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Abstract
Many-to-one communication (i.e., incast) is a long-standing
challenge in networking with a wide range of proposed so-
lutions. However, as incast-inducing applications today (e.g.,
storage, ML training) scale beyond a single datacenter, they
introduce new challenges that current solutions do not han-
dle. In particular, inter-datacenter links have orders of magni-
tude higher latency than intra-datacenter paths, lengthening
the feedback loop that senders rely on to adjust their sending
rates and drastically increasing incast completion times.
To reduce inter-datacenter incast latency, we propose

adding a proxy server in the sending datacenter to relay
traffic between the senders and the receiver. Surprisingly,
adding this extra hop reduces incast latency! The insight is
that the added hop shifts the congestion point closer to the
senders, shortening the feedback loop and allowing senders
to converge quickly at a rate that fully utilizes the link while
avoiding severe congestion.Motivated by preliminary results,
we investigate low-overhead proxy designs and explore ways
to expose the proxy as a broader optimization opportunity
for application developers, cloud operators, and tenants.
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1 Introduction
Incast, the communication pattern where multiple senders
transmit simultaneously to a single receiver, is common
in datacenters and particularly problematic because it can
quickly overwhelm the network, causing congestion and se-
verely degrading the performance of critical applications [18,
52, 57]. To address this, the research community has devel-
oped a wide range of solutions tailored to different scenarios,
from absorbing incast bursts in deep buffers to refining loss
detection heuristics and upgrading the RTO timer accuracy
to avoid false retransmission [20, 49, 57, 70].
While these solutions help alleviate the challenges of

intra-datacenter incast, they fall short in the case of inter-
datacenter incast, where the senders and the receiver reside
in different datacenters. Inter-datacenter communication in-
volves significantly higher latencies—often orders of mag-
nitude greater than intra-datacenter traffic—which in turn
severely delays the feedback loop that senders rely on to
adjust their sending rates to the bottleneck link. More specif-
ically, senders lack coordination and hence must indepen-
dently adjust their sending rates to the available bandwidth
based on feedback from the network. The effectiveness of
this adjustment depends on the round-trip time (RTT) be-
tween each sender and the receiver. The longer this feedback
loop, the slower the convergence to suitable sending rates
that in-aggregate match the bottleneck bandwidth, leading
to prolonged incast durations in inter-datacenter settings.

Despite their detrimental impact, inter-datacenter incasts
have received little attention, potentially because they were
previously considered unlikely to occur in practice, as appli-
cations were typically confined to a single datacenter. How-
ever, as applications and cloud infrastructure continue to
scale, it is increasingly common for workloads to span across
different datacenters, inevitably creating inter-datacenter
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incasts. Our collaboration with a major cloud provider con-
firmed that inter-datacenter incasts are not merely a theo-
retical concern but are actively impacting performance in
production environments. Importantly, “different datacen-
ters” does not necessarily imply large geographic separation.
Cloud providers often deploy multiple datacenters connected
via long-haul links within the same metropolitan area or re-
gion. This allows them to scale infrastructure without modi-
fying the core network topology or altering the associated
routing, management, and fault domains. While one might
assume that providers could prevent inter-datacenter incasts
simply by placing senders and receivers in the same datacen-
ter, this is ineffective and sometimes infeasible in practice:
enforcing such restrictions would further constrain the al-
ready complex job allocation process, and cloud providers
often lack full visibility into the workload behavior of clients.
Moreover, nodes may need to reside in different datacenters
for compliance and reliability reasons.
This paper presents a somewhat surprising proposition:

we can mitigate the impact of inter-datacenter incast by
intentionally routing traffic through a fake receiver (or a
proxy) located within the sending datacenter. At first glance,
this may seem counterintuitive. Lengthening the path each
packet takes should impair, not help, the completion time
of the incast-inducing job. However, the proxy directly ad-
dresses the core challenge of inter-datacenter incast, namely
the long feedback loop which slows down convergence.

We validate this idea in simulation and find that adding a
proxy hop can potentially reduce incast completion time by
70.60% and 53.60% on average across various incast degrees
and sizes. The reduction in incast completion time becomes
more pronounced as the RTT difference between intra- and
inter-datacenter communications increases. This reduction
in incast completion time is expected: relocating the conges-
tion point closer to the senders decreases the feedback delay
and enables the senders to converge faster to the appropriate
sending rates to fill (but not overwhelm) the bottleneck link.
To effectively realize the benefit of the proxy hop, loss must
be detected and signaled to the senders as if the proxy were
the receiver (i.e.,we should not wait for the actual receiver to
detect and signal the loss to the senders). Crucially, early loss
detection at the proxy can leverage streamlined logic imple-
mented entirely in eBPF, keeping the processing overhead
low.
Our findings open up a rich research agenda that chal-

lenges how we route traffic, design applications, and allocate
resources. Instead of asking how to avoid incast, we may
ask how to rate-limit traffic in an application-agnostic way
earlier in the path. Rather than designing application commu-
nication patterns independently of server placement, we may
explicitly select a proxy to flatten or reshape traffic through
the application code or in the compiler when servers are

allocated across datacenters. Finally, rather than tightly co-
locating containers of the same application within a single
datacenter and relocating them when scaling is needed, we
might instead allow new containers to be placed in a different
datacenter—repurposing an existing container as a proxy.

2 Motivation
Incast emerges across datacenters as applications scale.
Incast traffic is prevalent in applications ranging from tra-
ditional distributed storage [52] and real-time services e.g.,
web search and recommendation systems [9], to modern
distributed ML training. As these applications scale, inter-
datacenter incast over long-haul links becomes increasingly
common. For example,ML training produces challenging
incast traffic. In Mixture-of-Experts models [23, 24, 43], to-
kens are routed by a gating function to experts sharded across
devices. The ensuing dispatch and combine phases are imple-
mented as all-to-all exchanges, so each expert simultaneously
receives inputs from many senders, effectively creating mul-
tiple concurrent incasts. As large-scale training jobs grow
across multiple datacenters [7, 13], inter-datacenter incast
becomes an especially relevant problem. Likewise, storage
systems also generate incast traffic. For example, when an
erasure-coded fragment is requested by a user but unavail-
able due to a failure, the orchestrator needs to read other
fragments from different servers to reconstruct this fragment,
hence creating an incast [11, 31]. Other examples include
strongly consistent geo-replicated storage systems that syn-
chronize writes across a quorum of replicas [21, 58]. As stor-
age systems span across datacenters [11] and regions [1–3],
dealing with inter-datacenter incast is especially pertinent.
Inter-datacenter incast is uniquely challenging due to
the long feedback loop. An inter-datacenter flow, where
the sender and the receiver are in different datacenters, in-
curs millisecond-level RTTs as packets traverse the long-
haul links (as opposed to microsecond-level RTTs intra-
datacenter). In inter-datacenter incast, congestion builds up
in the receiving datacenter where flows converge, so net-
work feedback is delayed by several milliseconds between the
congestion bottleneck and the senders. This long feedback
loop is detrimental to incast latency. Being able to receive
network feedback promptly is crucial for senders to adjust
their sending rates to quickly mitigate congestion or link
under-utilization. But a long feedback loop keeps the senders
trapped at rates that are either too slow or too aggressive.
Slow sending rates waste available bandwidth and make
the incast completion time unnecessarily long. On the other
hand, persisting in sending too aggressively, even just for a
few milliseconds, can severely overload the network. Such
aggressiveness is not rarely seen in incast senders that are
eager to push out all traffic and thus set their initial sending
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rates proportional to BDP [28, 51]. Hence, they can severely
congest the network just with their first-RTT traffic.
Existing work does not address the long feedback delay.
Incast literature has primarily focused on intra-datacenter
incast where the feedback loop is reasonably short [17–
19, 52, 57, 74]. Large switch buffers may avoid congestion
from intra-datacenter incasts altogether, but are not viable in
an inter-datacenter scenario that requires even larger buffers,
which are expensive to build [57], difficult to design [59] and
lead to low and unstable performance [5, 6, 36]. Therefore,
many solutions tackle incast bymodifying the retransmission
timeout mechanism. They either refine loss pattern match-
ing to avoid unnecessary timeouts [20, 25, 49] or reduce the
penalty from incurring timeouts, e.g., by using more fine-
grained RTO [10, 18, 19, 32, 33, 55, 62, 70]. These solutions
are useful for inter-datacenter incast too, but are inadequate
on their own because they do not directly handle the long
feedback loop, i.e., the main culprit for performance degra-
dation in inter-datacenter incast. Congestion-control-based
solutions [12, 26, 71] propose more radical changes to their
mechanisms such that the receiver can relay additional incast
information to senders and help them adapt their sending
rates more precisely after the first RTT. These approaches do
not address the long feedback loop fundamentally, and conse-
quently, severe congestion upon first-RTT traffic or changing
available bandwidth persists. Floodgate [46] identifies incast
earlier by keeping per-destination count on switches andmit-
igates by distributing credits for the windows, which require
special switching hardware.

Cross-datacenter literature has given limited attention to
reducing incast latency. Traffic engineering solutions do not
always optimize for latency [4, 14, 16, 29, 30, 34, 35, 38, 40,
45, 63–67, 75] and when they do, they typically optimize how
traffic is split across paths. For example, [42, 47, 50, 56, 72]
compute path assignments based on historical traffic aggre-
gated over a certain time interval. But path optimization
does not prevent the congestion bottleneck at the receiver
down-ToR, and the traffic aggregation could mask incast
traffic patterns altogether. On the other hand, [22, 37, 41]
make per-flow decisions on how to schedule and route the
flow, but incur significant overhead on the critical path when
solving the route optimization. Congestion-control-based so-
lutions do not address the core issue of the long feedback
loop either. Gemini [73] employs milder congestion window
reduction for longer-RTT flows, thus avoiding link under-
utilization, but overlooks the more severe issue of network
overload when windows are too large. Annulus [61] only
handles bottlenecks that occur near the traffic source and is
not applicable to inter-datacenter incast.
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(a) Senders directly send to the remote receiver.
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(b) Proxy relays traffic between senders and remote receiver.

Figure 1: (1a) Status quo: Senders directly send to the
remote receiver. Flows are bottlenecked at the receiver
down-ToR. (1b) Senders send to a proxy within their
datacenter, and the proxy forwards to the remote re-
ceiver. Flows are bottlenecked at the proxy down-ToR
in the sending datacenter.

3 Insights
To handle the unique challenge of the long feedback loop and
mitigate inter-datacenter incast, we advocate for adding a
proxy server between the senders and the receiver. Instead of
directly sending to the remote receiver (shown in Figure 1a),
we propose that each sender sends packets to a proxy, which
then forwards them to the receiver (shown in Figure 1b).
Surprisingly, the seemingly counterintuitive idea of adding
an extra proxy hop reduces inter-datacenter incast latency.
We explain the key insights next.
Insight #1: The proxy server shifts the bottleneck closer
to the senders. The extra proxy hop lengthens the path
each packet takes from sender to receiver, but shortens the
feedback loop. Concretely, by placing the proxy server at
the same datacenter as the senders, congestion occurs at
the proxy down-ToR inq the sending datacenter which is
only microseconds away from the senders. As a result, the
feedback delay (between the congestion point and senders) is
only several microseconds. In comparison, without a proxy,
congestion occurs at the receiver down-ToR in the receiving
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datacenter and the feedback delays for milliseconds. Figure
1 illustrates the comparison.
Insight #2: Early network feedback shortens the feed-
back loop, hence enabling faster convergence. The bot-
tleneck shift offers senders an opportunity to quickly con-
verge to suitable sending rates that fully utilize available
bandwidth without causing severe congestion. Crucially, a
proxy that simply relays packets between senders and the re-
ceiver does not accelerate convergence, because it still takes
at least as long for the senders to receive network signals.
Hence, to leverage this opportunity, the proxy must provide
early network feedback, such as loss signals to senders, so
that they can adjust their sending rates promptly to network
conditions before the remote receiver even notices any issue.
Insight #3: Streamlined proxy design enables early loss
detection with minimal processing overhead. A naive
way to shorten the feedback loop is to set up two indepen-
dent connections for each flow: one connection between the
sender and the proxy, and one connection between the proxy
and the receiver. This way, the sender-proxy connection is
contained entirely within the same datacenter, incurring
microsecond-level RTTs and allowing fast network feedback
(e.g., via small RTOs). However, this naive design requires
the proxy to perform the entire sending and receiving logic
which incurs unnecessary processing overhead. We observe
that full-fledged independent connections are not necessary
for shortening the feedback loop. In fact, it suffices if the
proxy just keeps track of packet losses and informs the sender
about them early. Leveraging switch trimming support and
eBPF capabilities, we have implemented a prototype of this
lightweight proxy design, which adds only microseconds of
processing overhead (details in §5).

4 Early Promise
We show preliminary results based on htsim packet-level
simulator [27] and demonstrate that adding a proxy hop,
with both naive and streamlined proxy designs (introduced
in §3, details in §5), reduces incast latency across various (1)
incast degrees and (2) sizes and across different (3) intra- and
inter-datacenter latency gaps.

4.1 Methodology
Simulation setup.We simulate two datacenters, each us-
ing a leaf-spine topology [8] with 8 spine switches and 8
leaf switches. Each leaf switch is connected to 8 servers.
Spine and leaf switches, and leaf switches and servers, are
connected with 100Gbps links of 1us propagation delay.
The two datacenters are connected via 64 backbone routers.
Each spine switch is connected to 8 backbone routers with
100Gbps links of 1ms propagation delay. Senders follow a
DCTCP-like congestion control where the sender resets its
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Figure 2: Left: Both proxy schemes significantly reduce
the incast completion time across all incast degrees
compared to the baseline. The reduction is more pro-
nounced at larger degrees.
Right: Both proxy schemes significantly outperform
the baseline for any incast that is large enough to in-
duce packet loss at the first RTT.

congestion window upon timeout, decreases the window
upon receiving marked ACK packet or NACK packet and
increases the window upon receiving unmarked ACK packet.
Initial window is set to be 1BDP, following [51]. We use
packet spraying. Spine and leaf switches have 17.015MB
buffer and the lower and higher marking thresholds are
33.2KB and 136.95KB, respectively, following [9]. Backbone
routers have a deeper 49.8MB buffer and the marking thresh-
olds are 9.96MB and 39.84MB. We run each setup 5 times
and report the average, minimum and maximum incast com-
pletion time.
Schemes.We compare three schemes below.

• Baseline: No proxy is used. Senders directly send to
the receiver.

• Proxy (Naive): We designate a proxy server in the
sending datacenter. For each flow, we set up two con-
nections: one from sender to proxy (proxy𝑅), and the
other from proxy (proxy𝑆 ) to receiver. Proxy𝑅 keeps
a queue and enqueues packets when receiving from
the sender. Proxy𝑆 sends a packet onto the wire as
long as the queue at proxy𝑅 is non-empty and there is
bandwidth available.

• Proxy (Streamlined):We designate a proxy server in
the sending datacenter. Each flow from the sender to
the receiver is routed via the proxy. We enable packet
trimming support on switches (e.g., used in NDP [27],
EQDS [54] and Ultra Ethernet [68, 69]). Upon receiving
a packet from the sender, the proxy checks whether it
is a header-only packet. If so, it sends a NACK back
to the sender; otherwise, it forwards the packet to the
receiver. Upon receiving a packet from the receiver,
the proxy simply forwards it to the sender.
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Figure 3: Both proxy schemes significantly reduce the
incast completion time at either the region-level or the
WAN-level. The reduction becomes more pronounced
with higher link latency, since the feedback loop short-
ensmore substantially. Both x- and y-axes are log scale.

4.2 Results
Incast degree. In Figure 2 (Left), we fix the total incast size
to 100MB and vary the number of incast senders. The total
traffic is split equally among all senders. Both Naive and
Streamlined speed up incast completion compared to the
baseline across all incast degrees by a staggering 40.43ms
(75.67%) and 37.63ms (70.60%) on average, respectively. The
latency benefit gets more pronounced as the incast degree
gets higher. At larger incast degrees, the baseline sees higher
aggregate sending rates from more senders initially, and
thus takes more time to decrease to match the available
bandwidth. Moreover, Figure 2 (Left) validates the potential
of Streamlined. At larger incast degrees, the performances
of the two proxies are almost equivalent. At smaller incast
degrees, Streamlined incurs larger incast latency compared
to Naive (but still much smaller compared to baseline), be-
cause the fast feedback loop decreases the sending rates too
aggressively, leading to link under-utilization.
Incast size. In Figure 2 (Right), we fix the incast degree to
4 and vary the total amount of incast traffic. Both proxy
schemes demonstrate significant incast latency reduction
compared to the baseline for any incast larger than 20MB,
achieving 57.08% and 53.60% reduction on average, respec-
tively. In the case of the 20MB-incast, it starts with a reason-
able collective sending rate, sees no packet loss, and thus the
feedback delay is not as important; all three schemes are on
par and there is no benefit using a proxy.
Latency gap. In Figure 3, we fix the incast degree to 4 and
the total incast size to 100MB. The intra-datacenter link la-
tency is 1us. We vary the latency of the long-haul links con-
necting the two datacenters. Latency under a few hundred
microseconds mimics intra-datacenter; tens of milliseconds,
intra-region; and over a few hundred milliseconds, WAN.
Both proxy schemes outperform the baseline for any link
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Figure 4: A naive user-space proxy implementation
incurs prohibitively expensive kernel overhead and
user-kernel context switches.

latency larger than or equal to 100us, illustrating the great
promise of our approach in alleviating inter-datacenter in-
cast at both the region-level and the WAN-level. The incast
latency savings are more pronounced with larger link laten-
cies. Naive reduces incast completion time by 1.16ms (11.70%)
with 100us link and by 12.02s (75.00%) with 1ms link. The
reductions are 1.22ms (12.29%) and 12.02s (75.00%) for Stream-
lined. The latency saving increases with larger link latency
because the feedback loop shortens more substantially.

5 Design Considerations
We reduce inter-datacenter incast latency by leveraging a
proxy server placed strategically in the sending datacenter.
We argue that an effective proxy design must: (1) shorten
the feedback loop from the congestion point to the senders
with minimal processing overhead; and (2) orchestrate the
proxy server selection across multiple incasts. In this section,
we share our preliminary investigation towards shortening
the feedback loop with minimal overhead and discuss a few
unresolved questions that require further investigation.
Testbed setup. Our testbed consists of two x86_64 Ubuntu
24.04 servers running kernel version 6.11.0 with Mellanox
ConnectX-5 NICs. The proxy is loaded onto one server, with
the sender and receiver programs colocated on the other1.
Each server utilizes a single NIC link connected to a switch.
We analyze two proxy implementations: (1) a user-space
program instrumented at the TC layer, where a sender’s
packet is intercepted by the proxy and forwarded to its socket
mirror; and (2) an eBPF program loaded on a TC qdisc. To
generate test load between sender and receiver, we use the
iperf utility. A single test run consists of a 10Gbps line rate for
30 seconds. We report CDFs of per-packet latency measured
using a combination of eBPF instrumentation and tcpdump.
Using independent connections (i.e., Naive). One naive
proxy design involves running a sender program and a re-
ceiver program at the proxy. For each flow, two independent
connections are set up between the sender and the proxy,
1By colocating sender and receiver, we avoid having to synchronize dis-
tributed traces to capture measurements.
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Figure 5: (a): The lower-bound overhead is small, high-
lighting the potential of having an eBPF-based proxy
on the critical path. (b): In contrast, the upper-bound
overhead (including networking stack overhead) is dis-
proportionally large, highlighting the minute impact
of the proxy and the importance of hooking lower in
the stack.

and the proxy and the receiver, respectively. The feedback
loop is fast in this case because the sender-proxy connection
is contained entirely in the same datacenter, e.g., support-
ing only microsecond-level timeout for loss detection in the
worst case. Figure 4 shows the per-packet latency of our
naive proxy design implemented in user space, which cap-
tures the packet transmission time from the TC hook to user
space, user-space processing latency, and back. The 99th
percentile latency gets as high as 359.17us, demonstrating
a high processing overhead that may defeat the purpose of
using a proxy for reducing incast latency. The excessive pro-
cessing overhead can be attributed to two sources. First, the
naive design requires the proxy to perform the entire send-
ing and receiving logic which incurs additional processing
overhead. Second, the implementation in user space incurs
additional overhead e.g., from context switches and inter-
rupts when a packet traverses to and from the user space.
While moving the implementation to kernel space could
save some overhead, the extra sender and receiver logic still
incurs additional processing, and maintaining independent
connections relies on socket-level semantics and naturally
precludes more efficient implementation lower in the kernel.
Tracking packet loss at the proxy (i.e., Streamlined).We
argue that it is not necessary to incur the full sending and
receiving logic on the proxy and set up full-fledged connec-
tions for shortening the feedback loop. Instead, it is sufficient
to just have the proxy keep track of packet loss and signal the
sender when loss happens. This way, senders learn about net-
work congestion with only microsecond-level delay and can
promptly decrease their sending rates. To validate, we have
implemented a proxy prototype using Linux TC, demonstrat-
ing that we can avoid unnecessary processing and user-space

networking overhead by pushing codes down into kernel via
eBPF. In Figure 5, we measure the lower bound (including
runtime of eBPF bytecode without kernel overhead from
NIC to TC) and upper bound (including proxy processing
and forwarding in addition to packet-to-wire, physical trans-
mission, packet reception) of the processing overhead 2. The
median lower-bound overhead of merely 0.42us highlights
the potential of having an eBPF-based proxy on critical path.
In Figure 5a, distributions of the two paths differ as a result
of different per-flow state management. The disproportion-
ally large upper-bound overhead, with a median of 325.92us,
highlights the minute impact of the proxy logic itself com-
pared to networking stack overhead and underscores the
importance of hooking the proxy lower in the host stack.
Future work #1: Tracking packet loss at the proxy with-
out router support. A generalizable proxy design needs to
keep track of packet loss without special router support, e.g.,
packet trimming. The challenge lies in disambiguating re-
ordered packets from lost packets within eBPF’s constrained
memory and limited primitives. For instance, given the re-
source constraint, which packets are more important to keep
track of? How much error can the proxy tolerate with its
loss detection? Are false positives or false negatives more
fatal? The answers to these questions are intertwined with
routing (e.g., packet spraying causes more reordered pack-
ets), topology (e.g., unstructured topology can cause more
reordered packets with varied-length paths) and congestion
control (e.g., BBR [15] is more resilient to loss), warranting
further investigation.
Future work #2: More efficient proxy implementation.
As the proxy processing is on the critical path, the per-packet
processing overhead must be kept low for the proxy to run
at line rate and also for incast completion time to stay low.
While our initial implementation leverages TC’s flexibility,
there is still room to improve performance. For example, the
proxy program has the potential of being offloaded to the
NIC directly, and moving to the eXpress Data Path (XDP)
hook can further reduce kernel overhead. The implemen-
tation decision could also depend on characteristics of the
deployment target.
Future work #3: Orchestrating proxy selection across
incasts. Effective orchestration among the senders and proxy
servers in an incast and across multiple incasts in the same
datacenter is critical to the performance in a real-world
deployment. But effective orchestration is non-trivial due
to several challenges. First, the proxy needs to be selected
quickly and avoid contention with other incasts. It can be

2Lower bound was taken via eBPF instrumentation, while the upper bound
was taken via tcpdump. tcpdump was utilized for its flexibility, but we
found measurements to encapsulate additional host latency reflecting prior
work [39].
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selected either by a global orchestrator, which requires fre-
quent updates on proxy status, or in a decentralized manner
with repeated trials by individual incast, which can lead to
communication overhead. Second, further research is needed
to determine which server can act as a proxy, which server
can act as an orchestrator and whether there is any opportu-
nity of leveraging application-layer orchestration. Third, as
shown in Figure 2 (Right), not all incasts benefit from using a
proxy and future work needs to understand how to identify
incasts that should be routed through a proxy.

6 Research agenda
Beyond the proxy mechanics discussed in §5, this paper
opens up a rich research agenda related to the interface
between application development and resource allocation.
Proxying incast throughprogramming abstraction:While
beneficial, integrating a proxy into datacenter operations is
not straightforward. It is unrealistic to assume that applica-
tion developers or cloud customers will proactively choose
to use a proxy instead of sending traffic directly across dat-
acenters. Therefore, we need a programming abstraction
that allows developers to declare when their application
creates incast-like communication across components that
could be remote. At deployment time, the cloud provider can
use this information to convert an inter-datacenter incast
into a proxy-assisted one, without requiring any changes
or permission from the application. Doing so is not trivial.
A programming abstraction must strike a balance between
expressiveness—so it can capture meaningful information
about incast behavior—and usability—so that developers are
willing and able to adopt it. Worse yet, a poorly designed
abstraction may introduce new semantic violations or failure
modes, for example, if the specification is ambiguous or mis-
interpreted at deployment time. This raises a key research
question: How can we design a programming abstraction that
enables developers to communicate potential incast patterns
clearly and concisely, without introducing ambiguity or im-
posing excessive overhead.
Proxying incast through pattern-aware rerouting: An
alternative approach to leveraging proxies is to identify
incast-inducing jobs based on the traffic patterns they cre-
ate. This is particularly useful in scenarios where the cloud
runs third-party applications, and explicit developer anno-
tations are unavailable. Importantly, some applications ex-
hibit periodic behavior, providing an opportunity to pre-
dict when an incast is about to occur. ML training is one
such example, where synchronization phases follow regular
patterns [44, 48, 53, 60]. In these cases, the cloud operator
can proactively detect incast and route traffic through a lo-
cal proxy, naturally throttling it before it traverses long-
haul links. However, this is extremely challenging, as it

demands highly accurate, low-latency detection and near-
instantaneous intervention. This raises an interesting re-
search question: How can we detect an incast and route traffic
through a proxy fast enough to tame it without disrupting
application semantics?

7 Conclusion
Inter-datacenter incast is an emerging yet challenging prob-
lem. This paper posits that adding a proxy hop in the send-
ing datacenter accelerates incast completion by allowing
senders to converge faster to an appropriate aggregate send-
ing rate. Motivated by initial results, we present a rich re-
search agenda ranging from designing a low-overhead proxy
to rethinking datacenter resource allocations.
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