
From req/res to pub/sub: Exploring
Media over QUIC Transport for DNS
Mathis Engelbart

Technical University of Munich
Germany

mathis.engelbart@tum.de

Mike Kosek
Technical University of Munich

Germany
kosek@in.tum.de

Lars Eggert
Mozilla
Finland

leggert@mozilla.com

Jörg Ott
Technical University of Munich

Germany
ott@in.tum.de

Abstract
The DNS is a key component of the Internet. Originally
designed to facilitate the resolution of host names to IP ad-
dresses, its scope has continuously expanded over the years,
today covering use cases such as load balancing or service
discovery. While DNS was initially conceived as a rather
static directory service in which resource records (RR) only
change rarely, we have seen a number of use cases over
the years where a DNS flavor that isn’t purely based upon
requesting and caching RRs, but rather on an active distri-
bution of updates for all resolvers that showed interest in
the respective records in the past, would be preferable. In
this paper, we thus explore a publish-subscribe variant of
DNS based on the Media-over-QUIC architecture, where we
devise a strawman system and protocol proposal to enable
pushing RR updates. We provide a prototype implementa-
tion, finding that DNS can benefit from a publish-subscribe
variant: next to limiting update traffic, it can considerably
reduce the time it takes for a resolver to receive the latest
version of a record, thereby supporting use cases such as
load balancing in content distribution networks. The publish-
subscribe architecture also brings new challenges to the DNS,
including a higher overhead for endpoints due to additional
state management, and increased query latencies on first
lookup, due to session establishment latencies.
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1 Introduction
Since its introduction in the mid-1980s, the Domain Name
System (DNS) has been one of the key components of the
Internet, replacing the hosts.txt file. Originally designed
to support the resolution of host names to IP addresses, alias-
ing (CNAME), and determining mail and name servers, its
scope has continuously expanded to cover protocol and ser-
vice lookup and load balancing [10], flexible lookup delega-
tion [15], phone number mapping [7], and certificate pin-
ning [11], among other uses.
As such, DNS is effectively a large, global, hierarchically

distributed database, consisting ofmultiple layers where each
layer performs specific functions to resolve a name. Stub re-
solvers are part of every operating system, providing a local
interface for DNS requests. Stub resolvers forward requests
to recursive resolvers which look up DNS records recursively:
starting with requesting the Top-Level Domain (TLD) server
for the requested domain from one of the root nameservers,
then requesting the authoritative nameserver from the re-
turned record, and finally requesting the desired record from
the identified authoritative nameserver. Recursive resolvers
are typically provided by the ISP (Internet Service Provider)
that connect a user or enterprise to the Internet.

DNS was originally designed to be carried over UDP and
TCP, of which only UDP was initially globally supported.
Secure DNS transports emerged to mitigate eavesdropping
and response manipulation [5] between stub and recursive
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resolver, leading to DNS-over-TLS (DoT) [13], DNS-over-
HTTPS (DoH) [12], and most recently, DNS-over-QUIC
(DoQ) [14]. Most prominently, these secure DNS transports
are used by public recursive resolvers, such as 1.1.1.1
(Cloudflare), 8.8.8.8 (Google), or 9.9.9.9 (Quad9). They
intend to improve user privacy, filter attempts to access
malicious sites, or help in accessing otherwise censored
content, compared to only using the traditional recursive
resolvers provided by ISPs for their customers. As such,
communication between recursive resolvers and author-
itative nameservers is still almost exclusively performed
unencrypted using DNS over UDP, with DNS over TCP as a
fallback for larger responses.
Every layer within the DNS hierarchy operates its own

cache where the lifetime of each record is determined by
the Time to live (TTL) attributed by the authoritative server.
While typical default configurations use a TTL of 300 sec-
onds, TTLs can be as low, or as high, as deemed appropriate
by the provider of the authoritative server; as such, typical
TTLs as observed in the Internet range from 10 seconds to
1 day. While this caching effectively reduces latency and
minimizes excess traffic, in particular on aggregation points
like recursive resolvers which are used by a multitude of
stub resolvers, it also impacts how up-to-date records are: a
record is requested from the next layer within the hierarchy
only on cache misses, i.e., when the TTL has expired. Thus,
in the worst case, a record is as old as the number of caches
required for the lookup multiplied by the TTL of the record.
DNS was initially conceived as a rather static directory

service in which resource records (RRs) only change rarely
and scaled well over its more than 40 years of existence. Yet,
DNS has seen a number of uses in which a more dynamic
system would be preferable: For example, Dynamic DNS has
been used by (home) users with dynamically assigned IP ad-
dresses to run servers in their (home) networks. To cope with
changing RRs, an indirection via a DNS anchor service is
introduced that supports potentially frequent updates when-
ever the assigned IP address changes. Moreover, Content
Distribution Networks (CDNs) such as Akamai use DNS in
conjunction with short cache lifetimes for load balancing to
redistribute user requests to different servers as a function
of their current load[21]. Recently, the IETF TIPTOP (Tak-
ing IP to Other Planets) WG began exploring how to extend
the Internet architecture into deep space [3, 4]1. One of the
most critical issues is coping with long propagation delays
at inter-planetary distances since many Internet protocols
rely on handshakes. This also applies to the up front name
resolution using DNS, for which active replication of RRs of
the relevant domains is proposed as one option [1].

1As a possible alternative to the DTN architecture [22] and protocol [6].

All three scenarios would benefit from a DNS flavor that
isn’t purely based upon requesting and caching RRs but
rather on an active distribution of updates all the way to the
last-hop and even stub resolvers—for those resolvers that
showed interest in the respective records in the past. This
would support spreading updated records for all of the above
scenarios at the individual time scales as needed for each of
the domains and resources while limiting update traffic.
In this paper, we explore a publish-subscribe variant of

DNS that supports incremental deployment. We begin with
a look at the dynamics of today’s DNS in §2. We then lever-
age a recent development for scalable content distribution
that offers a pub/sub architecture, Media-over-QUIC Trans-
port (MoQT) (§3), to carry DNS RRs and devise a strawman
system and protocol proposal in §4. Following, we provide
a prototype implementation, and discuss our learnings and
open challenges in §5; we then conclude our paper in §6.

2 On the dynamics of today’s DNS
To contextualize our motivation for a publish-subscribe vari-
ant of DNS, we first analyze the dynamics of today’s DNS
in terms of the usage of RRs in the Internet, their change
rate over time, and the distribution of their TTLs. We fo-
cus on the most commonly used record types on stub to
recursive resolver requests, namely A (IPv4 addresses) and
AAAA (IPv6 addresses). In addition, we also analyze the
2024-standardized HTTPS record type [20] which, amongst
others, signals Application-Layer Protocol Negotiation (ALPN)
support within DNS.

Using the Tranco toplist from 2025-06-24, we recursively
resolve the top 10k domains from a single vantage point
in central europe, thereby resolving 8435 A records, 2870
AAAA records, as well as 1835 HTTPS records as detailed
in Fig. 1a. Surprisingly, the number of domains providing
AAAA records is only a fraction of those providing A records,
even more than 2 decades after the standardization of this
record type. In contrast, the uptake of the 2024-standardized
HTTPS record is astonishing, and highlights yet again the
ever ongoing evolution of the DNS.

Analyzing the TTLs of the resolved records, we find that
while each record type shows a distinct distribution, they
naturally cluster in the TTLs [20, 60, 300, 600, 1200, 3600] s
for A and AAAA records; notably, HTTPS records are ob-
served almost exclusively with a TTL of 300 s, warranting
a future investigation. Based on these clustered TTLs, we
next quantified the number of changes per record type over
300 subsequent observations of the respective TTL; e.g., for
records with a TTL of 30, we performed recursive lookups ev-
ery 30 seconds for a timeframe of 30 s*300=150min. We next
compared the lexicographic ordered sample on positions 𝑛
to 𝑛 − 1, observing if the record changed within the TTL.
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(a) TTL distribution

(b) A record change rate over 300 observations

Figure 1: TTL distribution and A record change rate

With the comparison in a lexicographic order, we counter
the possible bias of DNS round-robin where the same entries
per record type are responded in subsequent requests, but
in a different order.

As detailed in Fig. 1b for A records, we find that the lower
the TTL the more changes are performed: while TTLs of
300 s and below show a high change rate with at least 71
changes in the 90th percentile over 300 subsequent obser-
vations, TTLs of 600 s and above show no changes at all
up to the same percentile. We make the same observations
for AAAA records; as for HTTPS which are almost exclu-
sively found with a TTL of 300 s, we find that the number of
changes is similar to A records with a TTL of 300 s.
As a key takeaway, we conclude that the dynamics of to-

day’s DNS are twofold: while the change rate of lower TTLs
is rather high, the change rate of higher TTLs is rather low.
As such, we find that the possible benefits a publish-subscribe
variant of DNS can provide is also twofold: first, it reduces
the number of RR requests since updates are pushed to the
subscribed resolvers, thereby limiting update traffic. Second,

the distribution of updates ensures that the subscribed re-
solvers are always up-to-date with the latest version of the
record, even if the TTL has not yet expired; as such, a publish-
subscribe variant of DNS can considerably reduce the time it
takes for a resolver to receive the latest version of a record.

3 Media-over-QUIC
Media-over-QUIC is a framework to enable scalable media
delivery which is currently being developed by the IETF.
The core of the framework is the publish-subscribe protocol
Media over QUIC Transport (MoQT) [16], an application
layer protocol responsible for delivering media.
Although MoQT is developed with media use cases in

mind, it is intentionally kept generic to enable non-media use
cases and thus a suitable candidate for a publish-subscribe
implementation of DNS that also provides a reliable and
encrypted transport protocol by default. Other publish-
subscribe protocols might be suitable as well and could be
evaluated as alternatives to MoQT in the future.
Other components of the MoQ framework include con-

tainer formats for encapsulating media segments for trans-
mission over MoQT, catalogs for signaling availability of
collections of media tracks and their parameters, and stream-
ing formats describing how to combine the individual MoQT
components to build applications. To define a DNS over
MoQT protocol, one needs to define a container format to
encapsulate DNS messages in MoQT and define a streaming
format describing how applications such as nameservers and
resolvers can use DNS over MoQT.
The MoQT protocol defines several control messages for

signaling and multiple messages for data delivery over QUIC.
All control messages in MoQT are exchanged using a sin-
gle bidirectional QUIC stream, while all object messages
are sent over either unidirectional QUIC streams or unre-
liable datagrams [17]. The control messages can be used
to encode DNS requests, while DNS responses can be car-
ried in MoQT’s data messages. MoQT uses a combination
of namespaces and track names to uniquely identify tracks.
Namespaces are defined as a tuple of sequences of bytes, and
a track name is a single sequence of bytes. The maximum
total length of the combination of namespace and trackname
is allowed to be 4096 bytes, which gives enough space to
encode DNS requests. The MoQT control messages include
messages for session establishment and setup of publications
and subscriptions of tracks. In addition to live subscriptions,
MoQT also supports fetching already existing objects, e.g.,
objects from past live streams. Data in MoQT is grouped into
tracks, and tracks are further divided into groups of objects.
This model fits the media use cases well, e.g., video streams
can be split into groups of pictures, each containing multiple
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frames (objects), but since the objects are agnostic of the data
they contain, they can also carry DNS response messages.

A goal of theMoQ framework is high scalability, supported
by third-party relay providers. Relays are MoQT endpoints
that do not publish or consume media but forward and route
objects from publishers to subscribers. Relays can aggregate
subscriptions of multiple subscribers to a single upstream
subscription and cache objects without accessing the object
payload. Since relays work on objects irrespective of the con-
tent, they can also forward objects carrying DNS messages,
which supports distributing the load of DNSmessage updates
from authoritative servers to stub and recursive resolvers.

4 Design
We will now detail our proposal for a mapping of DNS to
MoQT, introducing MoQT as a protocol for communication
between stub resolvers, recursive resolvers, and authorita-
tive nameservers. DNS clients using MoQT connect to the
resolver or nameserver using QUIC and subscribe to updates
for the record using the process detailed in §4.1. Authorita-
tive nameservers supporting MoQT need to publish updates
to subscribers using the update operation which is described
in §4.2. §4.3 details how we mapped DNS messages to MoQT.
§4.4 describes considerations for cleaning up subscriptions
when they are no longer needed and §4.5 explains a fallback
mechanism for compatibility with the traditional DNS.

4.1 Lookup Operation
The task of a recursive resolver is to recursively look up
DNS records, starting with requesting the TLD server for
the requested domain from one of the root servers, then
requesting the authoritative nameserver for the record, and
finally requesting the record from the identified authoritative
nameserver. DNS over MoQT does not change the recursive
nature of the process. Instead of using requests and responses,
the lookup over MoQT uses the MoQT procedures to fetch
and subscribe to data as detailed in Fig. 2.
To look up the latest version of a DNS record and sub-

scribe to updates for the record from an upstream server, a
resolver opens a QUIC connection to the server, indicating
MoQT as the application layer protocol. After the connec-
tion is established, a MoQT handshake establishes the MoQT
session. The resolver can now use the MoQT primitives to
fetch the latest version of the requested record and subscribe
to further updates of the record.
MoQT uses the control messages FETCH to fetch existing

objects and SUBSCRIBE to subscribe to objects generated in
the future. Combining both messages is called joining fetch
and works by first initiating a subscription, and then issuing
a fetch-operation starting at a relative offset before the start
of the subscription. To request a record and subscribe to

Stub
Resolver

Recursive
Resolver

example.com.
Auth

Subscribe + Fetch
[A:example.com]

Subscribe + Fetch
[com.]

com. Auth

Subscribe + Fetch
[A:example.com.]

cache
lookup

RR [A:example.com]

RR [A:example.com]

cache
lookup

Subscribe + Fetch
[example.com.]

RR [A:example.com] update
record

RR [A:example.com]

cache
lookupexample.com. Auth

com.
Auth

Root
Auth

cache
lookup

Figure 2: Recursive DNS over MoQT Lookup Sequence

updates for the record, resolvers start the subscription for the
requested record type and then fetch the version immediately
before the start of the subscription by using an offset of one.
The endpoint receiving the SUBSCRIBE and FETCH mes-

sages must respond to each individually. To acknowl-
edge and confirm subscriptions and fetches, they use the
SUBSCRIBE_OK and FETCH_OK control message respectively.
To signal an error in either of the operation, they use the
SUBSCRIBE_ERROR and FETCH_ERROR messages.
If the response is successful, the publisher opens a new

QUIC stream and starts sending DNS responses encapsulated
in MoQT objects. Our DNS over MoQT prototype uses QUIC
streams and no datagrams to avoid losing messages due to
the unreliability of datagrams.

4.2 Update Operation
Whenever a record is updated on an authoritative name-
server, it pushes the updates to all clients that are connected
via MoQT and have subscribed to updates for the record. The
update is pushed as a new MoQT object containing the up-
dated response for the request that opened the subscription.
In MoQT, objects are identified within a track by their

group and object IDs. If two objects within the same track
have the same group and object IDs, their content must be
exactly the same. Thus, if two subscribers subscribe to the
same namespace and track name, they both should receive
the same objects. If one of them starts the subscription at a
later time, it may miss some of the earlier versions, but every
object with the same group and object ID should look the
same for both subscribers.



From req/res to pub/sub: Exploring Media over QUIC Transport for DNS HotNets ’25, November 17–18, 2025, College Park, MD, USA

QNAME

Trackname

OPCODE|RD|CD QTYPE QCLASS

1 Byte 2 Byte 2 Byte

Namespace

Figure 3: DNS Query to MoQT namespace and track-
name mapping

To generate object IDs, authoritative servers in DNS over
MoQT keep a version number of the managed zone. The
version number is a strictly monotonically increasing se-
quence of integers. When a record in the zone changes, the
version number is increased, and an update is sent to all
subscribers who are subscribed to a track that includes the
updated record in its answer message. The server then gener-
ates a new answer message for each of the tracks and sends it
in an object with the group ID set to the new version number
and the object ID set to zero.

4.3 Message Formats
As detailed in §3, MoQT uses namespaces and track names
to identify tracks. MoQT publishers can fan-out messages to
multiple subscribers, if all the subscribers are subscribed to
the same track. To ensure that different subscribers use the
same combination of namespace and track name, we map
only the relevant fields of the DNS request message to the
MoQT namespace and track name as shown in Fig. 3.

Specifically, we map five fields of the DNS request message
to the first three elements of the namespace tuple. The first
tuple element is a single byte including the four OPCODE bits,
and one bit for the RD (Recursion Desired), and CD (Checking
Disabled) fields each. The second tuple element is a two-
byte field carrying the QTYPE field, and the third element is
another two-byte field for the QCLASS field. Additionally, we
map the QNAME field of the DNS question section to theMoQT
track name field. Considering the limit of 4096 bytes for the
combination of namespace and track name, this mapping
leaves 4091 bytes for the size of the QNAME field.

Payload data in MoQT is sent in objects. Next to the pay-
load, objects contain a set of metadata fields including a
group ID and an object ID. We map response messages to
MoQT by mapping the full DNS response message to the
payload field of the object, as shown in Fig. 4. Since there
is no concept of grouped objects in DNS over MoQT, the
object ID is always set to zero, and the group ID is set to

MoQT Object Header

Group ID

Object ID = 0

Subgroup ID = 0

...

MoQT Object Payload

Header

Answer

(Authority)

(Additional)

Figure 4: DNS response encapsulation in MoQT objects

the version number introduced in §4.2. Groups in DNS over
MoQT always contain only one object.

4.4 Subscription Teardown
Resolvers need to implement additional state management
for MoQT subscriptions. A clean-up routine for subscrip-
tions that are no longer useful is required to avoid wasting
resources on unused subscriptions. Keeping subscriptions
open for a long time also has privacy implications since it
leaves a trail of the domain names that a client was pre-
viously interested in. Stub resolvers running on end-user
devices also need to clean up subscriptions after suspension
or shutdowns. Subscriptions can be re-established after the
client device reconnects using the fetchmechanism described
above. Stub resolvers can store the last known group ID of
the corresponding subscriptions, and on reconnection, they
can fetch any updates starting from the last known group
ID by fetching and subscribing to objects following that ID.
The timescale at which resolvers can drop unused sub-

scriptions depends on a trade-off between the acceptable
overhead of managing the MoQT session and subscription
state, and the risk of having to re-establish a new session and
subscription if the record is requested again in the future. It
is up to the resolver implementation to define the dynamics
of the clean-up procedure, which could also be dynamically
adapted based on the history of how frequently a domain had
to be resolved in the past and how likely it is to be requested
again in the future.

4.5 Compatibility
To allow incremental deployments of DNS over MoQT, re-
cursive resolvers need to provide their service via MoQT
and any of the traditional DNS protocols. Stub resolvers can
then choose to keep using traditional DNS, or migrate to
MoQT [18]. Compatibility also needs to be ensured when a
stub resolver tries to open a subscription with a recursive
resolver for a domain that is managed by an authoritative
server that does not support MoQT.
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If the recursive resolver has not yet established a MoQT
session to the authoritative server, and unless it has out-
of-band information about the supported protocols of the
authoritative server, the resolver does not know if the server
supports MoQT. In that case, the resolver can use a happy
eyeballs-like approach by trying to establish a MoQT con-
nection while simultaneously sending a request over UDP.
If the authoritative server does not support MoQT, the

recursive resolver forwards the response to the traditional
DNS to the stub resolver. Since the recursive resolver does
not receive any updates, it can only respond to the FETCH re-
quest with the record received from the authoritative server.
To decline the subscription, the recursive resolver uses
the SUBSCRIBE_ERROR message to decline the SUBSCRIBE
request.
Alternatively, the recursive resolver can provide updates

to the subscription by periodically re-requesting the record
from the authoritative server. Periodically fetching new
records puts more overhead on the recursive resolver, but
the interval can be reduced to the duration of the TTL, as
that is also the interval at which updates would at most be
requested from the authoritative server using traditional
DNS over UDP.

5 Discussion
To facilitate a substantiated discussion of DNS over MoQT,
we built a prototype implementation of the design de-
scribed in §4. The implementation is built on top of the
mengelbart/moqtransport [8], quic-go/quic-go [19],
and miekg/dns [9] libraries. It includes an authoritative
nameserver, a recursive resolver, and a forwarder. The for-
warder only forwards DNS requests to recursive resolvers
usingMoQT. The recursive resolver uses the process outlined
in §4.1 to resolve DNS records and subscribes to updates from
authoritative servers. The recursive resolver can respond
to stub resolver requests using traditional DNS protocols
or MoQT. While we have not implemented a standalone
MoQT stub resolver yet, the forwarder can provide DNS over
MoQT functionality directly at the client when being oper-
ated on the same device, thereby also enabling backwards
compatibility with traditional DNS stub resolvers.
Our prototype implementation shows the inherent ben-

efits of a publish-subscribe model for the DNS in terms of
update time where we find that the time it takes for a resolver
to receive the latest version of a record can be considerably
reduced depending on the actual TTL. Moreover, the number
of RR requests is reduced since updates are pushed to the
subscribed resolvers, thereby effectively limiting update traf-
fic. The following sections will now detail our learnings thus
far, highlighting open challenges and possible optimizations
of the design choices.

5.1 State Management Overhead
DNS over UDP is stateless in the sense that it does not re-
quire endpoints to keep connection state. In contrast, MoQT
requires endpoints to permanently manage connection state.
While DNS over TLS, HTTPS, or QUIC also need to manage
connection state, DNS over MoQT adds the MoQT session
and state for every open subscription.
Keeping long-running QUIC connections also requires

endpoints to regularly test the liveness of the connection.
While connections can in theory be kept open in idle state
for long times (governed by the QUIC max_idle_timeout
transport parameter), endpoints should regularly test the
liveness of the connection. If a connection is silently closed,
a subscriber risks missing updates for a track and having to
restart the QUIC connection, MoQT session, and subscription
when the next lookup is initiated.

5.2 Query Latency
The query latency of DNS mostly depends on the protocols
used to transmit requests and responses, and the state of
the caches of intermediary resolvers. Absent of any packet
loss or timeouts, a recursive resolver can resolve a name
from an authoritative server in a single round-tip. If it uses
DNS over MoQT, and there is no connection to the server,
it takes at least three round-trips: one round-trip for the
QUIC connection, one for the MoQT session establishment,
and one for the MoQT subscription. If the recursive resolver
needs to set up connections to multiple authoritative servers,
possibly including root and TLD servers, this process adds
a considerable overhead to the query latency observed by a
stub resolver.
The overhead can be reduced with three optimizations.

First, the recursive resolver can reuse QUIC connections and
the associated MoQT sessions for multiple subscriptions. For
some servers, such as root servers, the recursive resolver can
likely keep the session open permanently, which reduces the
number of round-trips to look up a record to a single round-
trip, which is thereby on par with DNS over UDP. Second,
if the resolver had opened a connection to an authoritative
nameserver in the past, it can use QUIC’s 0-RTT feature.
0-RTT allows sending application data in the first round-
trip, which reduces the number of round-trips necessary to
establish a MoQT session down to a single round-trip. The
third optimization is not possible with the version of the
MoQT protocol as of the time of writing, but will likely be
possible in the future. The current version of MoQT requires
a handshake to establish the session before any furtherMoQT
messages can be processed. The handshake includes a version
negotiation that needs to be finished before the session can
be used. Future versions will most likely move the version
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negotiation to the transport protocol handshake, e.g., using
Application Layer Protocol Negotiation (ALPN)2.

For stub resolvers, similar considerations apply. If the stub
resolver has to establish a QUIC connection, a MoQT session,
and a subscription to resolve a name, the latencywill bemuch
higher than using traditional DNS over UDP. However, if it
can reuse existing connections, the latency can be reduced
to a single round-trip to the recursive resolver. A bigger
advantage can be achieved if the stub resolver automatically
receives updates for frequently used domains via MoQT. In
this case, the application does not have to make any lookup
via the network at all. Browsers, for example, could start
loading a requested page immediately without looking up a
domain name first, which otherwise increases the page load
time by a few milliseconds.

5.3 Use Case Discussion
We now come back to our three sample uses from §1. Dy-
namic DNS (DDNS) users, or their ISPs on their behalf, could
directly publish RR updates to their associated authorita-
tive name server; the MoQT infrastructure would then take
care of update distribution. Since the propagation is limited
to those subscribed to the respective domain name – and
servers hosted in home networks usually see limited interest
– we expect the update traffic to be rather low. Since the
number of DDNS users is hard to estimate, let’s do this by
example: Let us assume 100M users worldwide with 1,000
other users each interested in their hosted services and in-
volving 5 MoQ relays on average. At two IP address updates
per day and 300 B update size, this would yield a globally
distributed application layer update traffic of some 5.5 Gbps,
which is negligible at global scale.

CDN providers can also simply push their updates to their
downstream users, i.e., recursive and stub revolvers. Due
to the typical popularity of CDN-hosted sites, one may ex-
pect that no excess traffic is generated towards the recursive
resolvers (at least not during busy hours); rather to the con-
trary, the DNS requests flowing in the opposite direction are
avoided. Only stub resolvers may see extra traffic as users
usually won’t continuously request all the sites they are nor-
mally interested in: the average user may visit 100+ web
sites per day (not necessarily all different ones) and close
to 1,000 per week.3 Conservatively assuming that a stub re-
solver subscribes to 1,000 different domains and all domains
are updated at the lowest observed clustered TTL of 10 s with
300 B per update, we obtain a downstream update traffic of
240 kbps. As discussed above, stub resolvers may tune their
retention period for subscriptions according to the needs
and limitations of access networks and/or user devices.

2https://github.com/moq-wg/moq-transport/pull/499
3https://www.digitalsilk.com/digital-trends/top-website-statistics/

Finally, a deep space network could benefit from the same
push mechanisms to update domain information on other
planets, especially if the domains primarily used are well-
managed to not provide excess update traffic. Forwarding of
records for domains observed to provide high update rates
could be throttled since, e.g., load balancing for the closest
and fastest responding CDN node won’t make much of a
difference for deep space access. MoQT connections could
supposedly be established to deep space nodes by deploy-
ing dedicated routers and applying suitable transport layer
adaptations that can cope with long communication delays
and disruptions as discussed for QUIC in [2].

6 Conclusion
Our work shows that the DNS can benefit from a publish-
subscribe variant. As such, DNS over MoQT ensures that
resource records are always up to date on subscribed re-
solvers, countering the TTL-based request-response style
lookups in the traditional DNS. On the other hand, the new
architecture also introduces new challenges, such as higher
state management overhead on resolvers and nameservers,
and increased query latencies for the first lookup of a record
caused by higher connection and session establishment la-
tencies. Future work is required to provide a more extensive
analysis of a deployment of the new architecture.
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