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Abstract

In recent years, networking hardware development has pri-
marily focused on speed rather than power efficiency. By
contrast, computing hardware has received a lot more at-
tention given its dominant power footprint, especially in
machine-learning (ML) data centers. With faster networks,
we spend less time communicating and get more useful work
out of the (increasingly expensive) computing hardware. But,
the faster the network, the more time it idles and the worse
its energy efficiency, which is magnified by the notorious
lack of power proportionality of networking equipment.

In this paper, we analyze the network power footprint in
a production ML cluster and find that it accounts for a still
sizeable fraction of the total (12%) and that, by improving
network power proportionality to match that of the com-
pute, one could save close to 9% of the overall cluster energy
demand. We argue that this potential is worth investigating
and discuss opportunities and challenges to address power
proportionality in networking hardware, which we invite
the networking research community to tackle.
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1 Introduction

Nowadays, the demand for faster network bandwidth is
largely driven by data center applications and machine learn-
ing (ML) clusters in particular. To scale distributed ML train-
ing workloads, hyperscalers are arguing for “an increase in
network bandwidth towards 400Gbps and higher” [14]. The
idea is to complete communication faster, such that GPUs
can spend more time computing and less idling.

The flipside of a faster network is that the network is then
mostly idling, which leads to low energy efficiency, especially
since networking hardware has notoriously poor power pro-
portionality; i.e., the power draw remains roughly constant
when the network is idle [9, 15, 23, 33]. This is usually seen
as acceptable since the power demand of the compute infras-
tructure largely dominates the network demand. However,
as energy is becoming an increasingly critical resource, it is
worth revisiting that assumption.

Thus, in this paper, we study the impact of power pro-
portionality on a cluster’s performance in terms of iteration
time, power, and energy efficiency. The analysis of a produc-
tion cluster and workload reveals that the network accounts
for a not-so-small 12% of the cluster’s energy demand, con-
sumed with an appallingly low efficiency of 11%. Improving
network power proportionality to 50%—still far worse than
the proportionality of compute [3]—could save around 5%
of the total cluster power. Increasing the proportionality to
the same level as compute brings the savings to almost 9%.
Note that, as computing is particularly power-intensive, ML
clusters represent a sort of worst-case application to argue
for network power proportionality. But even then, given the
scale of power demand in ML clusters, 5-10% represents
sizable energy and cost savings that, alone, arguably justify
giving network power proportionality some consideration.

The historical approach for this is “link sleeping,” which
was studied [19] then implemented in the Energy Efficient
Ethernet (EEE) standard (802.3az [8]) in the 2010’s. But with
the increase in network bandwidths and the adoption of opti-
cal technology, those techniques became effectively obsolete.
In this paper, we revisit network power proportionality by
reviewing the approaches used to make computing hardware
power proportional today and discussing the opportunities
and challenges to transpose them to networking hardware.
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§ 4.1 Expose more power knobs in network operating sys-
tems and fix power gating;

§ 4.2 Extend datacenter network topology with optical cir-
cuit switches to tailor the topology to the workload;

§ 4.3 Clock ASIC pipelines independently to enable effi-
cient rate adaptation;

§ 4.4 Extend the router design with a circuit switch to en-
able aggregation of traffic in some pipelines and turn
others off in low-load conditions.

Finally, in § 4.5, we reflect on the potential opportunities
offered by a complete ASIC redesign with power proportion-
ality as the primary objective, which could include much
smaller pipelines or co-packaged optics.

2 Modeling Approach

We discuss how the network bandwidth and power propor-
tionality affect the total cluster power draw and workload
completion time, which requires models of the workload,
power, and network topology. We present those models be-
low (§ 2.2 to 2.4) after introducing the production cluster we
consider as a baseline (§ 2.1).

2.1 Baseline Cluster and Workload

As a baseline, we use one pod of the production cluster and
workload described in a paper from Alibaba [27], featuring:

o 15k hosts, running on Nvidia H100 GPUs, 8 per server,
e a 400 G interface per GPU,

o a fat tree topology using 51.2 Tbps switches,

e a workload with a 10% communication ratio (§ 2.2).

2.2 Workload Model

We assume that a training workload is executed as a sequence
of computation and communication phases. One computa-
tion and one communication phase make up one iteration.
We assume no overlap between the phases; i.e., during com-
putation, GPUs are working at full speed while the network
is idle, and vice versa.! The communication ratio is the time
of the communication phase divided by the iteration time.
In addition, we assume that the total workload is constant
as we scale the cluster; i.e., we neglect the overhead from
compute distribution or communication latency. Finally, we
assume the workload execution time to scale linearly with
the hardware resources; i.e., a cluster with 2x GPUs com-
pletes a computation phase twice as fast.

Figure 1 summarizes our model for how the workload
execution time scales with available hardware resources.

'While some training methods violate that assumption [10], it is compatible
with recent papers describing large-scale ML training clusters [27] and in
line with the traffic patterns reported in the CASSINI paper [28].
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Figure 1: Our model linearly scales the workload exe-
cution time with the amount of resources available.

Table 1: Power values for GPUs and switches.

Device Power (W)
Nvidia H100 NVL 400 [21]
51.2 Tbps Switch 750 [27]

Table 2: Power values for the network components.
Bandwidth (Gbps) 100 200 400 800 1600
NIC Power (W) 8.6
Transceiver Power (W) 4 65 10 165 27.27

16.7 254 38.6* 58.8"

* extrapolated values

2.3 Power Model

Our model assumes that the hardware resources are either
idle or operating at full speed (§ 2.2), mapping to two power
states: idle and max. Power proportionality is defined as

max power - idle power

(1)

power proportionality = max power
2.3.1 Compute power model. The Nvidia H100 GPU is rated
at a max power of 400 W (Table 1). Each server hosts 8 GPUs
and we assume it draws approximately 800 W for its other
components (CPUs, RAM, storage, and fans), leading to a
max power of 500 W per GPU. Modern servers have power
proportionality reported at around 85% [4], which we use in
our power model. This results in a GPU idle power of 75 W.

2.3.2 Network Power Model. For the network, we consider
switches, network interface cards (NICs), and transceivers.
We use the number reported by Alibaba [27] as max power
for switches (Table 1). We use datasheet power numbers
for the NICs (NVIDIA’s ConnectX-7 cards [20]) and the
transceivers [13]. For the interface speeds where there are
no NICs available, we linearly extrapolated from the closest
available one (Table 2). We consider electrical transceivers
between the GPUs and the top-of-rack switch (= 0 W) and
short-range (< 2km) optical ones between switches.
Networking hardware has notoriously low power propor-
tionality, estimated between 5 and 20% [9, 15, 23, 33]. We
model the network with a baseline proportionality of 10%.
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(b) While the compute hardware is able to reduce its power
draw when idle, the network’s is almost constant.

Figure 2: Power footprint of the baseline cluster (§ 2.1)

2.4 Network Model

Increasing the number of GPUs or changing the bandwidth
per GPU influences the size of the network. To perform our
analysis, we need the number of switches required to connect
all the GPUs. To calculate this, we use the formula from [26]
for fat-tree topologies and interpolate if the number of hosts
is between what a certain number of stages could support.

3 Impact of Power Proportionality

In this section, we quantify the power draw that is attributed
to the compute infrastructure and the network within the
baseline ML cluster, to show the ratio of the overall power
that is used by the network. We evaluate the impact that
more power-proportional network devices would have on
the cluster’s power draw. Since power has become a major
factor for new ML training clusters [5], we also evaluate how
much performance is left on the table due to network devices
taking away power that could be allocated to compute.?

2The evaluation code is available here:
https://github.com/nsg-ethz/network_powerprop_hotnets25
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Table 3: Power savings of the total ML cluster compared
to today’s network with 10% power proportionality.

Bandwidth

Power Proportionality

(per GPU) 10% 20% 50%  85%  100%
100G 00% 03% 12% 23% 27%
200G 00% 0.6% 25% 48% 57%
400G 00% 12% 4.7% 8.8% 10.6%
800G 00% 22% 87% 164% 19.7%

1600G 00% 39% 156% 293% 35.1%

3.1 Compute vs Network Efficiency

First, we quantify the power footprint of the compute vs the
network hardware for our baseline cluster (§ 2.1). Unsurpris-
ingly, compute dominates (Fig. 2). However, it is interesting
to observe how the power evolves during the computation
and communication phases, both in relative (Fig. 2a) and
absolute (Fig. 2b) terms.

During the computation phase, compute represents 88% of
the total. The split with network power is more even during
the communication phase, close to 50/50. This is because
the computing hardware is able to reduce its power when
idle, down to 15% of its maximum power (§ 2.3). Conversely,
the network power, though smaller in magnitude than the
compute power (12% of the total on average), remains al-
most constant when the network is idle. As the network is
idling 90% of the time, the energy efficiency of the network
infrastructure reaches an appallingly low value of 11%.

The rest of this section first considers the power savings
that would result from better network power proportionality
(§ 3.2) and then quantifies the performance speedup that
those savings could enable by freeing power budget to add
more GPUs to the cluster (§ 3.3).

3.2 Network Power Proportionality

As discussed in § 3.1, the network power footprint is rela-
tively small compared to the compute’s, so one may dismiss
the lack of network power proportionality or energy effi-
ciency as negligible.

In this section, we investigate that assumption by quanti-

fying the potential gains from improving the network power
proportionality for our baseline cluster and assuming dif-
ferent network bandwidth. Table 3 shows the relative gains
compared to a 10% network power proportionality.
Result: We find that, on the baseline cluster, we would save
around 5% of the overall power with a network that is 50%
power proportional. As expected, the savings increase by
going to higher power proportionalities. If the network pro-
portionality were 85%, i.e., on par with the compute’s, the
savings would reach 9%.


https://github.com/nsg-ethz/network_powerprop_hotnets25
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Figure 3: The most efficient network bandwidth de-
pends on the network’s power proportionality.

While one may dismiss a few percentage points, at this
scale, those translate to significant savings both in power and
operating costs. For the 400 G case, 5% power savings convert
to an average power draw reduction of 365 kW. Taking the
average electricity price for the commercial sector in the
US (13 cents per kWh, [11]) results in $416k/year saved on
the electricity bill. In addition, the power consumption of the
cooling infrastructure is estimated in [35] to be around 30%
of the cluster power, adding another $125k/year in savings.

There would be other benefits, such as the flattening of
the peak power demand, which reduces the strain on the
power delivery system, though those are harder to quantify.

3.3 Performance Speedup

Nowadays, data centers are starting to become limited by the
amount of power that is available [5]. Thus, every Watt that
would be saved on the network side via better proportionality
could potentially be used to put more GPUs in the same
cluster. In this section, we aim to quantify the corresponding
performance speedup that could be obtained while keeping
a fixed power budget.

We consider two different scenarios. First, we consider a

fixed workload, which implies that the length of the commu-
nication phase (and thus, the iteration time) changes with
the network bandwidth. Second, we consider a fixed commu-
nication ratio, which implies that the workload scales with
the network speed.
Fixed Workload: For a fixed workload, larger bandwidth
implies decreased communication time, which influences the
iteration time as well as the average power, since we now
spend even more time in the computation phase. However,
we also have to reduce the number of GPUs since the network
devices consume more of the power budget, which in turn
results in a longer computation phase. The best iteration
time is obtained by balancing the power budget between the
network and compute.

Figure 3 shows the iteration time for different network
power proportionalities and network bandwidths. All of the
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Figure 4: The increased power draw of higher network
bandwidth makes proportionality more important.

speed-up numbers are in reference to the baseline scenario.
We find that, in this scenario, lower network bandwidth is
faster overall if the network power proportionality is poor.
It is somewhat counterintuitive that a lower network band-
width leads to faster iteration times: reducing the network
bandwidth makes the GPUs idle for longer while the compute
power dominates. The reason is twofold:

(1) Due to its low proportionality, the network power
draw remains approximately the same when idling.
Increasing the network bandwidth means increasing
the network idle power, thus wasting even more power
on the network side.

(2) At the same time, by increasing the network band-
width, we reduce the time spent on communication,
which means the network idles for a larger part of the
iteration, making the network even less efficient.

Better power proportionality improves the iteration time

for all bandwidth speeds as it frees some power budget
for more GPUs. However, even at 50% proportionality, a
200 Gbps network is still faster than a 400 Gbps one. 800 and
1600 Gbps speeds become the best alternatives only at very
high proportionality values (> 90%). However, this is assum-
ing a communication ratio that shrinks to 5% or 2.5%, which
feels far from realistic training workloads. This leads us to
our second evaluation scenario.
Fixed Communication Ratio: In this scenario, we look
at a fixed communication ratio of 10%, or in other words,
the communication workload increases with the network
bandwidth. Figure 4 shows the iteration time speedup com-
pared to a network with zero power proportionality. Looking
at this scenario, we see that the higher the bandwidth, the
bigger the performance gain. This is intuitive as the network
takes up a bigger portion of the overall power and, therefore,
benefits more from higher power proportionality. The mag-
nitude of the speedup is worth noting: e.g., a network power
proportionality of 50% on a 800 Gbps network would enable
a 10% speedup.
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3.4 Discussion

Whether we look at it from the perspective of power savings
(§ 3.2) or performance speedups (§ 3.3), we established that
better power proportionality could deliver sizable benefits
in ML training. For power proportionality improvements to
yield sizeable benefits, there must be underutilization in the
network. In § 3, we assumed the network is idle while the
computation happens, but other forms of underutilization
can be exploited. If we relax our assumption and allow com-
putation and communication to overlap during training, as
is done in other training schemes, there is still underutiliza-
tion, as not all paths in the network are used all the time,
especially in full bisection bandwidth networks. There is
potential in other network contexts too; e.g., in ISP networks,
the benefits from power proportionality are even more direct
since it is all network and no compute. In ISPs, underutiliza-
tion is unavoidable since customers expect capacity to be
there, but will not be using it 24/7. Unlike for ML training,
traffic is less predictable, and links are more likely to be un-
derutilized rather than completely unused; this is a different
kind of underutilization that offers distinctive challenges and
opportunities for power savings with better proportionality.

In the next section, we discuss several approaches for pro-
portionality improvements, which may benefit underutilized
networks in general—not solely focused on Machine Learn-
ing training clusters.

4 Achieving Power Proportionality

Networks are expected to provide any-to-any connectivity
at increasingly higher speeds and lower delays. Those ob-
jectives conflict with the implementation of power-saving
features, such as opportunistically turning components off.
By contrast with computing chips or embedded systems,
those features have been generally deprioritized in wired
networking hardware, leading to poor power proportionality.

In 2008, academics theorized how to implement power
savings at the link level [19]. These promising principles
were then implemented into the Energy Efficient Ethernet
(EEE) standard (802.3az [8]). However, as speeds increased
and optical links became common, EEE lost its appeal.

In § 3, we showed how beneficial better network power
proportionality could be, even in compute-dominated appli-
cations such as ML clusters. Thus, we argue that it is time
to revisit this line of research and address network power
proportionality. We take inspiration from the methods used
to optimize the power of computing hardware. Those can
be categorized into static optimization, ie., adjusting the
hardware state to reduce its power draw at zero load, and dy-
namic optimization, i.e., better scaling of the power demand
with the load. We highlight two principles for each category
and discuss how they could be transposed to networking.
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4.1 Static Opt. #1: Exposing Power Knobs

Inspiration from Compute: Often enough, the hardware
provides more features than needed for a given application.
The simplest way to reduce static power is to include power
gating mechanisms that enable turning off unused compo-
nents, such as PCle slots or memory banks. The same princi-
ple can be applied to OS features or background tasks.
Network: Hardware “bloat” exists in networking hardware
as well, and, in many cases, components remain on and draw
power. E.g., a router may contain enough memory to store
all the BGP routing information, but only needs to store a
small part if deployed in a network with route reflectors.
On the routers from major manufacturers we could study,
we found no direct way to power off unused components.
The user is blind and bound to the power knobs exposed
by the closed-source OS, which are few. Blog posts from
Juniper [34] show that some power gating in the pipelines
is possible (and highly efficient). But even if the hardware
supports power gating, the knobs must be exposed to users.

Some knobs are already in the user’s control: e.g., turning
ports on and off. However, recent works highlighted that
even though the ports are off in software, they may still be
powered on in hardware [15, 24]. Similar power issues have
been reported by hardware vendors, too [12]. At present,
there is no evidence suggesting that those power inefficien-
cies are inherent hardware limitations; those seem to be
software bugs, which can (and should) be fixed.
Challenges: Power gating requires hardware support and
comes with some overhead. What components should be
power-gated? Which knobs should be exposed to the user,
and which should be dialed automatically? For example, if
the switch is only configured for L2 forwarding, it could auto-
matically turn off all L3 functionality. Assuming more knobs
get exposed, the users would need a good understanding of
the inner workings of the device to know which components
can be turned off for their application; this conflicts with
the current practice of hardware vendors disclosing little
about how the hardware is built. This could be addressed
with the networking equivalent of C-states for CPUs, i.e, a
list of pre-defined low-power modes that the switch supports
without exposing the underlying hardware details.

4.2 Static Opt. #2: Scheduling Network Jobs

Inspiration from Compute: In compute clusters, a job
scheduler is used to assign workloads to specific servers
and can be used to concentrate the workload on as few
servers as possible. This frees up the other servers to be
run in low-power modes or, ideally, be turned off. There
are many examples of using job schedulers to concentrate
workloads [6, 17, 30, 31].
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Network: Applied to networking, this approach would con-
centrate the network traffic on as few devices as possible.
ML training is an ideal application for this since traffic pat-
terns are very predictable and stable over time. We argue
that, in such cases, a network topology that can handle any
traffic pattern, e.g., a fat tree, is not always needed. Tech-
niques such as oversubscription help, but do not provide
workload-specific flexibility.

Instead of keeping the complete topology active at all
times, one could integrate optical circuit switches (OCS) to
match the topology to the traffic pattern while minimizing
the network switches that must remain on. The idea of optical
network reconfiguration is not new, but previous works,
such as Rotornet [18] or Sirius [1], are practically limited by
their need for reconfiguration time within a few ns. But if
we consider ML training jobs, which may last for days and
would require only one reconfiguration when the job starts,
off-the-shelf OCSs that feature reconfiguration times of a
few tens of ms would be sufficient.

Challenges: Where should OCSs be added? It is trivial to
optimize the network topology by placing an OCS in front
of every switch, but this is a large overhead. There are inter-
esting questions in optimizing the number and placement of
OCS elements in the cluster topology. This may also leverage
the known traffic patterns in ML workloads. The reconfigura-
tion should ideally only happen when a new job arrives, but
it is also necessary if the jobs change their network pattern.
Turning on network devices takes a while, so it makes sense
to keep some devices in standby. This provides an interesting
trade-off question between energy savings and reaction time.

4.3 Dynamic Opt. #1: Rate Adaptation

Inspiration from Compute: For a given static hardware
configuration, one may optimize the dynamic power, i.e., how
the power scales with the workload. The classic approach
in CPUs is dynamic voltage and frequency scaling (DVES),
which would, e.g., reduce the clock speed of some cores to
match the current load [2, 16, 22].

Network: DVES can be applied to the routers’ control plane,
but as it represents a small part of the total footprint, the
benefits would be limited. The principle may also be applied
to the data plane, though, and is then usually called rate adap-
tation [19]. The idea is to save energy by reducing the speed
of the packet pipelines to match the current load. This can
already be done on some routers today, but only globally: All
pipelines will be controlled jointly by the ASIC’s frequency.
Another possibility is to configure an interface to a lower
speed, e.g., set a 100G-capable interface at 10G, which may
save power by enabling turning off some of the interface’s
SerDes lines. This has been observed [15], but down-rating
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Figure 5: Adding a circuit switch allows for flexible
assignment of ports to pipelines on the network ASIC.

is not widely supported, and savings are limited—supposedly
because few components are powered off.

On the plus side, rate adaptation techniques would also ap-
ply to transceivers and network interface cards (NICs), which
make up a large part of the overall network power (Fig. 2).
Challenges: To make rate adaptation efficient, each pipeline
should run at its own frequency and dynamically adapt it to
the load. However, that suggests a more complex clock tree
in the ASIC design, which is a substantial change.

Moreover, to make rate adaptation really efficient, the
ASIC frequency scaling should operate in conjunction with
the power-gating of other elements in the pipeline, such
as memory blocks or SerDes lines. To realize the vision of
dynamically scaling to the traffic load, those adaptations
should be handled automatically by the operating system.

4.4 Dynamic Opt. #2: Turning off Pipelines

Rate adaptation keeps most components powered on. To get
larger savings, we must turn entire pipelines off.
Inspiration from Compute: For CPUs, the OS has the
flexibility to assign processes to specific cores. If the load is
low, the OS can assign all the processes to a few CPU cores
and shut off the others to save energy. This is known as “core
parking” and was leveraged e.g., in [22, 25, 29].

Network: While shutting off entire pipelines could save
more power than rate adaptation, it is not trivial to achieve
due to the fixed mapping between input ports and processing
pipelines; i.e., an incoming packet on a given port must be
processed by the pipeline this port is attached to.

Asin § 4.2, one solution is to add a layer of indirection with
circuit switches, but, this time, inside the router: between
the physical ports and the ASIC (Fig. 5). Instead of keeping
all the ASIC pipelines active, one can use a circuit switch to
redirect traffic to only some, enabling turning the others off.
Challenges: While promising power-wise and conceptually
simple, there are several challenges with this approach.

What is the latency cost? Ports taking turns being con-
nected to the pipeline induces some delay during which
incoming packets must be buffered. This could be done inter-
nally by using electrical circuit switches with small buffers,
which would also hide from the application the time required
to reconfigure the circuit switch. Moreover, electrical circuit
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switches feature faster reconfiguration times than optical
ones, which is important here. Another option would be to
use Ethernet pause frames to buffer the traffic at the sender.

Is the addition worth it? While this new layer of indirection
would allow energy savings by turning off ASIC pipelines, it
comes at the cost of additional hardware. We postulate that
the power cost of a pure circuit switch, either electrical or
optical, would be small because a circuit switch does not do
any processing; it just redirects signals from one port to an-
other. For example, a free-space OCS only consumes energy
for controlling the mirrors that redirect the optical signals.
However, if we add buffers to an electrical circuit switch,
as suggested above, the power footprint would increase, as
signals would need to be decoded, written in the buffer, and
re-encoded for processing by the ASIC.

Which pipeline to turn off, and when? Assuming pipelines
are equivalent, one only needs to decide how many should
be active. This can be done in a reactive manner: turn off a
pipeline when the total throughput becomes small enough
to be supported by the remaining ones, and vice versa. The
challenge here is to be able to turn a pipeline on quickly
enough to react to an increase in demand without inducing
packet losses. Conversely, one can leverage the predictability
of ML training workloads to orchestrate when pipelines are
turned on and off based on when traffic is expected.

4.5 Going further: Redesigning the ASIC

The previous proposals aim to fix power proportionality in
existing designs with better software, hardware configura-
tions, or additional components. One could go further and
rethink the entire design from scratch with power optimiza-
tion as a primary objective. How would things change?

Packet processing mainly reads from memory, but writes
little. This provides an interesting potential for distributing
load across multiple processing units with limited overhead.
A design with more but smaller units makes it easier to turn
some of them off to match the current load, thus improving
power proportionality. Fine-grained power gating could be
enabled by more distributed network processing unit designs
based on many small pipelines, chiplets, or similar.

There is another promising trend to consider: the arrival
on the market of co-packaged optics switches [7] and silicon
photonics [32]. These will allow bringing the optical to elec-
trical conversion very close to the ASIC—inside the router—
instead of taking place in the transceivers. For starters, this
would make it trivial to include an OCS component in the
design, as suggested in § 4.4. Moreover, this opens potential
for performing some of the router’s functionality directly
in the optical domain; an idea already prototyped for pro-
cessing inference in SmartNICs [36]. E.g., one could envision
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performing the IP look up in the optical domain, which could
save the optical to electrical to optical conversion altogether!

Designing an ASIC is a major enterprise, but the potential
savings are worth considering for a sustainable digital future.

5 Conclusion

In this paper, we discussed the benefits of better power pro-
portionality in networking hardware, even in the context
of ML training, where compute power dominates (§ 3). We
believe that the potential power savings or performance
speedups should trigger some renewed interest in addressing
networking power proportionality, both from the research
community and hardware vendors. To initiate and foster this
line of work, we took inspiration from methods applied to
computing hardware today to sketch different directions to
explore to improve the power proportionality of networking
hardware (§ 4), from incremental improvements to network
operating systems to entire ASIC redesign.



HotNets "25, November 17-18, 2025, College Park, MD, USA

References
[1] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel Cletheroe, Ist-

(10

—

=

=

—

-

van Haller, Krzysztof Jozwik, Fotini Karinou, Sophie Lange, Kai Shi,
Benn Thomsen, and Hugh Williams. 2020. Sirius: A Flat Datacenter
Network with Nanosecond Optical Switching. In Proceedings of the
Annual Conference of the ACM Special Interest Group on Data Com-
munication on the Applications, Technologies, Architectures, and Proto-
cols for Computer Communication. ACM, Virtual Event USA, 782-797.
doi:10.1145/3387514.3406221

Wenlei Bao, Changwan Hong, Sudheer Chunduri, Sriram Krishnamoor-
thy, Louis-Noél Pouchet, Fabrice Rastello, and P. Sadayappan. 2016.
Static and Dynamic Frequency Scaling on Multicore CPUs. ACM Trans-
actions on Architecture and Code Optimization 13, 4 (Dec. 2016), 1-26.
do0i:10.1145/3011017

Luiz André Barroso, Urs Hélzle, and Parthasarathy Ranganathan. 2019.
Energy and Power Efficiency. In The Datacenter as a Computer: Design-
ing Warehouse-Scale Machines, Luiz André Barroso, Urs Hoélzle, and
Parthasarathy Ranganathan (Eds.). Springer International Publishing,
Cham, 99-127. do0i:10.1007/978-3-031-01761-2_5

Luiz André Barroso, Urs Holzle, and Parthasarathy Ranganathan. 2019.
Energy and Power Efficiency. Springer International Publishing, Cham,
99-127. doi:10.1007/978-3-031-01761-2_5

Ricardo Bianchini, Christian Belady, and Anand Sivasubramaniam.
2024. Data Center Power and Energy Management: Past, Present, and
Future. IEEE Micro 44, 5 (Sept. 2024), 30-36. doi:10.1109/MM.2024.
3426478

Damien Borgetto, Henri Casanova, Georges Da Costa, and Jean-Marc
Pierson. 2012. Energy-Efficient Job Placement on Clusters, Grids, and
Clouds. In Energy-Efficient Distributed Computing Systems. John Wiley
& Sons, Ltd, Chapter 6, 163-187. d0i:10.1002/9781118342015.ch6
Broadcom. 2024. Broadcom Delivers Industry’s First 51.2-Tbps
Co-Packaged Optics Ethernet Switch Platform for Scalable Al Systems
| Broadcom Inc. https://investors.broadcom.com/news-releases/news-
release-details/broadcom-delivers-industrys-first-512-tbps-co-
packaged-optics

Ken Christensen, Pedro Reviriego, Bruce Nordman, Michael Bennett,
Mehrgan Mostowfi, and Juan Antonio Maestro. 2010. IEEE 802.3az:
The Road to Energy Efficient Ethernet. IEEE Communications Magazine
43, 11 (Nov. 2010), 50-56. d0i:10.1109/MCOM.2010.5621967

David de la Osa Mostazo, Pablo Armingol Robles, Oscar Gonzalez
de Dios, and Juan Pedro Fernandez-Palacios Giménez. 2024. Lessons
Learned from IP Routers Power Measurements and Characterization.
In 2024 15th International Conference on Network of the Future (NoF).
245-253. doi:10.1109/NoF62948.2024.10741444

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao
Wu, Chengda Lu, Chenggang Zhao, Chenggi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji,
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang,
Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui
Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiagi Ni, Jiashi Li, Jiawei
Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong
Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin
Huang, Kuai Yu, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang
Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Pan-
pan Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu,
Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruigi Ge, Ruisong Zhang,
Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S.
Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,
Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou,

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Lukas Rollin, Romain Jacob, and Laurent Vanbever

Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao Yun, Tian
Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An,
Wen Liu, Wenfeng Liang, Wenjun Gao, Wengqin Yu, Wentao Zhang,
X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan
Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen,
Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin
Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang,
Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong Xu, Yanping
Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi
Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying
Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu,
Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma,
Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F.
Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang,
Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou,
Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu,
Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. 2025. DeepSeek-V3
Technical Report. arXiv:2412.19437 [cs] doi:10.48550/arXiv.2412.19437
EIA. 2025. Electric Power Monthly - U.S. Energy Information Admin-
istration (EIA). https://www.eia.gov/electricity/monthly/epm_table_
grapher.php?t=epmt_5_6_a

Nicolas Fevrier. 2023. Saving Power on ACX7000 Series. https:
//community.juniper.net/blogs/nicolas-fevrier/2023/09/11/saving-
power-on-acx7000-series

FS.com. 2025. Ethernet Transceiver Modules and Cables.
//www.fs.com/c/ethernet-networking-3859

Adithya Gangidi, Rui Miao, Shengbao Zheng, Sai Jayesh Bondu,
Guilherme Goes, Hany Morsy, Rohit Puri, Mohammad Riftadi,
Ashmitha Jeevaraj Shetty, Jingyi Yang, Shuqiang Zhang, Mikel Jimenez
Fernandez, Shashidhar Gandham, and Hongyi Zeng. 2024. RDMA
over Ethernet for Distributed Training at Meta Scale. In Proceed-
ings of the ACM SIGCOMM 2024 Conference (ACM SIGCOMM °24).
Association for Computing Machinery, New York, NY, USA, 57-70.
doi:10.1145/3651890.3672233

Romain Jacob, Lukas Réllin, Jackie Lim, Jonathan Chung, Maurice
Béhanzin, Weiran Wang, Andreas Hunziker, Theodor Moroianu,
Seyedali Tabaeiaghdaei, Adrian Perrig, and Laurent Vanbever. 2025.
Fantastic Joules and Where to Find Them. Modeling and Optimizing
Router Energy Demand. In 25th ACM Internet Measurement Conference
(IMC 2025). Association for Computing Machinery, Madison, Wiscon-
sin, USA, 15. do0i:10.1145/3730567.3732920

Michael A. Laurenzano, Mitesh Meswani, Laura Carrington, Allan
Snavely, Mustafa M. Tikir, and Stephen Poole. 2011. Reducing Energy
Usage with Memory and Computation-Aware Dynamic Frequency
Scaling. In Euro-Par 2011 Parallel Processing, Emmanuel Jeannot, Ray-
mond Namyst, and Jean Roman (Eds.). Springer, Berlin, Heidelberg,
79-90. doi:10.1007/978-3-642-23400-2_9

Olli Mammel4, Mikko Majanen, Robert Basmadjian, Hermann De Meer,
André Giesler, and Willi Homberg. 2012. Energy-Aware Job Scheduler
for High-Performance Computing. Computer Science - Research and
Development 27, 4 (Nov. 2012), 265-275. do0i:10.1007/s00450-011-0189-
6

William M. Mellette, Rob McGuinness, Arjun Roy, Alex Forencich,
George Papen, Alex C. Snoeren, and George Porter. 2017. RotorNet: A
Scalable, Low-complexity, Optical Datacenter Network. In Proceedings
of the Conference of the ACM Special Interest Group on Data Communi-
cation (SIGCOMM ’17). Association for Computing Machinery, New
York, NY, USA, 267-280. doi:10.1145/3098822.3098838

https:


https://doi.org/10.1145/3387514.3406221
https://doi.org/10.1145/3011017
https://doi.org/10.1007/978-3-031-01761-2_5
https://doi.org/10.1007/978-3-031-01761-2_5
https://doi.org/10.1109/MM.2024.3426478
https://doi.org/10.1109/MM.2024.3426478
https://doi.org/10.1002/9781118342015.ch6
https://investors.broadcom.com/news-releases/news-release-details/broadcom-delivers-industrys-first-512-tbps-co-packaged-optics
https://investors.broadcom.com/news-releases/news-release-details/broadcom-delivers-industrys-first-512-tbps-co-packaged-optics
https://investors.broadcom.com/news-releases/news-release-details/broadcom-delivers-industrys-first-512-tbps-co-packaged-optics
https://doi.org/10.1109/MCOM.2010.5621967
https://doi.org/10.1109/NoF62948.2024.10741444
https://arxiv.org/abs/2412.19437
https://doi.org/10.48550/arXiv.2412.19437
https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a
https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a
https://community.juniper.net/blogs/nicolas-fevrier/2023/09/11/saving-power-on-acx7000-series
https://community.juniper.net/blogs/nicolas-fevrier/2023/09/11/saving-power-on-acx7000-series
https://community.juniper.net/blogs/nicolas-fevrier/2023/09/11/saving-power-on-acx7000-series
https://www.fs.com/c/ethernet-networking-3859
https://www.fs.com/c/ethernet-networking-3859
https://doi.org/10.1145/3651890.3672233
https://doi.org/10.1145/3730567.3732920
https://doi.org/10.1007/978-3-642-23400-2_9
https://doi.org/10.1007/s00450-011-0189-6
https://doi.org/10.1007/s00450-011-0189-6
https://doi.org/10.1145/3098822.3098838

It Is Time to Address Network Power Proportionality

(19]

[20

[t

[22]

[23

[t

[24

=

[25]

[26

—

[27]

Sergiu Nedevschi, Lucian Popa, Gianluca Iannaccone, Sylvia Rat-
nasamy, and David Wetherall. 2008. Reducing Network Energy Con-
sumption via Sleeping and Rate-Adaptation. In 5th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI
08). https://www.usenix.org/conference/nsdi-08/reducing-network-
energy-consumption-sleeping-and-rate-adaptation

NVIDIA. 2025. NVIDIA Docs. https://docs.nvidia.com/networking/
display/ConnectX7VPI/Specifications

NVIDIA. 2025. NVIDIA H100 GPU Datasheet. https://resources.nvidia.
com/en-us-hopper-architecture/nvidia-tensor-core-gpu-datasheet
Nwe Zin Oo and Panyayot Chaikan. 2021. The Effect of Core Parking
for Energy-efficient Matrix-Matrix Multiplication by Using AVX and
OpenMP. In 2021 21st International Conference on Control, Automation
and Systems (ICCAS). IEEE, 307-310. doi:10.23919/ICCAS52745.2021.
9649926

Daniel Otten, Sebastian Neuner, and Nils Aschenbruck. 2023. On Mod-
elling the Power Consumption of a Backbone Network. In 2023 IEEE
International Conference on Communications Workshops (ICC Work-
shops). IEEE, Rome, Italy, 1842-1847. doi:10.1109/ICCWorkshops57953.
2023.10283615

Daniel Otten, Sebastian Neuner, and Nils Aschenbruck. 2023. On Mod-
elling the Power Consumption of a Backbone Network. In 2023 IEEE
International Conference on Communications Workshops (ICC Work-
shops). IEEE, Rome, Italy, 1842-1847. doi:10.1109/ICCWorkshops57953.
2023.10283615

Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. 2019. Shenango: Achieving High CPU Efficiency for
Latency-sensitive Datacenter Workloads. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI °19). USENIX
Association, Boston MA USA, 361-377.

packetpushers.net. 2025. Demystifying DCN Topologies: Clos/Fat
Trees - Part2.  https://packetpushers.net/blog/demystifying-dcn-
topologies-clos-fat-trees-part2/

Kun Qian, Yongqing Xi, Jiamin Cao, Jiagi Gao, Yichi Xu, Yu Guan,
Binzhang Fu, Xuemei Shi, Fangbo Zhu, Rui Miao, Chao Wang, Peng
Wang, Pengcheng Zhang, Xianlong Zeng, Eddie Ruan, Zhiping Yao,
Ennan Zhai, and Dennis Cai. 2024. Alibaba HPN: A Data Center
Network for Large Language Model Training. In Proceedings of the
ACM SIGCOMM 2024 Conference (ACM SIGCOMM °24). Association
for Computing Machinery, New York, NY, USA, 691-706. doi:10.1145/

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

HotNets "25, November 17-18, 2025, College Park, MD, USA

3651890.3672265

Sudarsanan Rajasekaran, Manya Ghobadi, and Aditya Akella. 2023.
CASSINI: Network-Aware Job Scheduling in Machine Learning Clus-
ters. arXiv:2308.00852 [cs] doi:10.48550/arXiv.2308.00852

Ahmad Samih, Ren Wang, Anil Krishna, Christian Maciocco, Charlie
Tai, and Yan Solihin. 2013. Energy-Efficient Interconnect via Router
Parking. In 2013 IEEE 19th International Symposium on High Perfor-
mance Computer Architecture (HPCA). IEEE, Shenzhen, China, 508-519.
doi:10.1109/HPCA.2013.6522345

Shailesh S.Deore, A. N. Patil, and Ruchira Bhargava. 2013. Energy-
Efficient Job Scheduling and Allocation Scheme for Virtual Machines
in Private Clouds. International Journal of Applied Information Systems
5, 1 (Jan. 2013), 56—60. doi:10.5120/ijais12-450842

Yanling Shao, Chunlin Li, Jinguang Gu, Jing Zhang, and Youlong Luo.
2018. Efficient Jobs Scheduling Approach for Big Data Applications.
Computers & Industrial Engineering 117 (March 2018), 249-261. doi:10.
1016/j.cie.2018.02.006

Sudip Shekhar, Wim Bogaerts, Lukas Chrostowski, John E. Bow-
ers, Michael Hochberg, Richard Soref, and Bhavin J. Shastri. 2024.
Roadmapping the next Generation of Silicon Photonics. Nature Com-

munications 15, 1 (Jan. 2024), 751. doi:10.1038/s41467-024-44750-0
Arun Vishwanath, Kerry Hinton, Robert W. A. Ayre, and Rodney S.

Tucker. 2014. Modeling Energy Consumption in High-Capacity
Routers and Switches. IEEE Journal on Selected Areas in Commu-
nications 32, 8 (Aug. 2014), 1524-1532. doi:10.1109/JSAC.2014.2335312
Sharada Yeluri. 2024. Flexible Packet Processing Pipelines. https:
//community.juniper.net/blogs/sharada-yeluri/2024/03/28/flexible-
packet-processing-pipelines

Qingxia Zhang, Zihao Meng, Xianwen Hong, Yuhao Zhan, Jia Liu,
Jiabao Dong, Tian Bai, Junyu Niu, and M. Jamal Deen. 2021. A Survey
on Data Center Cooling Systems: Technology, Power Consumption
Modeling and Control Strategy Optimization. Journal of Systems
Architecture 119 (Oct. 2021), 102253. doi:10.1016/j.sysarc.2021.102253
Zhizhen Zhong, Mingran Yang, Jay Lang, Christian Williams, Liam
Kronman, Alexander Sludds, Homa Esfahanizadeh, Dirk Englund,
and Manya Ghobadi. 2023. Lightning: A Reconfigurable Photonic-
Electronic SmartNIC for Fast and Energy-Efficient Inference. In Pro-
ceedings of the ACM SIGCOMM 2023 Conference (ACM SIGCOMM °23).
Association for Computing Machinery, New York, NY, USA, 452-472.
doi:10.1145/3603269.3604821


https://www.usenix.org/conference/nsdi-08/reducing-network-energy-consumption-sleeping-and-rate-adaptation
https://www.usenix.org/conference/nsdi-08/reducing-network-energy-consumption-sleeping-and-rate-adaptation
https://docs.nvidia.com/networking/display/ConnectX7VPI/Specifications
https://docs.nvidia.com/networking/display/ConnectX7VPI/Specifications
https://resources.nvidia.com/en-us-hopper-architecture/nvidia-tensor-core-gpu-datasheet
https://resources.nvidia.com/en-us-hopper-architecture/nvidia-tensor-core-gpu-datasheet
https://doi.org/10.23919/ICCAS52745.2021.9649926
https://doi.org/10.23919/ICCAS52745.2021.9649926
https://doi.org/10.1109/ICCWorkshops57953.2023.10283615
https://doi.org/10.1109/ICCWorkshops57953.2023.10283615
https://doi.org/10.1109/ICCWorkshops57953.2023.10283615
https://doi.org/10.1109/ICCWorkshops57953.2023.10283615
https://packetpushers.net/blog/demystifying-dcn-topologies-clos-fat-trees-part2/
https://packetpushers.net/blog/demystifying-dcn-topologies-clos-fat-trees-part2/
https://doi.org/10.1145/3651890.3672265
https://doi.org/10.1145/3651890.3672265
https://arxiv.org/abs/2308.00852
https://doi.org/10.48550/arXiv.2308.00852
https://doi.org/10.1109/HPCA.2013.6522345
https://doi.org/10.5120/ijais12-450842
https://doi.org/10.1016/j.cie.2018.02.006
https://doi.org/10.1016/j.cie.2018.02.006
https://doi.org/10.1038/s41467-024-44750-0
https://doi.org/10.1109/JSAC.2014.2335312
https://community.juniper.net/blogs/sharada-yeluri/2024/03/28/flexible-packet-processing-pipelines
https://community.juniper.net/blogs/sharada-yeluri/2024/03/28/flexible-packet-processing-pipelines
https://community.juniper.net/blogs/sharada-yeluri/2024/03/28/flexible-packet-processing-pipelines
https://doi.org/10.1016/j.sysarc.2021.102253
https://doi.org/10.1145/3603269.3604821

	Abstract
	1 Introduction
	2 Modeling Approach
	2.1 Baseline Cluster and Workload
	2.2 Workload Model
	2.3 Power Model
	2.4 Network Model

	3 Impact of Power Proportionality
	3.1 Compute vs Network Efficiency
	3.2 Network Power Proportionality
	3.3 Performance Speedup
	3.4 Discussion

	4 Achieving Power Proportionality
	4.1 Static Opt. #1: Exposing Power Knobs
	4.2 Static Opt. #2: Scheduling Network Jobs
	4.3 Dynamic Opt. #1: Rate Adaptation
	4.4 Dynamic Opt. #2: Turning off Pipelines
	4.5 Going further: Redesigning the ASIC

	5 Conclusion
	References

