
Mitigating Inter-datacenter Incast with a Proxy
The shortest path is not necessarily the fastest

Anchengcheng Zhou
Princeton University

ann.zhou@princeton.edu

Carter Costic
Princeton University

cartercostic@princeton.edu

Hongyu Hè
Princeton University
hhy@g.princeton.edu

Ahmad Ghalayini
Microsoft

aghalayini@microsoft.com

Abdul Kabbani
Microsoft

abdulkabbani@microsoft.com

Maria Apostolaki
Princeton University

apostolaki@princeton.edu

Abstract
Many-to-one communication (i.e., incast) is a long-standing
challenge in networking with a wide range of proposed so-
lutions. However, as incast-inducing applications today (e.g.,
storage, ML training) scale beyond a single datacenter, they
introduce new challenges that current solutions do not han-
dle. In particular, inter-datacenter links have orders of magni-
tude higher latency than intra-datacenter paths, lengthening
the feedback loop that senders rely on to adjust their sending
rates and drastically increasing incast completion times.
To reduce inter-datacenter incast latency, we propose

adding a proxy server in the sending datacenter to relay
traffic between the senders and the receiver. Surprisingly,
adding this extra hop reduces incast latency! The insight is
that the added hop shifts the congestion point closer to the
senders, shortening the feedback loop and allowing senders
to converge quickly at a rate that fully utilizes the link while
avoiding severe congestion.Motivated by preliminary results,
we investigate low-overhead proxy designs and explore ways
to expose the proxy as a broader optimization opportunity
for application developers, cloud operators, and tenants.

CCS Concepts
• Networks→ Network protocol design.

Keywords
Inter-datacenter Incast, Proxy, Congestion Feedback, Rout-
ing, Datacenter Networks
ACM Reference Format:
Anchengcheng Zhou, Carter Costic, Hongyu Hè, Ahmad Ghalayini,
Abdul Kabbani, andMaria Apostolaki. 2025.Mitigating Inter-datacenter

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
HotNets ’25, College Park, MD, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2280-6/25/11
https://doi.org/10.1145/3772356.3772410

Incast with a Proxy: The shortest path is not necessarily the fastest.
In The 24th ACM Workshop on Hot Topics in Networks (HotNets ’25),
November 17–18, 2025, College Park, MD, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3772356.3772410

1 Introduction
Incast, the communication pattern where multiple senders
transmit simultaneously to a single receiver, is common
in datacenters and particularly problematic because it can
quickly overwhelm the network, causing congestion and se-
verely degrading the performance of critical applications [18,
52, 57]. To address this, the research community has devel-
oped a wide range of solutions tailored to different scenarios,
from absorbing incast bursts in deep buffers to refining loss
detection heuristics and upgrading the RTO timer accuracy
to avoid false retransmission [20, 49, 57, 70].
While these solutions help alleviate the challenges of

intra-datacenter incast, they fall short in the case of inter-
datacenter incast, where the senders and the receiver reside
in different datacenters. Inter-datacenter communication in-
volves significantly higher latencies—often orders of mag-
nitude greater than intra-datacenter traffic—which in turn
severely delays the feedback loop that senders rely on to
adjust their sending rates to the bottleneck link. More specif-
ically, senders lack coordination and hence must indepen-
dently adjust their sending rates to the available bandwidth
based on feedback from the network. The effectiveness of
this adjustment depends on the round-trip time (RTT) be-
tween each sender and the receiver. The longer this feedback
loop, the slower the convergence to suitable sending rates
that in-aggregate match the bottleneck bandwidth, leading
to prolonged incast durations in inter-datacenter settings.

Despite their detrimental impact, inter-datacenter incasts
have received little attention, potentially because they were
previously considered unlikely to occur in practice, as appli-
cations were typically confined to a single datacenter. How-
ever, as applications and cloud infrastructure continue to
scale, it is increasingly common for workloads to span across
different datacenters, inevitably creating inter-datacenter

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3772356.3772410
https://doi.org/10.1145/3772356.3772410


HotNets ’25, November 17–18, 2025, College Park, MD, USA Zhou et al.

incasts. Our collaboration with a major cloud provider con-
firmed that inter-datacenter incasts are not merely a theo-
retical concern but are actively impacting performance in
production environments. Importantly, “different datacen-
ters” does not necessarily imply large geographic separation.
Cloud providers often deploy multiple datacenters connected
via long-haul links within the same metropolitan area or re-
gion. This allows them to scale infrastructure without modi-
fying the core network topology or altering the associated
routing, management, and fault domains. While one might
assume that providers could prevent inter-datacenter incasts
simply by placing senders and receivers in the same datacen-
ter, this is ineffective and sometimes infeasible in practice:
enforcing such restrictions would further constrain the al-
ready complex job allocation process, and cloud providers
often lack full visibility into the workload behavior of clients.
Moreover, nodes may need to reside in different datacenters
for compliance and reliability reasons.
This paper presents a somewhat surprising proposition:

we can mitigate the impact of inter-datacenter incast by
intentionally routing traffic through a fake receiver (or a
proxy) located within the sending datacenter. At first glance,
this may seem counterintuitive. Lengthening the path each
packet takes should impair, not help, the completion time
of the incast-inducing job. However, the proxy directly ad-
dresses the core challenge of inter-datacenter incast, namely
the long feedback loop which slows down convergence.

We validate this idea in simulation and find that adding a
proxy hop can potentially reduce incast completion time by
70.60% and 53.60% on average across various incast degrees
and sizes. The reduction in incast completion time becomes
more pronounced as the RTT difference between intra- and
inter-datacenter communications increases. This reduction
in incast completion time is expected: relocating the conges-
tion point closer to the senders decreases the feedback delay
and enables the senders to converge faster to the appropriate
sending rates to fill (but not overwhelm) the bottleneck link.
To effectively realize the benefit of the proxy hop, loss must
be detected and signaled to the senders as if the proxy were
the receiver (i.e.,we should not wait for the actual receiver to
detect and signal the loss to the senders). Crucially, early loss
detection at the proxy can leverage streamlined logic imple-
mented entirely in eBPF, keeping the processing overhead
low.
Our findings open up a rich research agenda that chal-

lenges how we route traffic, design applications, and allocate
resources. Instead of asking how to avoid incast, we may
ask how to rate-limit traffic in an application-agnostic way
earlier in the path. Rather than designing application commu-
nication patterns independently of server placement, we may
explicitly select a proxy to flatten or reshape traffic through
the application code or in the compiler when servers are

allocated across datacenters. Finally, rather than tightly co-
locating containers of the same application within a single
datacenter and relocating them when scaling is needed, we
might instead allow new containers to be placed in a different
datacenter—repurposing an existing container as a proxy.

2 Motivation
Incast emerges across datacenters as applications scale.
Incast traffic is prevalent in applications ranging from tra-
ditional distributed storage [52] and real-time services e.g.,
web search and recommendation systems [9], to modern
distributed ML training. As these applications scale, inter-
datacenter incast over long-haul links becomes increasingly
common. For example,ML training produces challenging
incast traffic. In Mixture-of-Experts models [23, 24, 43], to-
kens are routed by a gating function to experts sharded across
devices. The ensuing dispatch and combine phases are imple-
mented as all-to-all exchanges, so each expert simultaneously
receives inputs from many senders, effectively creating mul-
tiple concurrent incasts. As large-scale training jobs grow
across multiple datacenters [7, 13], inter-datacenter incast
becomes an especially relevant problem. Likewise, storage
systems also generate incast traffic. For example, when an
erasure-coded fragment is requested by a user but unavail-
able due to a failure, the orchestrator needs to read other
fragments from different servers to reconstruct this fragment,
hence creating an incast [11, 31]. Other examples include
strongly consistent geo-replicated storage systems that syn-
chronize writes across a quorum of replicas [21, 58]. As stor-
age systems span across datacenters [11] and regions [1–3],
dealing with inter-datacenter incast is especially pertinent.
Inter-datacenter incast is uniquely challenging due to
the long feedback loop. An inter-datacenter flow, where
the sender and the receiver are in different datacenters, in-
curs millisecond-level RTTs as packets traverse the long-
haul links (as opposed to microsecond-level RTTs intra-
datacenter). In inter-datacenter incast, congestion builds up
in the receiving datacenter where flows converge, so net-
work feedback is delayed by several milliseconds between the
congestion bottleneck and the senders. This long feedback
loop is detrimental to incast latency. Being able to receive
network feedback promptly is crucial for senders to adjust
their sending rates to quickly mitigate congestion or link
under-utilization. But a long feedback loop keeps the senders
trapped at rates that are either too slow or too aggressive.
Slow sending rates waste available bandwidth and make
the incast completion time unnecessarily long. On the other
hand, persisting in sending too aggressively, even just for a
few milliseconds, can severely overload the network. Such
aggressiveness is not rarely seen in incast senders that are
eager to push out all traffic and thus set their initial sending



Mitigating Inter-datacenter Incast with a Proxy HotNets ’25, November 17–18, 2025, College Park, MD, USA

rates proportional to BDP [28, 51]. Hence, they can severely
congest the network just with their first-RTT traffic.
Existing work does not address the long feedback delay.
Incast literature has primarily focused on intra-datacenter
incast where the feedback loop is reasonably short [17–
19, 52, 57, 74]. Large switch buffers may avoid congestion
from intra-datacenter incasts altogether, but are not viable in
an inter-datacenter scenario that requires even larger buffers,
which are expensive to build [57], difficult to design [59] and
lead to low and unstable performance [5, 6, 36]. Therefore,
many solutions tackle incast bymodifying the retransmission
timeout mechanism. They either refine loss pattern match-
ing to avoid unnecessary timeouts [20, 25, 49] or reduce the
penalty from incurring timeouts, e.g., by using more fine-
grained RTO [10, 18, 19, 32, 33, 55, 62, 70]. These solutions
are useful for inter-datacenter incast too, but are inadequate
on their own because they do not directly handle the long
feedback loop, i.e., the main culprit for performance degra-
dation in inter-datacenter incast. Congestion-control-based
solutions [12, 26, 71] propose more radical changes to their
mechanisms such that the receiver can relay additional incast
information to senders and help them adapt their sending
rates more precisely after the first RTT. These approaches do
not address the long feedback loop fundamentally, and conse-
quently, severe congestion upon first-RTT traffic or changing
available bandwidth persists. Floodgate [46] identifies incast
earlier by keeping per-destination count on switches andmit-
igates by distributing credits for the windows, which require
special switching hardware.

Cross-datacenter literature has given limited attention to
reducing incast latency. Traffic engineering solutions do not
always optimize for latency [4, 14, 16, 29, 30, 34, 35, 38, 40,
45, 63–67, 75] and when they do, they typically optimize how
traffic is split across paths. For example, [42, 47, 50, 56, 72]
compute path assignments based on historical traffic aggre-
gated over a certain time interval. But path optimization
does not prevent the congestion bottleneck at the receiver
down-ToR, and the traffic aggregation could mask incast
traffic patterns altogether. On the other hand, [22, 37, 41]
make per-flow decisions on how to schedule and route the
flow, but incur significant overhead on the critical path when
solving the route optimization. Congestion-control-based so-
lutions do not address the core issue of the long feedback
loop either. Gemini [73] employs milder congestion window
reduction for longer-RTT flows, thus avoiding link under-
utilization, but overlooks the more severe issue of network
overload when windows are too large. Annulus [61] only
handles bottlenecks that occur near the traffic source and is
not applicable to inter-datacenter incast.

Congest. 
Point

Long-haul Links

Servers

T0

T1

T2

Datacenter 1 Datacenter 2
Receiver Senders

(a) Senders directly send to the remote receiver.

Proxy
Servers

T0

T1

T2

Datacenter 1 Datacenter 2

Congest.
Point

Long-haul Links

Receiver Senders

(b) Proxy relays traffic between senders and remote receiver.

Figure 1: (1a) Status quo: Senders directly send to the
remote receiver. Flows are bottlenecked at the receiver
down-ToR. (1b) Senders send to a proxy within their
datacenter, and the proxy forwards to the remote re-
ceiver. Flows are bottlenecked at the proxy down-ToR
in the sending datacenter.

3 Insights
To handle the unique challenge of the long feedback loop and
mitigate inter-datacenter incast, we advocate for adding a
proxy server between the senders and the receiver. Instead of
directly sending to the remote receiver (shown in Figure 1a),
we propose that each sender sends packets to a proxy, which
then forwards them to the receiver (shown in Figure 1b).
Surprisingly, the seemingly counterintuitive idea of adding
an extra proxy hop reduces inter-datacenter incast latency.
We explain the key insights next.
Insight #1: The proxy server shifts the bottleneck closer
to the senders. The extra proxy hop lengthens the path
each packet takes from sender to receiver, but shortens the
feedback loop. Concretely, by placing the proxy server at
the same datacenter as the senders, congestion occurs at
the proxy down-ToR inq the sending datacenter which is
only microseconds away from the senders. As a result, the
feedback delay (between the congestion point and senders) is
only several microseconds. In comparison, without a proxy,
congestion occurs at the receiver down-ToR in the receiving



HotNets ’25, November 17–18, 2025, College Park, MD, USA Zhou et al.

datacenter and the feedback delays for milliseconds. Figure
1 illustrates the comparison.
Insight #2: Early network feedback shortens the feed-
back loop, hence enabling faster convergence. The bot-
tleneck shift offers senders an opportunity to quickly con-
verge to suitable sending rates that fully utilize available
bandwidth without causing severe congestion. Crucially, a
proxy that simply relays packets between senders and the re-
ceiver does not accelerate convergence, because it still takes
at least as long for the senders to receive network signals.
Hence, to leverage this opportunity, the proxy must provide
early network feedback, such as loss signals to senders, so
that they can adjust their sending rates promptly to network
conditions before the remote receiver even notices any issue.
Insight #3: Streamlined proxy design enables early loss
detection with minimal processing overhead. A naive
way to shorten the feedback loop is to set up two indepen-
dent connections for each flow: one connection between the
sender and the proxy, and one connection between the proxy
and the receiver. This way, the sender-proxy connection is
contained entirely within the same datacenter, incurring
microsecond-level RTTs and allowing fast network feedback
(e.g., via small RTOs). However, this naive design requires
the proxy to perform the entire sending and receiving logic
which incurs unnecessary processing overhead. We observe
that full-fledged independent connections are not necessary
for shortening the feedback loop. In fact, it suffices if the
proxy just keeps track of packet losses and informs the sender
about them early. Leveraging switch trimming support and
eBPF capabilities, we have implemented a prototype of this
lightweight proxy design, which adds only microseconds of
processing overhead (details in §5).

4 Early Promise
We show preliminary results based on htsim packet-level
simulator [27] and demonstrate that adding a proxy hop,
with both naive and streamlined proxy designs (introduced
in §3, details in §5), reduces incast latency across various (1)
incast degrees and (2) sizes and across different (3) intra- and
inter-datacenter latency gaps.

4.1 Methodology
Simulation setup.We simulate two datacenters, each us-
ing a leaf-spine topology [8] with 8 spine switches and 8
leaf switches. Each leaf switch is connected to 8 servers.
Spine and leaf switches, and leaf switches and servers, are
connected with 100Gbps links of 1us propagation delay.
The two datacenters are connected via 64 backbone routers.
Each spine switch is connected to 8 backbone routers with
100Gbps links of 1ms propagation delay. Senders follow a
DCTCP-like congestion control where the sender resets its

24 8 16 24 32 40
Incast Degree

5
15

30

45

60

In
ca

st
 C

om
pl

.
Ti

m
e 

(m
s)

20 40 60 80 100 120
Total Incast Size (MB)

0
10
20
30
40
50

Baseline Proxy (Naive) Proxy (Streamlined)

Figure 2: Left: Both proxy schemes significantly reduce
the incast completion time across all incast degrees
compared to the baseline. The reduction is more pro-
nounced at larger degrees.
Right: Both proxy schemes significantly outperform
the baseline for any incast that is large enough to in-
duce packet loss at the first RTT.

congestion window upon timeout, decreases the window
upon receiving marked ACK packet or NACK packet and
increases the window upon receiving unmarked ACK packet.
Initial window is set to be 1BDP, following [51]. We use
packet spraying. Spine and leaf switches have 17.015MB
buffer and the lower and higher marking thresholds are
33.2KB and 136.95KB, respectively, following [9]. Backbone
routers have a deeper 49.8MB buffer and the marking thresh-
olds are 9.96MB and 39.84MB. We run each setup 5 times
and report the average, minimum and maximum incast com-
pletion time.
Schemes.We compare three schemes below.

• Baseline: No proxy is used. Senders directly send to
the receiver.

• Proxy (Naive): We designate a proxy server in the
sending datacenter. For each flow, we set up two con-
nections: one from sender to proxy (proxy𝑅), and the
other from proxy (proxy𝑆 ) to receiver. Proxy𝑅 keeps
a queue and enqueues packets when receiving from
the sender. Proxy𝑆 sends a packet onto the wire as
long as the queue at proxy𝑅 is non-empty and there is
bandwidth available.

• Proxy (Streamlined):We designate a proxy server in
the sending datacenter. Each flow from the sender to
the receiver is routed via the proxy. We enable packet
trimming support on switches (e.g., used in NDP [27],
EQDS [54] and Ultra Ethernet [68, 69]). Upon receiving
a packet from the sender, the proxy checks whether it
is a header-only packet. If so, it sends a NACK back
to the sender; otherwise, it forwards the packet to the
receiver. Upon receiving a packet from the receiver,
the proxy simply forwards it to the sender.



Mitigating Inter-datacenter Incast with a Proxy HotNets ’25, November 17–18, 2025, College Park, MD, USA

100 101 102 103 104 105 106

Link Latency (us) (Log Scale)

101

102

103

104

In
ca

st
 C

om
pl

. T
im

e 
(m

s)
(L

og
 S

ca
le

)
Baseline Proxy (Naive) Proxy (Streamlined)

Intra-DC
Intra-

Region WAN

Figure 3: Both proxy schemes significantly reduce the
incast completion time at either the region-level or the
WAN-level. The reduction becomes more pronounced
with higher link latency, since the feedback loop short-
ensmore substantially. Both x- and y-axes are log scale.

4.2 Results
Incast degree. In Figure 2 (Left), we fix the total incast size
to 100MB and vary the number of incast senders. The total
traffic is split equally among all senders. Both Naive and
Streamlined speed up incast completion compared to the
baseline across all incast degrees by a staggering 40.43ms
(75.67%) and 37.63ms (70.60%) on average, respectively. The
latency benefit gets more pronounced as the incast degree
gets higher. At larger incast degrees, the baseline sees higher
aggregate sending rates from more senders initially, and
thus takes more time to decrease to match the available
bandwidth. Moreover, Figure 2 (Left) validates the potential
of Streamlined. At larger incast degrees, the performances
of the two proxies are almost equivalent. At smaller incast
degrees, Streamlined incurs larger incast latency compared
to Naive (but still much smaller compared to baseline), be-
cause the fast feedback loop decreases the sending rates too
aggressively, leading to link under-utilization.
Incast size. In Figure 2 (Right), we fix the incast degree to
4 and vary the total amount of incast traffic. Both proxy
schemes demonstrate significant incast latency reduction
compared to the baseline for any incast larger than 20MB,
achieving 57.08% and 53.60% reduction on average, respec-
tively. In the case of the 20MB-incast, it starts with a reason-
able collective sending rate, sees no packet loss, and thus the
feedback delay is not as important; all three schemes are on
par and there is no benefit using a proxy.
Latency gap. In Figure 3, we fix the incast degree to 4 and
the total incast size to 100MB. The intra-datacenter link la-
tency is 1us. We vary the latency of the long-haul links con-
necting the two datacenters. Latency under a few hundred
microseconds mimics intra-datacenter; tens of milliseconds,
intra-region; and over a few hundred milliseconds, WAN.
Both proxy schemes outperform the baseline for any link

0 100 200 300 400
Per-packet Latency (µs)

0.0

0.5

1.0

CD
F

Figure 4: A naive user-space proxy implementation
incurs prohibitively expensive kernel overhead and
user-kernel context switches.

latency larger than or equal to 100us, illustrating the great
promise of our approach in alleviating inter-datacenter in-
cast at both the region-level and the WAN-level. The incast
latency savings are more pronounced with larger link laten-
cies. Naive reduces incast completion time by 1.16ms (11.70%)
with 100us link and by 12.02s (75.00%) with 1ms link. The
reductions are 1.22ms (12.29%) and 12.02s (75.00%) for Stream-
lined. The latency saving increases with larger link latency
because the feedback loop shortens more substantially.

5 Design Considerations
We reduce inter-datacenter incast latency by leveraging a
proxy server placed strategically in the sending datacenter.
We argue that an effective proxy design must: (1) shorten
the feedback loop from the congestion point to the senders
with minimal processing overhead; and (2) orchestrate the
proxy server selection across multiple incasts. In this section,
we share our preliminary investigation towards shortening
the feedback loop with minimal overhead and discuss a few
unresolved questions that require further investigation.
Testbed setup. Our testbed consists of two x86_64 Ubuntu
24.04 servers running kernel version 6.11.0 with Mellanox
ConnectX-5 NICs. The proxy is loaded onto one server, with
the sender and receiver programs colocated on the other1.
Each server utilizes a single NIC link connected to a switch.
We analyze two proxy implementations: (1) a user-space
program instrumented at the TC layer, where a sender’s
packet is intercepted by the proxy and forwarded to its socket
mirror; and (2) an eBPF program loaded on a TC qdisc. To
generate test load between sender and receiver, we use the
iperf utility. A single test run consists of a 10Gbps line rate for
30 seconds. We report CDFs of per-packet latency measured
using a combination of eBPF instrumentation and tcpdump.
Using independent connections (i.e., Naive). One naive
proxy design involves running a sender program and a re-
ceiver program at the proxy. For each flow, two independent
connections are set up between the sender and the proxy,
1By colocating sender and receiver, we avoid having to synchronize dis-
tributed traces to capture measurements.



HotNets ’25, November 17–18, 2025, College Park, MD, USA Zhou et al.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Per-packet Latency (µs)

0.00

0.25

0.50

0.75

1.00

CD
F

Sender-Proxy Path
Receiver-Proxy Path

Both

(a) Lower bound

150 200 250 300 350 400 450
Per-packet Latency (µs)

0.0

0.5

1.0

CD
F

(b) Upper bound

Figure 5: (a): The lower-bound overhead is small, high-
lighting the potential of having an eBPF-based proxy
on the critical path. (b): In contrast, the upper-bound
overhead (including networking stack overhead) is dis-
proportionally large, highlighting the minute impact
of the proxy and the importance of hooking lower in
the stack.

and the proxy and the receiver, respectively. The feedback
loop is fast in this case because the sender-proxy connection
is contained entirely in the same datacenter, e.g., support-
ing only microsecond-level timeout for loss detection in the
worst case. Figure 4 shows the per-packet latency of our
naive proxy design implemented in user space, which cap-
tures the packet transmission time from the TC hook to user
space, user-space processing latency, and back. The 99th
percentile latency gets as high as 359.17us, demonstrating
a high processing overhead that may defeat the purpose of
using a proxy for reducing incast latency. The excessive pro-
cessing overhead can be attributed to two sources. First, the
naive design requires the proxy to perform the entire send-
ing and receiving logic which incurs additional processing
overhead. Second, the implementation in user space incurs
additional overhead e.g., from context switches and inter-
rupts when a packet traverses to and from the user space.
While moving the implementation to kernel space could
save some overhead, the extra sender and receiver logic still
incurs additional processing, and maintaining independent
connections relies on socket-level semantics and naturally
precludes more efficient implementation lower in the kernel.
Tracking packet loss at the proxy (i.e., Streamlined).We
argue that it is not necessary to incur the full sending and
receiving logic on the proxy and set up full-fledged connec-
tions for shortening the feedback loop. Instead, it is sufficient
to just have the proxy keep track of packet loss and signal the
sender when loss happens. This way, senders learn about net-
work congestion with only microsecond-level delay and can
promptly decrease their sending rates. To validate, we have
implemented a proxy prototype using Linux TC, demonstrat-
ing that we can avoid unnecessary processing and user-space

networking overhead by pushing codes down into kernel via
eBPF. In Figure 5, we measure the lower bound (including
runtime of eBPF bytecode without kernel overhead from
NIC to TC) and upper bound (including proxy processing
and forwarding in addition to packet-to-wire, physical trans-
mission, packet reception) of the processing overhead 2. The
median lower-bound overhead of merely 0.42us highlights
the potential of having an eBPF-based proxy on critical path.
In Figure 5a, distributions of the two paths differ as a result
of different per-flow state management. The disproportion-
ally large upper-bound overhead, with a median of 325.92us,
highlights the minute impact of the proxy logic itself com-
pared to networking stack overhead and underscores the
importance of hooking the proxy lower in the host stack.
Future work #1: Tracking packet loss at the proxy with-
out router support. A generalizable proxy design needs to
keep track of packet loss without special router support, e.g.,
packet trimming. The challenge lies in disambiguating re-
ordered packets from lost packets within eBPF’s constrained
memory and limited primitives. For instance, given the re-
source constraint, which packets are more important to keep
track of? How much error can the proxy tolerate with its
loss detection? Are false positives or false negatives more
fatal? The answers to these questions are intertwined with
routing (e.g., packet spraying causes more reordered pack-
ets), topology (e.g., unstructured topology can cause more
reordered packets with varied-length paths) and congestion
control (e.g., BBR [15] is more resilient to loss), warranting
further investigation.
Future work #2: More efficient proxy implementation.
As the proxy processing is on the critical path, the per-packet
processing overhead must be kept low for the proxy to run
at line rate and also for incast completion time to stay low.
While our initial implementation leverages TC’s flexibility,
there is still room to improve performance. For example, the
proxy program has the potential of being offloaded to the
NIC directly, and moving to the eXpress Data Path (XDP)
hook can further reduce kernel overhead. The implemen-
tation decision could also depend on characteristics of the
deployment target.
Future work #3: Orchestrating proxy selection across
incasts. Effective orchestration among the senders and proxy
servers in an incast and across multiple incasts in the same
datacenter is critical to the performance in a real-world
deployment. But effective orchestration is non-trivial due
to several challenges. First, the proxy needs to be selected
quickly and avoid contention with other incasts. It can be

2Lower bound was taken via eBPF instrumentation, while the upper bound
was taken via tcpdump. tcpdump was utilized for its flexibility, but we
found measurements to encapsulate additional host latency reflecting prior
work [39].



Mitigating Inter-datacenter Incast with a Proxy HotNets ’25, November 17–18, 2025, College Park, MD, USA

selected either by a global orchestrator, which requires fre-
quent updates on proxy status, or in a decentralized manner
with repeated trials by individual incast, which can lead to
communication overhead. Second, further research is needed
to determine which server can act as a proxy, which server
can act as an orchestrator and whether there is any opportu-
nity of leveraging application-layer orchestration. Third, as
shown in Figure 2 (Right), not all incasts benefit from using a
proxy and future work needs to understand how to identify
incasts that should be routed through a proxy.

6 Research agenda
Beyond the proxy mechanics discussed in §5, this paper
opens up a rich research agenda related to the interface
between application development and resource allocation.
Proxying incast throughprogramming abstraction:While
beneficial, integrating a proxy into datacenter operations is
not straightforward. It is unrealistic to assume that applica-
tion developers or cloud customers will proactively choose
to use a proxy instead of sending traffic directly across dat-
acenters. Therefore, we need a programming abstraction
that allows developers to declare when their application
creates incast-like communication across components that
could be remote. At deployment time, the cloud provider can
use this information to convert an inter-datacenter incast
into a proxy-assisted one, without requiring any changes
or permission from the application. Doing so is not trivial.
A programming abstraction must strike a balance between
expressiveness—so it can capture meaningful information
about incast behavior—and usability—so that developers are
willing and able to adopt it. Worse yet, a poorly designed
abstraction may introduce new semantic violations or failure
modes, for example, if the specification is ambiguous or mis-
interpreted at deployment time. This raises a key research
question: How can we design a programming abstraction that
enables developers to communicate potential incast patterns
clearly and concisely, without introducing ambiguity or im-
posing excessive overhead.
Proxying incast through pattern-aware rerouting: An
alternative approach to leveraging proxies is to identify
incast-inducing jobs based on the traffic patterns they cre-
ate. This is particularly useful in scenarios where the cloud
runs third-party applications, and explicit developer anno-
tations are unavailable. Importantly, some applications ex-
hibit periodic behavior, providing an opportunity to pre-
dict when an incast is about to occur. ML training is one
such example, where synchronization phases follow regular
patterns [44, 48, 53, 60]. In these cases, the cloud operator
can proactively detect incast and route traffic through a lo-
cal proxy, naturally throttling it before it traverses long-
haul links. However, this is extremely challenging, as it

demands highly accurate, low-latency detection and near-
instantaneous intervention. This raises an interesting re-
search question: How can we detect an incast and route traffic
through a proxy fast enough to tame it without disrupting
application semantics?

7 Conclusion
Inter-datacenter incast is an emerging yet challenging prob-
lem. This paper posits that adding a proxy hop in the send-
ing datacenter accelerates incast completion by allowing
senders to converge faster to an appropriate aggregate send-
ing rate. Motivated by initial results, we present a rich re-
search agenda ranging from designing a low-overhead proxy
to rethinking datacenter resource allocations.

Acknowledgements
We thank the anonymous reviewers for their insightful feed-
back. This work was supported by the National Science Foun-
dation (NSF) through Grants CNS-2442625, and CNS-231944.

References
[1] [n. d.]. Distributed Data Center Architecture: Ensuring Scalability.

https://www.gable.ai/blog/distributed-data-center-architecture
[2] [n. d.]. Regional, dual-region, and multi-region configurations. https:

//cloud.google.com/spanner/docs/instance-configurations
[3] [n. d.]. StorageGRID architecture and network topology.

https://docs.netapp.com/us-en/storagegrid-116/primer/storagegrid-
architecture-and-network-topology.html

[4] Firas Abuzaid, Srikanth Kandula, Behnaz Arzani, Ishai Menache, Matei
Zaharia, and Peter Bailis. 2021. Contracting wide-area network topolo-
gies to solve flow problems quickly. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 21). 175–200.

[5] Vamsi Addanki, Maria Apostolaki, Manya Ghobadi, Stefan Schmid,
and Laurent Vanbever. 2022. ABM: Active buffer management in
datacenters. In Proceedings of the ACM SIGCOMM 2022 Conference.
36–52.

[6] Vamsi Addanki, Wei Bai, Stefan Schmid, and Maria Apostolaki. 2024.
Reverie: Low pass {Filter-Based} switch buffer sharing for datacen-
ters with {RDMA} and {TCP} traffic. In 21st USENIX Symposium on
Networked Systems Design and Implementation (NSDI 24). 651–668.

[7] Adi Gangidi. 2023. Scaling RoCE Networks for AI Training.
https://atscaleconference.com/videos/scaling-roce-networks-for-
ai-training/.https://atscaleconference.com/videos/scaling-roce-
networks-for-ai-training/

[8] Mohammad Alizadeh and Tom Edsall. 2013. On the data path per-
formance of leaf-spine datacenter fabrics. In 2013 IEEE 21st annual
symposium on high-performance interconnects. IEEE, 71–74.

[9] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Pad-
hye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. 2010. Data center tcp (dctcp). In Proceedings of the ACM
SIGCOMM 2010 Conference. 63–74.

[10] M Allman, H Balakrishnan, and S Floyd. 2001. RFC3042: Enhancing
TCP’s Loss Recovery Using Limited Transmit.

[11] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre,
Paramvir Bahl, Ameya Bhagat, Gowri Bhaskara, Tanya Brokhman, Lei
Cao, Ahmad Cheema, et al. 2023. Empowering azure storage with

https://www.gable.ai/blog/distributed-data-center-architecture
https://cloud.google.com/spanner/docs/instance-configurations
https://cloud.google.com/spanner/docs/instance-configurations
https://docs.netapp.com/us-en/storagegrid-116/primer/storagegrid-architecture-and-network-topology.html
https://docs.netapp.com/us-en/storagegrid-116/primer/storagegrid-architecture-and-network-topology.html
https://at scaleconference.com/videos/scaling- roce- networks- for- ai- training/. https://atscaleconference.com/videos/scaling- roce- networks- for- ai- training/
https://at scaleconference.com/videos/scaling- roce- networks- for- ai- training/. https://atscaleconference.com/videos/scaling- roce- networks- for- ai- training/
https://at scaleconference.com/videos/scaling- roce- networks- for- ai- training/. https://atscaleconference.com/videos/scaling- roce- networks- for- ai- training/


HotNets ’25, November 17–18, 2025, College Park, MD, USA Zhou et al.

{RDMA}. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23). 49–67.

[12] Wei Bai, Kai Chen, Haitao Wu, Wuwei Lan, and Yangming Zhao. 2014.
PAC: Taming TCP incast congestion using proactive ACK control. In
2014 IEEE 22nd International Conference on Network Protocols. IEEE,
385–396.

[13] Bloomberg. [n. d.]. Inside the First Stargate AI Data Cen-
ter. https://www.bloomberg.com/news/features/2025-05-20/inside-
stargate-ai-data-center-from-openai-and-softbank

[14] Jeremy Bogle, Nikhil Bhatia, Manya Ghobadi, Ishai Menache, Niko-
laj Bjørner, Asaf Valadarsky, and Michael Schapira. 2019. TEAVAR:
striking the right utilization-availability balance in WAN traffic en-
gineering. In Proceedings of the ACM Special Interest Group on Data
Communication. 29–43.

[15] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson. 2016. Bbr: Congestion-based congestion
control: Measuring bottleneck bandwidth and round-trip propagation
time. Queue 14, 5 (2016), 20–53.

[16] Yiyang Chang, Chuan Jiang, Ashish Chandra, Sanjay Rao, and Mohit
Tawarmalani. 2019. Lancet: Better network resilience by designing
for pruned failure sets. Proceedings of the ACM on Measurement and
Analysis of Computing Systems 3, 3 (2019), 1–26.

[17] Wen Chen, Fengyuan Ren, Jing Xie, Chuang Lin, Kevin Yin, and Fred
Baker. 2015. Comprehensive understanding of TCP Incast problem. In
2015 IEEE Conference on Computer Communications (INFOCOM). IEEE,
1688–1696.

[18] Yanpei Chen, Rean Griffit, David Zats, and Randy H Katz. 2012. Un-
derstanding TCP incast and its implications for big data workloads.
University of California at Berkeley, Tech. Rep (2012).

[19] Yanpei Chen, Rean Griffith, Junda Liu, Randy H Katz, and Anthony D
Joseph. 2009. Understanding TCP incast throughput collapse in data-
center networks. In Proceedings of the 1st ACM workshop on Research
on enterprise networking. 73–82.

[20] Yuchung Cheng, Neal Cardwell, Nandita Dukkipati, and Priyaranjan
Jha. 2021. The RACK-TLP Loss Detection Algorithm for TCP. RFC
8985. doi:10.17487/RFC8985

[21] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, Peter Hochschild, et al. 2013. Spanner: Google’s
globally distributed database. ACM Transactions on Computer Systems
(TOCS) 31, 3 (2013), 1–22.

[22] Marek Denis, Yuanjun Yao, Ashley Hatch, Qin Zhang, Chiun Lin Lim,
Shuqiang Zhang, Kyle Sugrue, Henry Kwok, Mikel Jimenez Fernan-
dez, Petr Lapukhov, et al. 2023. Ebb: Reliable and evolvable express
backbone network in meta. In Proceedings of the ACM SIGCOMM 2023
Conference. 346–359.

[23] NanDu, YanpingHuang, AndrewMDai, Simon Tong, Dmitry Lepikhin,
Yuanzhong Xu, Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan
Firat, et al. 2022. Glam: Efficient scaling of language models with
mixture-of-experts. In International conference on machine learning.
PMLR, 5547–5569.

[24] William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch trans-
formers: Scaling to trillion parameter models with simple and efficient
sparsity. Journal of Machine Learning Research 23, 120 (2022), 1–39.

[25] Sally Floyd, Tom Henderson, and Andrei Gurtov. 2004. Rfc3782: The
newreno modification to tcp’s fast recovery algorithm.

[26] Yixiao Gao, Yuchen Yang, Tian Chen, Jiaqi Zheng, Bing Mao, and Gui-
hai Chen. 2018. Dcqcn+: Taming large-scale incast congestion in rdma
over ethernet networks. In 2018 IEEE 26th International Conference on
Network Protocols (ICNP). IEEE, 110–120.

[27] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,
Andrew W Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-
architecting datacenter networks and stacks for low latency and high
performance. In Proceedings of the Conference of the ACM Special Inter-
est Group on Data Communication. 29–42.

[28] Torsten Hoefler, Duncan Roweth, Keith Underwood, Bob Alver-
son, Mark Griswold, Vahid Tabatabaee, Mohan Kalkunte, Surendra
Anubolu, Siyuan Shen, Abdul Kabbani, et al. 2023. Datacenter ethernet
and rdma: Issues at hyperscale. arXiv preprint arXiv:2302.03337 (2023).

[29] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vi-
jay Gill, Mohan Nanduri, and Roger Wattenhofer. 2013. Achieving
high utilization with software-driven WAN. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM. 15–26.

[30] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min Zhu,
Richard Alimi, Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu Liang,
Kirill Mendelev, et al. 2018. B4 and after: managing hierarchy, parti-
tioning, and asymmetry for availability and scale in google’s software-
defined WAN. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication. 74–87.

[31] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder,
Parikshit Gopalan, Jin Li, and Sergey Yekhanin. 2012. Erasure coding
in windows azure storage. In 2012 USENIX Annual Technical Conference
(USENIX ATC 12). 15–26.

[32] Van Jacobson and Robert Braden. 1988. RFC1072: TCP Extensions for
Long-Delay Paths.

[33] Van Jacobson, Robert Braden, and Dave Borman. 1992. RFC1323: TCP
extensions for high performance.

[34] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan
Zhou, Min Zhu, et al. 2013. B4: Experience with a globally-deployed
software defined WAN. ACM SIGCOMM Computer Communication
Review 43, 4 (2013), 3–14.

[35] Virajith Jalaparti, Ivan Bliznets, Srikanth Kandula, Brendan Lucier,
and Ishai Menache. 2016. Dynamic pricing and traffic engineering
for timely inter-datacenter transfers. In Proceedings of the 2016 ACM
SIGCOMM Conference. 73–86.

[36] Steven H Low Fernando Paganini Jiantao and Wang Sachin Adlakha
John C Doyle. 2002. Dynamics of TCP/RED and a Scalable Control. In
IEEE INFOCOM. Citeseer, 1.

[37] Xin Jin, Yiran Li, Da Wei, Siming Li, Jie Gao, Lei Xu, Guangzhi Li,
Wei Xu, and Jennifer Rexford. 2016. Optimizing bulk transfers with
software-defined optical WAN. In Proceedings of the 2016 ACM SIG-
COMM Conference. 87–100.

[38] Srikanth Kandula, Ishai Menache, Roy Schwartz, and Spandana Raj
Babbula. 2014. Calendaring for wide area networks. In Proceedings of
the 2014 ACM conference on SIGCOMM. 515–526.

[39] Aqsa Kashaf, Aidan Walsh, Maria Apostolaki, Vyas Sekar, and Yuvraj
Agarwal. 2024. Network Function Capacity Reconnaissance by Remote
Adversaries.

[40] Umesh Krishnaswamy, Rachee Singh, Nikolaj Bjørner, and Himanshu
Raj. 2022. Decentralized cloud wide-area network traffic engineer-
ing with {BLASTSHIELD}. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22). 325–338.

[41] Umesh Krishnaswamy, Rachee Singh, Paul Mattes, Paul-Andre C Bis-
sonnette, Nikolaj Bjørner, Zahira Nasrin, Sonal Kothari, Prabhakar
Reddy, John Abeln, Srikanth Kandula, et al. 2023. {OneWAN} is bet-
ter than two: Unifying a split {WAN} architecture. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
23). 515–529.

[42] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Klein-
berg, Petr Lapukhov, Chiun Lin Lim, and Robert Soulé. 2018. {Semi-
oblivious} traffic engineering: The road not taken. In 15th USENIX

https://www.bloomberg.com/news/features/2025-05-20/inside-stargate-ai-data-center-from-openai-and-softbank
https://www.bloomberg.com/news/features/2025-05-20/inside-stargate-ai-data-center-from-openai-and-softbank
https://doi.org/10.17487/RFC8985


Mitigating Inter-datacenter Incast with a Proxy HotNets ’25, November 17–18, 2025, College Park, MD, USA

Symposium on Networked Systems Design and Implementation (NSDI
18). 157–170.

[43] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen,
Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and
Zhifeng Chen. 2020. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668
(2020).

[44] Jiamin Li, Yimin Jiang, Yibo Zhu, Cong Wang, and Hong Xu. 2023.
Accelerating distributed {MoE} training and inference with lina. In
2023 USENIX Annual Technical Conference (USENIX ATC 23). 945–959.

[45] Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan, Ming Zhang,
and David Gelernter. 2014. Traffic engineering with forward fault
correction. In Proceedings of the 2014 ACM Conference on SIGCOMM.
527–538.

[46] Kexin Liu, Chen Tian, QingyueWang, Hao Zheng, Peiwen Yu, Wenhao
Sun, Yonghui Xu, Ke Meng, Lei Han, Jie Fu, et al. 2021. Floodgate:
Taming incast in datacenter networks. In Proceedings of the 17th In-
ternational Conference on emerging Networking Experiments and Tech-
nologies. 30–44.

[47] Ximeng Liu, Shizhen Zhao, Yong Cui, and Xinbing Wang. 2024. FI-
GRET: Fine-Grained Robustness-Enhanced Traffic Engineering. In
Proceedings of the ACM SIGCOMM 2024 Conference. 117–135.

[48] Natchanon Luangsomboon, Fahimeh Fazel, Jörg Liebeherr, Ashkan
Sobhani, Shichao Guan, and Xingjun Chu. 2023. On the burstiness of
distributed machine learning traffic. arXiv preprint arXiv:2401.00329
(2023).

[49] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow. 1996.
RFC2018: TCP selective acknowledgement options.

[50] Congcong Miao, Zhizhen Zhong, Yunming Xiao, Feng Yang, Senkuo
Zhang, Yinan Jiang, Zizhuo Bai, Chaodong Lu, Jingyi Geng, Zekun He,
et al. 2024. MegaTE: ExtendingWAN Traffic Engineering to Millions of
Endpoints in Virtualized Cloud. In Proceedings of the ACM SIGCOMM
2024 Conference. 103–116.

[51] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ouster-
hout. 2018. Homa: A receiver-driven low-latency transport protocol
using network priorities. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication. 221–235.

[52] David Nagle, Denis Serenyi, and Abbie Matthews. 2004. The Panasas
ActiveScale storage cluster-delivering scalable high bandwidth storage.
In SC’04: Proceedings of the 2004 ACM/IEEE Conference on Supercom-
puting. IEEE, 53–53.

[53] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and
Matei Zaharia. 2021. Memory-efficient pipeline-parallel dnn training.
In International Conference on Machine Learning. PMLR, 7937–7947.

[54] Vladimir Olteanu, Haggai Eran, Dragos Dumitrescu, Adrian Popa,
Cristi Baciu, Mark Silberstein, Georgios Nikolaidis, Mark Handley,
and Costin Raiciu. 2022. An edge-queued datagram service for all
datacenter traffic. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22). 761–777.

[55] Vern Paxson, Mark Allman, Jerry Chu, and Matt Sargent. 2011. RFC
6298: Computing TCP’s retransmission timer.

[56] Yarin Perry, Felipe Vieira Frujeri, Chaim Hoch, Srikanth Kandula,
Ishai Menache, Michael Schapira, and Aviv Tamar. 2023. {DOTE}:
Rethinking (Predictive){WAN} Traffic Engineering. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
23). 1557–1581.

[57] Amar Phanishayee, Elie Krevat, Vijay Vasudevan, David G Andersen,
Gregory R Ganger, Garth A Gibson, and Srinivasan Seshan. 2008. Mea-
surement and analysis of TCP throughput collapse in cluster-based
storage systems.. In FAST, Vol. 8. 1–14.

[58] Jun Rao, Eugene J Shekita, and Sandeep Tata. 2011. Using paxos to build
a scalable, consistent, and highly available datastore. arXiv preprint

arXiv:1103.2408 (2011).
[59] Hamed Rezaei and Balajee Vamanan. 2021. Superways: A datacen-

ter topology for incast-heavy workloads. In Proceedings of the Web
Conference 2021. 317–328.

[60] Joshua Romero, Junqi Yin, Nouamane Laanait, Bing Xie, M Todd Young,
Sean Treichler, Vitalii Starchenko, Albina Borisevich, Alex Sergeev,
and Michael Matheson. 2022. Accelerating collective communication
in data parallel training across deep learning frameworks. In 19th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22). 1027–1040.

[61] Ahmed Saeed, Varun Gupta, Prateesh Goyal, Milad Sharif, Rong Pan,
Mostafa Ammar, Ellen Zegura, Keon Jang, MohammadAlizadeh, Abdul
Kabbani, et al. 2020. Annulus: A dual congestion control loop for
datacenter and wan traffic aggregates. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data Communication on
the applications, technologies, architectures, and protocols for computer
communication. 735–749.

[62] P Sarolahti, M Kojo, K Yamamoto, and M Hata. 2009. RFC 5682: For-
ward RTO-Recovery (F-RTO): An Algorithm for Detecting Spurious
Retransmission Timeouts with TCP.

[63] Rachee Singh, Sharad Agarwal, Matt Calder, and Paramvir Bahl. 2021.
Cost-effective cloud edge traffic engineering with cascara. In 18th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21). 201–216.

[64] Rachee Singh, Nikolaj Bjørner, and Umesh Krishnaswamy. 2022. Traffic
engineering: from isp to cloud wide area networks. In Proceedings of
the Symposium on SDN Research. 50–58.

[65] Rachee Singh, Nikolaj Bjorner, Sharon Shoham, Yawei Yin, John
Arnold, and Jamie Gaudette. 2021. Cost-effective capacity provisioning
in wide area networks with shoofly. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference. 534–546.

[66] Rachee Singh, Manya Ghobadi, Klaus-Tycho Foerster, Mark Filer, and
Phillipa Gill. 2018. RADWAN: rate adaptive wide area network. In
Proceedings of the 2018 Conference of the ACM Special Interest Group on
Data Communication. 547–560.

[67] Shih-Hao Tseng, Saksham Agarwal, Rachit Agarwal, Hitesh Ballani,
and Ao Tang. 2021. {CodedBulk}:{Inter-Datacenter} Bulk Transfers
using Network Coding. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21). 15–28.

[68] Ultra Ethernet Consortium. 2025. UEC Progresses Towards v1.0 Set of
Specifications. https://ultraethernet.org/uec-progresses-towards-v1-
0-set-of-specifications/. Accessed: 2025-07-10.

[69] Ultra Ethernet Consortium. 2025. Ultra Ethernet Specification Up-
date. https://ultraethernet.org/ultra-ethernet-specification-update/.
Accessed: 2025-07-10.

[70] Vijay Vasudevan, Amar Phanishayee, Hiral Shah, Elie Krevat, David G
Andersen, Gregory R Ganger, Garth A Gibson, and Brian Mueller. 2009.
Safe and effective fine-grained TCP retransmissions for datacenter
communication. ACM SIGCOMM computer communication review 39,
4 (2009), 303–314.

[71] Haitao Wu, Zhenqian Feng, Chuanxiong Guo, and Yongguang Zhang.
2010. ICTCP: Incast congestion control for TCP in data center networks.
In Proceedings of the 6th International COnference. 1–12.

[72] Zhiying Xu, Francis Y Yan, Rachee Singh, Justin T Chiu, Alexander M
Rush, and Minlan Yu. 2023. Teal: Learning-accelerated optimization
of wan traffic engineering. In Proceedings of the ACM SIGCOMM 2023
Conference. 378–393.

[73] Gaoxiong Zeng, Wei Bai, Ge Chen, Kai Chen, Dongsu Han, Yibo Zhu,
and Lei Cui. 2022. Congestion control for cross-datacenter networks.
IEEE/ACM Transactions on Networking 30, 5 (2022), 2074–2089.

[74] Jiao Zhang, Fengyuan Ren, and Chuang Lin. 2011. Modeling and
understanding TCP incast in data center networks. In 2011 Proceedings

https://ultraethernet.org/uec-progresses-towards-v1-0-set-of-specifications/
https://ultraethernet.org/uec-progresses-towards-v1-0-set-of-specifications/
https://ultraethernet.org/ultra-ethernet-specification-update/


HotNets ’25, November 17–18, 2025, College Park, MD, USA Zhou et al.

IEEE INFOCOM. IEEE, 1377–1385.
[75] Gongming Zhao, Jingzhou Wang, Hongli Xu, Zhuolong Yu, and Chun-

ming Qiao. 2023. COIN: Cost-efficient traffic engineering with various

pricing schemes in clouds. In IEEE INFOCOM 2023-IEEE Conference on
Computer Communications. IEEE, 1–10.


	Abstract
	1 Introduction
	2 Motivation
	3 Insights
	4 Early Promise
	4.1 Methodology
	4.2 Results

	5 Design Considerations
	6 Research agenda
	7 Conclusion
	References

