26].

ML is a key ingredient of advanced industrial automation
and process optimization [97, 100], such as garbage sorting,
bottle manufacturing, and vaccine production. ML supports
automated optical inspection, quality assurance, Automated
Guided Vehicles (AGVs) navigation, and data-driven digital
twin analysis [51, 69, 80]. In short, (v)PLCs make decisions
dependent on the outcome of ML. And the next technological
leap is already knocking on the door with the evolution of
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Figure 5: InstaPLC: When the primary controller
(vPLC1) for an I/O device fails, InstaPLC detects this,
and dynamically switches to a backup controller
(vPLC2). As a result, the I/O device remains controlled.

industrial applications of Generative Artificial Intelligence
(GenAI), LLMs, and Agentic AI [71].
Research challenge. It is now up to operators to integrate
virtualized control loops, which rely on ML, on converged
IT/OT infrastructures. The problem is that ML inference
in industrial settings can significantly suffer when exposed
to network-induced data degradation, such as compression
artifacts, frame loss, or jitter [86–88, 94]. These effects are
especially pronounced in video-centric tasks (e.g., automated
optical inspection), where model performance is tightly cou-
pled to input fidelity [17, 53, 85]. Benchmarking these ML
models against degraded input data confirms that model
robustness is insufficient without a network-aware design,
even for pre-trained models in well-known industrial sce-
narios, such as casting defect detection [29].
Recent data center networking architectures such as Fat-

Tree, BCube, DUO, or optical variants like OSA and Rotor-
Net [25, 34, 50, 70, 118] significantly advanced the perfor-
mance of non-industrial applications. Furthermore, exist-
ing ML-focused data center optimizations primarily target
training workloads; but they overlook inference require-
ments under volatile input and constrained edge or fog com-
pute [38, 68, 76]. However, our observations indicate that
these topologies do not meet the real-time and reliability con-
straints of ML inference in industrial environments [35, 113].
Contribution.We conduct a simulation-based optimization
of 3 topologies: a classic industrial ring, a leaf spine, and
a traffic-aware setup. The traffic input comes from analyz-
ing ML models with degraded input data. The simulation
provides insights on the latency of ML applications for an
increasing number of ML clients. Fig. 6 shows how legacy
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OT network topologies hurt latency for ML applications
compared to modern IT derivatives. As expected, the ring
shows the worse performance; but also the leaf spine can
only slightly improve the performance. To combat this issue,
the industrial ML-traffic-aware topology design shows the
best performance. It takes volatile input and constrained edge
and fog computing environments into account. The prelim-
inary design aligns inference accuracy with infrastructure
cost and network dimensioning.
Discussion. This case study highlights the fundamental
tension between ML-driven workloads and the timing and
reliability constraints of industrial networks. Our analysis
focuses on topology design as a first-order lever to align
infrastructure behavior with the inference performance of
critical ML applications. While we illustrate the potential
of traffic-aware designs, they represent only an initial step.
The broader challenge lies in co-designing network topolo-
gies, ML model placement, and resource allocation strategies
that meet industrial real-time, availability, and safety require-
ments.

6 Conclusion
Much like Ethernet and existing wireless technologies, they
were developed for use outside of industrial networks and
have no considerations for real-time response or determin-
ism [41, 92]. Later, significant efforts were required to inte-
grate or adapt these technologies for industrial use, such as
5G URLLC or TSN, with many challenges still open [52, 65,
74, 117, 119].

Today, history repeats itself with the convergence of IT
and OT, exemplified by virtualization providers only now in-
troducing industrial virtual switches [19]. However, in-depth

performance evaluations of these virtual switches are pub-
licly by far unexplored [19], in contrast to virtual switches
for cloud networking [30, 36, 108, 110].

While the convergence of IT andOT is gainingmomentum,
fundamental challenges remain unresolved. In this paper, we
present three concrete scenarios that expose critical integra-
tion gaps and outline pressing research opportunities. Today,
industrial networks and IT/OT convergence are significantly
underrepresented in the systems and networking research
community, slowing innovation in this space. Our goal is
to help change that: by highlighting these challenges and
proposing initial solutions, we aim to pave the way for a
broader research agenda toward designing the next genera-
tion of industrial networks—scalable, flexible, adaptive, and
built to meet strict real-time and availability demands. This
work does not raise any ethical concerns.
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