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Abstract
Internet measurement has prioritized what can be observed—
latency spikes, packet loss, route changes—over why those
observations occur. When performance degrades or routes
shift, we often lack the tools to distinguish causes like a con-
gested link from coincidental correlations driven by varying
load, measurement bias, or background churn. As a result,
explanations remain speculative, and operators struggle to
decide whether and how to intervene. This paper explores
how causal inference can help fill that gap. We show how
classical measurement questions can be framed and analyzed
using tools like instrumental variables, causal graphs, and
synthetic controls. Finally, we propose design changes for
measurement platforms to make causal analysis more feasi-
ble.

CCS Concepts
• Networks→ Network measurement; Network perfor-
mance modeling; •Mathematics of computing→ Proba-
bility and statistics.
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1 Introduction
The Internet’s layered design enables modularity by sepa-
rating concerns: physical infrastructure is abstracted from
link protocols, which are abstracted from routing, which in
turn is abstracted from transport and applications. This clean
separation comes at a cost: it obscures the dependencies and
relationships that span across layers. As a result, many of
the properties we care most about—performance, resilience,
fairness, and compliance—do not originate from any single
layer, but from interactions across them, which our current
tools and methodologies are poorly equipped to analyze. The
abstraction that once enabled clean design now inhibits our
ability to trace causes, assign responsibility, or predict the
effects of interventions.
This limitation is compounded by other structural chal-

lenges: protocols that were not designed to expose their
state and a fragmented ecosystem of independently oper-
ated networks. The Border Gateway Protocol (BGP)—the de
facto standard for interdomain routing—selects paths based
on local policies shaped by business agreements and traffic
engineering goals. These policies are not publicly visible;
observers see the chosen path, but not the rejected alterna-
tives or the reasoning behind the decision. When a route
changes, it is often unclear whether the cause was a failure, a
configuration update, or a policy shift. As the Internet grows
in scale and complexity, even basic questions—Why did this
path change? What caused this spike in latency?—require
reasoning across layers, networks, and protocols, often with
limited visibility into any one of them.
Lacking the visibility and structure needed to support

such reasoning, Internet measurement has largely become a
phenomenological practice. We observe events, describe cor-
relations, and infer plausible explanations. Without causal
models, Internet measurement risks becoming Sisyphean: re-
peating the same observations without uncovering the under-
lying causes. Fortunately, we are not the first field to grapple
with these challenges. A well-established discipline—causal
inference— provides a framework for attributing causes, tools
to estimate the effects of interventions, and to reason about
what would have happened under different conditions than
the ones we observed.
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Consider the 2021 Facebook outage, where an internal
BGP misconfiguration effectively removed Facebook’s DNS
servers from the Internet [15]. The first observable symp-
tom was DNS failure (i.e., domain names stopped resolving),
leading external observers to assume a problem with DNS.
But the actual root cause resides layers beneath: a mistaken
routing update that severed data center reachability [16].
Similarly, during the 2022 Rogers Communications outage
in Canada [34], engineers spent critical hours chasing mis-
leading signals due to missing logs and simultaneous config-
uration changes. Their postmortem admitted that the true
cause was initially misdiagnosed for over half a day [14]. In
both cases, surface-level symptoms masked the real failure
mechanism.

The disconnect between measurement and meaning:
Because of the Internet’s increased complexity and opac-
ity, traditional measurement approaches have struggled to
keep up. The consequence is a growing disconnect between
what we measure and what matters. Too often, this discon-
nect results in descriptive work that fails to inform design,
policy, or operations. A latency spike, for instance, may be
harmless—or it may degrade video quality for thousands
of users and reflect a traffic engineering decision made by
a CDN. In the latter case, identifying the cause points to
an actor whose decision can be examined, challenged, or
changed. Spikes become meaningful only when placed in a
causal chain—something causal models help make explicit.

Many measurement studies are guided by intuitions about
routing, topology, or user behavior (e.g., [13, 22, 47, 49, 51]
to cite a few). These intuitions implicitly guide choices about
what to measure, how to design experiments, and how to
interpret findings. Yet while these causal beliefs shape the
research, they are rarely articulated explicitly or subjected
to formal testing. As a result, conclusions often rest on un-
verified structural premises, leaving room for confounding,
misattribution, or overgeneralizations.

A causal lens for Internet measurement This paper ar-
gues for integrating causal inference into Internet measure-
ment, not as a replacement for existing methods, but as a
shift in perspective. Our aim is not to discredit prior work:
many valuable insights have come from observational stud-
ies. Instead, we seek to make their assumptions more explicit,
surface potential sources of bias, and show how causal fram-
ing can improve interpretation. In particular, we make two
contributions:
(1) We demonstrate how causal inference tools such as

DAGs, confounding adjustment, instrumental variables, and
synthetic controls clarify what questions to ask, what to
measure, and how to interpret results (§3). We use a case
study testing the common belief that connecting to a local

IXP reduces user latency to show how causal tools can turn
these claims into testable hypotheses.
(2) We propose concrete design changes to make causal

analysis feasible in practice, including DAG-based planning,
intent-tagged measurements, and support for exogenous (i.e.,
externally triggered and system-independent) interventions
via existing measurement platforms (§4).

2 Related Work
While we are not the first to pursue statistical rigor or to
ask causal questions in Internet measurement [1, 5, 20, 22,
28, 29, 36–38, 44, 45, 50], our contribution is to explicitly
foreground the promise of causal inference using the formal
language and tools developed in that literature.
Closest to our efforts are a few studies that apply causal

methods in well-scoped domains like adaptive bitrate (ABR)
streaming and congestion control [6–8, 51]. These subfields
are ahead in integrating causal reasoning, in part because
the systems are more tractable: dynamics are relatively well-
understood, control inputs (e.g., bitrate selection) are nar-
rowly defined, and ground-truth outcomes (e.g., rebuffer-
ing) are observable. These studies often assume exogeneity:
that decisions affect outcomes without altering latent sys-
tem conditions. This assumption simplifies counterfactual
reasoning—we can ask what would have happened under
a different action without modeling its impact on the en-
vironment. In many Internet measurement studies, this as-
sumption fails. Routing changes can trigger congestion, CDN
decisions can shift demand, andmeasurement itself can affect
behavior. These kinds of feedback effects, where choices and
conditions influence each other, are referred to as endogene-
ity. They complicate causal analysis because the impact of a
decision cannot be separated cleanly from the environment
in which it occurs.
Still, recent work has begun to bridge this gap. PoiRoot,

for example, models the causal structure of path changes and
uses BGP poisoning as an instrumental variable to identify
root causes [18]. Reuter et al. [33] show how confounding
limits the use of observational data to detect RPKI-based
filtering and instead rely on targeted experiments via the
PEERING testbed [42]. Both illustrate how causal inference—
whether through explicit modeling or carefully designed
interventions—can extract insight even in settings with par-
tial observability and endogenous dynamics.

3 Primer on Causal Inference
To accurately interpret measurements from complex sys-
tems like the Internet, we need tools to distinguish causation
from mere correlation. Routing decisions, for instance, are
driven by a complex mix of each network’s internal policies,
business agreements, and adaptive control mechanisms (e.g.,
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load-balancing, SDN). A given route may be preferred be-
cause it is cheaper, conforms to traffic-engineering goals, or
satisfies regulatory or peering requirements. These choices
shift with time of day, user demand, and network state. There-
fore, performance differences observed across routes may
not reflect the inherent quality of the paths themselves, but
rather the conditions under which each path is typically
used.

Graphical models for causality. To reason clearly in these
confounded observational settings, we need a way to repre-
sent and test our assumptions about how variables influence
each other. Causal graphical models, introduced by Judea
Pearl [30], provide a formal language for encoding these as-
sumptions. These models use directed acyclic graphs (DAGs),
where nodes represent variables and edges indicate causal
influence—distinguishing cause from effect. Every causal
claim rests on a view of how the system works: which fac-
tors can be treated as external, which interactions are stable,
and which influences can be ruled out. Making these as-
sumptions visible is what allows causal inference to be both
transparent and testable.

Running example: routing and latency. To illustrate,
we use a simple example: How do routing changes affect
user-observed latency? Let 𝑅 denote whether a route change
occurred (e.g., switching transit providers), 𝐿 the latency, and
𝐶 the level of network congestion (e.g., from diurnal traffic
patterns). Congestion can influence both routing and perfor-
mance: for example, higher load may trigger SDN systems
like EdgeFabric [41] or Espresso [52] to shift to a different
route (𝐶 → 𝑅), while also increasing latency (𝐶 → 𝐿).

The ladder of causation. Pearl’s ladder of causation of-
fers a framework for understanding the different types of
questions we can ask about cause and effect, organized by
the level of reasoning they require. Each step up the ladder
demands stronger assumptions and a more explicit model of
how the system works. In our routing example, the ladder
distinguishes three types of questions:

(1) Association: What latency values are observed under
different routes? This is answered by estimating 𝑃 (𝐿 | 𝑅),
which reflects statistical association based on observed data.

(2) Intervention:What would the latency be if we forced
the network to take a specific route, regardless of the usual
conditions that influence routing? Answering this question
requires the ability to control the route selection.

(3) Counterfactual: Given that a route change occurred
and a high latency was observed, what would the latency
have been if, in that same situation, the route had not changed?
This question asks about a hypothetical alternative for a spe-
cific event and requires a detailed model of how routing
and latency interact, including the influence of all relevant

variables, to simulate what would have happened under a
different choice.
For these causal questions to be well-defined, we typi-

cally rely on the Stable Unit Treatment Value Assumption
(SUTVA). SUTVA has two parts: first, that each unit’s out-
come depends only on its own treatment and not on the
treatments applied to others (i.e., there is no interference);
and second, that the treatment itself is consistent and well-
defined (i.e., there is only one version of it, applied in the
same way to all treated units). These assumptions allow us
to interpret “the effect” of an intervention unambiguously,
ensuring that differences in outcomes reflect the treatment
itself rather than variations in how it was applied or inter-
actions between units. For example, if “changing a routing
policy” sometimes means adjusting a local-preference value
and other times means depeering from a transit provider en-
tirely, then the “treatment” is not well-defined. These actions
differ in scope and impact, so we cannot attribute a single
causal effect to “changing the routing policy.”

Confounding and collider bias. The first step in estimat-
ing the effect of an intervention is identifying and adjusting
for confounders (i.e., variables that influence both the deci-
sion being analyzed and the outcome and can create spurious
associations that obscure the true causal effect). In our ex-
ample, 𝐶 influences both 𝑅 and 𝐿, making it a confounder.
In the DAG, this confounder appears as a backdoor path:
𝑅 ← 𝐶 → 𝐿. To isolate the effect of route on latency, we
need to “block” this path. In practice, blocking the confound-
ing path requires analyzing manymeasurements taken under
varying conditions, and comparing latencies across routes
only when 𝐶 is similar, e.g., at comparable load levels. By
holding 𝐶 constant, we block the indirect influence of con-
gestion on both route selection and latency, allowing us to
attribute observed differences more confidently to the route
itself rather than to the conditions under which it was chosen.
While adjusting for confounders is essential, not all condi-
tioning helps. A collider is a variable that is influenced by
two others. In the context of speed-test analysis, the decision
to run a test can act as a collider: both changes in routing
(e.g., switching to a new ISP) and poor network performance
(e.g., high latency or low throughput) can independently
prompt users to run a test. If we analyze only the speed tests
that are actually run, we are conditioning on this shared
outcome. This can create a spurious association between
routing changes and performance degradation, even if no
causal link exists—because both make speed tests more likely
to occur. As a result, claims about the effect of routing on per-
formance, drawn solely from observed tests, may be biased
by this collider.

Confounding and collider bias both reflect a deeper issue:
observational data must be interpreted in light of how they
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were generated. Confounders bias estimates when left un-
adjusted; colliders do so when conditioned on. But in both
cases, the challenge is the same—causal inference depends
not just on which variables are measured, but on understand-
ing the pathways through which the data was produced.
Without this, even large, rich datasets can lead to the wrong
conclusions.
An example of confounding bias A SIGCOMM’21 pa-
per on cellular reliability [24] finds higher failure rates
at the strongest signal levels. To their credit, the authors
recognize this anomaly and attribute it to dense deploy-
ments in transit hubs, which introduce interference and
overhead. However, this makes signal strength a proxy,
not a cause: deployment density confounds both signal
strength and failure. Without adjusting for this factor, the
observed correlation is misleading.

Using randomization and natural experiments. The
cleanest way to estimate causal effects is through random-
ized assignment, where variation in the treatment is entirely
exogenous, that is, driven by factors external to the system
rather than by its internal state or behavior. Consider how
M-Lab assigns users to measurement servers during speed
tests, using a load balancer that randomly routes each test to
one of several sites in a nearby city [17, 26]. This mechanism
introduces controlled, random variation in routing: the user’s
traffic may traverse entirely different AS paths depending
on the assigned site, even when their device and network
are the same. Because M-Lab sites in certain metros are stan-
dardized (bare-metal servers with identical configurations)
and clients are load-balanced evenly across them,1 differ-
ences in performance across sites can be attributed directly
to routing rather than user intent or server behavior. This is
effectively a randomized experiment, the gold standard for
causal inference.
When full randomization is not possible, we can look

for natural experiments: external events that induce quasi-
random variation in decisions. These events mimic random-
ized trials by introducing exogenous shocks that are plausibly
independent of the outcome. A common method for leverag-
ing natural experiments is the use of an instrumental variable.
An instrumental variable is a factor that (1) influences the de-
cision being studied and (2) affects the outcome only through
that decision—not through any other route in the DAG (the
exclusion restriction). When these conditions hold, the instru-
ment isolates the portion of variation in the decision that
is effectively random with respect to the outcome, enabling
unbiased causal estimates.

1This observation does not hold for cloud-hosted M-Lab sites, which rely
on different infrastructure.

Many sources of routing variation on the Internet such as
software updates, policy changes, traffic engineering deci-
sions, or link failures, can, under certain conditions, serve as
viable instruments, but doing so requires careful justification.
In each case, the key challenge lies in establishing that the
event is exogenous: that it affects performance only through
its impact on routing and not through correlated factors like
congestion, maintenance activity, or recovery from a previ-
ous fault. For example, suppose an operator changes its BGP
local preference to favor a cheaper transit provider. While
this might appear to create a clean intervention, the change
can also alter upstream load and trigger adaptive responses
in neighboring networks, which in turn affect congestion
and path length. In such cases, the exclusion restriction is
violated because the intervention influences performance
through multiple causal channels, not just the intended route
change. Still, not all such events are invalid by design. Sched-
uled link maintenance or sudden policy shifts imposed by
regulators may generate exogenous variation that approx-
imates random assignment when their timing and scope
are independent of network conditions. The distinction be-
tween a valid and invalid instrument thus hinges often on the
strength of the justification: whether researchers can credibly
argue that its effect is confined to the targeted mechanism. In
reality, none of these events arrive with clean labels saying
"instrumental variables." Identifying viable ones requires a
mix of domain insight, careful measurement design, and a
healthy dose of skepticism.

An example of misinterpreted natural experiment.
An IMC’21 paper on user latency sensitivity [47] analyzes
variation in page load times and user interactions to infer
how latency affects user behavior. The authors describe
this variation as a natural experiment, but do not identify
an exogenous source of latency independent of user intent
or engagement. Instead, they normalize for observable fac-
tors to reduce confounding. While this technique improves
robustness, the result remains observational. Without a
valid instrumental variable or randomized assignment, the
variation used does not support formal causal claims.

Building counterfactuals. The most challenging and ar-
guably most important question in causal inference is the
counterfactual: What would have happened under a different
scenario, given what actually occurred? Counterfactuals go
beyond estimating average treatment effects or identifying
system-wide trends and ask about specific alternate realities.
For instance, suppose a user’s video call experienced de-

graded quality right after their traffic was rerouted through a
new transit provider. The counterfactual question is: Would
the call quality have been better had the route change not
occurred?
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Answering this question requires more than blocking con-
founders or leveraging instrumental variables—it demands
a model of how the system behaves under different condi-
tions. In principle, one could specify a structural model: a
DAG that encodes the dependencies between routing deci-
sions, traffic load, queuing behavior, protocol dynamics, and
performance outcomes. With such a model, counterfactu-
als could be computed by simulating interventions. But in
practice, this is rarely feasible. Even if the structure were
known, estimating the necessary relationships would require
specific measurements across layers, networks, and time, an
unrealistic expectation given the Internet’s decentralized,
evolving, and opaque nature. Despite the difficulty, coun-
terfactuals are exactly the kind of reasoning that operators
implicitly rely on. When something goes wrong and multiple
variables change (e.g., routing updates, traffic spikes, policy
adjustments), the question they want answered is rarely “Is
routing correlated with latency?”. It is more often: "Was this
degradation caused by the routing change, or would it have
happened anyway?" Counterfactuals are the only way to
formally pose and answer such questions.

A more practical alternative to building a full causal model
is the synthetic control method [4, 53]. It estimates what
would have happened on a path that changed (e.g., due to
a routing shift) by constructing a weighted combination of
similar paths that did not. The weights are selected so that
the combined pre-change performance of these paths closely
tracks that of the original. The intuition is that, while no sin-
gle comparison path may be a perfect match, their weighted
average can smooth out individual noise and approximate
the underlying factors driving performance. This synthetic
trajectory then serves as a stand-in to estimate how the origi-
nal path would have performed had the change not occurred.
This method relies on a few key conditions [3]: no interfer-
ence between units (the routing change on one path should
not affect others in the donor pool), a good pre-change fit
(the synthetic path must closely track the actual path be-
fore the change), and no other major shocks coinciding with
the change (e.g., infrastructure upgrades that could indepen-
dently impact performance).

In our context, suppose a user’s path is rerouted through
a new transit provider, and video call quality drops. To esti-
mate what would have happened without the routing change,
we build a synthetic version of the path by combining others
that (a) did not reroute and (b) showed similar pre-change
trends. Rather than matching on static features, we align
based on temporal performance patterns (e.g., latency, traf-
fic, time-of-day usage), which controls for external factors
like congestion or regional demand. The synthetic path’s
post-change performance then serves as an estimate of the
counterfactual, i.e., what the user would have experienced
had the route stayed the same.

ASN / City RTT Δ (ms) RMSE Ratio 𝑝

3741 / East London +3.40 236 0.053
3741 / Johannesburg +1.50 17 0.857
37053 / Cape Town −0.12 23 0.862
37611 / Edenvale −0.91 16 0.406
37680 / Durban −2.20 199 0.086
327966 / Polokwane −7.28 85 0.333
328622 / eMuziwezinto −1.30 18 0.143
328745 / Johannesburg +0.30 18 0.857

Table 1: Estimated RTT change for paths that begin
crossing NAPAfrica-JNB. All cities are in South Africa.

This approach has several advantages: it is data-driven and
does not require strong assumptions about the functional
form of the underlying system. Importantly, synthetic control
takes into account how things were changing over time, not
just what they looked like at a singlemoment. By building the
comparison on shared performance trajectories before the
change, synthetic control helps isolate the impact of a single
event from the broader churn and gives us a more realistic
estimate of what would have happened if the change hadn’t
occurred. In doing so, it provides a powerful and realistic
framework for counterfactual reasoning in settings where
randomized experiments are impossible and full structural
models are infeasible.
An example of incorrect counterfactual reasoning A
SIGMETRICS’24 paper on Internet resilience, Xaminer [32],
simulates physical-layer failures (e.g., cable cuts) and traces
their downstream effects on network-layer connectivity.
While this provides a valuable map of potential exposure,
it falls short of modeling how the network would respond
to such failures. True resilience analysis requires counter-
factual reasoning: not just asking what infrastructure is
at risk, but how routing, connectivity, and performance
would change if a specific failure occurred. Without model-
ing these dynamic adaptations, the analysis risks conflating
exposure with impact and cannot quantify the actual ro-
bustness of routing in the face of real-world events.

Case study: Does joining an IXP reduce latency? 2

A common belief in network operations is that once an
access ISP connects to a domestic IXP, users behind it will
benefit from lower latency to access local content instead of
being tromboned through distant transit providers. This case
study illustrates how one can use causal inference to trans-
form that operational belief into a formal, testable hypothe-
sis: instead of asking simply whether RTT decreases, we ask
whether IXP membership causes latency decreases once con-
founders are accounted for. Answering this question requires
more than observing a drop in latency. While we omit the
DAG due to space constraints, we identify key factors that
2All code and data used are available at our public repository [39].
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may confound the observed relationship: IXP deployment
can trigger topological and routing changes, which are them-
selves influenced by independent variables such as traffic
load, business policy, and infrastructure upgrades. Without
a causal model to account for these dependencies, we risk
misattributing the cause of observed RTT shifts. We frame
the addition of an IXP as an intervention: the "treatment"
is the first appearance of the IXP in a path. If the belief is
true, this intervention should cause a drop in RTT. Before
performing the analysis, we first assess whether the condi-
tions for causal estimation are reasonably satisfied. The "no
interference" assumption may not hold perfectly: adding an
IXP not only introduces a new path but also reshapes the
local routing topology. Traffic shifts toward the new link
can alter path preferences and congestion for neighboring
networks, making the treatment’s effect partially dependent
on its surroundings. Similarly, overlapping infrastructure
changes (e.g., the three new PoPs deployed since June 2025
according to PeeringDB [31]) could confound observed la-
tency changes. As with all analyses based on user-initiated
speed tests, our results inherit potential sampling biases,
since measurements are not uniformly distributed across
users or time. We leave a formal assessment of how these
factors influence our results to future work, but assume their
impact is limited, making synthetic control an appropriate
framework for estimating the local impact of IXP adoption.
With these caveats in mind, we test: For a network that

previously did not use an IXP, how does median RTT change
after the IXP first appears in the path?
For this case study, we use M-Lab speed tests together

with the traceroutes automatically triggered after each test.
We determine whether a path crosses the NAPAfrica IXP [27]
by matching hop IP addresses against addresses announced
by the IXP [2]3. We analyze performance at the ⟨ASN, city⟩
level: users within the same ASN and city are likely to share
routing policies, last-mile conditions, and local peering op-
tions, while still allowing us to distinguish geographically
distinct regions within the same provider.
To estimate the impact of the IXP crossing, we apply the

robust synthetic control method [9]: for each ⟨ASN, city⟩
that starts crossing the IXP from June 2025, we construct a
weighted combination of ⟨ASN, city⟩ from the donor pool,
matching the RTT trends before the IXP appeared. This ap-
proach controls for broader performance shifts that may be
unrelated to the IXP itself (e.g., regional congestion, diurnal
effects) by ensuring that the synthetic path closely matches
the treated path’s behavior prior to the IXP. While we do not
model all possible confounders explicitly, this pre-change

3We chose NAPAfrica-Johannesburg because, during the month we ana-
lyzed, it had the largest number of new ASN–city pairs that began crossing
the IXP compared to other locations.

alignment and the use of a donor pool that does not route via
the IXP provide a pragmatic first-order control for temporal
and structural biases. We then compare the observed RTT
after the change to this synthetic baseline
Table 1 shows the estimated RTT change and two diag-

nostic statistics: the RMSE ratio and a placebo-based 𝑝-value.
The RMSE ratio compares the synthetic control model’s fit
error after the IXP appears in the path to its fit error before-
hand. A large increase may indicate that the path’s behavior
diverged from the donor pool after the change. The 𝑝-value
is computed by comparing this RMSE ratio to those from
placebo models applied to paths that did not cross the IXP;
it quantifies how likely such a shift could arise from model
noise alone. Most paths show small changes or high 𝑝-values.
Two paths (ASN3741 / East London and ASN37680 / Durban)
show moderate RTT changes (3.4 and –2.2 ms) with mar-
ginal 𝑝-values (<0.10). The largest observed drop (–7.3 ms
in Polokwane) is not statistically significant (𝑝 = 0.33).

While RTT occasionally decreases after traversing the IXP,
the effect is neither consistent nor robust. This result demon-
strates how causal inference tools can convert a widely re-
peated operational claim into a testable hypothesis and show
when the data fail to support it.

4 Measurement Design for Causal Analysis
The first step in any causal analysis is to articulate assump-
tions about how the system works by constructing a causal
graph (i.e., a DAG). We recommend that measurement stud-
ies build such a DAG a priori to make structural assumptions
explicit—what variables matter, how they interact, and where
interventions may take effect. DAGs are not learned from
data alone; they require domain insight, protocol knowledge,
and operational experience. They clarify which effects are
identifiable and what measurements are needed to isolate
them.
Whether causal effects are identifiable hinges on which

variables are observed, howmuch variation exists across con-
ditions, and whether measurements capture the right parts
of the system—those where interventions produce meaning-
ful differences in outcomes. A central lesson from causal
inference is that more data does not necessarily mean bet-
ter insight. The value of a measurement lies in whether it
helps resolve causal ambiguity, for example, by blocking
backdoor paths or inducing variation along a hypothesized
causal link. This perspective does not dismiss earliermeasure-
ment efforts—many studies have yielded valuable insights by
analyzing the available public data (e.g., [12, 19]) or focusing
their measurements on a clearly defined topic of interest
(e.g., [10, 23]). The key distinction is that causal reasoning
imposes stricter demands: coverage, volume, and regularity
are useful only insofar as they help answer a causal question.
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The strategic selection of measurements—what is measured,
when, where, and under what conditions—becomes a central
design problem. Recent work has begun to use these ideas
in the context of topology discovery [40].

To generalize this approach, researchers need better tools
for reasoning about measurement design. Before collecting
data, one should be able to define a causal question (e.g.,
the impact of a routing change on latency), specify the rele-
vant variables (e.g., RTT, path, time), and assess whether the
planned setup can identify the desired effect under plausible
assumptions. Existing libraries like Dagitty [48], DoWhy [43],
and EconML [11] already support this kind of reasoning in
other domains. Bringing such tools to networking could help
researchers validate assumptions, avoid invalid inferences,
and guide the design of both passive and active measure-
ment campaigns. We envision future measurement studies
adopting a causal protocol: specify the causal graph, iden-
tify confounders and instruments, validate assumptions, and
report uncertainty in causal estimates.
Of course, enabling this kind of planning requires infras-

tructure support. While platforms like RIPE Atlas [35] and
Archipelago [46] have advanced the scale and reach of Inter-
net measurement, they were built with conventional goals in
mind—broad coverage, fixed-interval sampling, and minimal
interference—rather than causal inference. To make causal
analysis more feasible, we propose a set of enhancements
aligned with a measurement-for-causality mindset:
(1) Platforms should support conditional measurement

activation triggered by external signals (e.g., BGP changes),
scheduled maintenance windows, or IXP outage notifica-
tions. These time-bounded disruptions provide natural exper-
iments where routing or availability changes can be cleanly
linked to shifts in performance. Certain platforms used to
operate that way (e.g., Hubble [21]), and Arkipelago’s recent
deployment is allowing this logic as well [25].
(2) Each measurement could be tagged with its purpose

or trigger context (e.g., baseline monitoring or anomaly re-
action), enabling downstream analysts to properly account
for selection bias (e.g., conditioning on colliders).

(3) Platforms could expose APIs that allow researchers or
clients to induce exogenous variation—providing the knobs
needed for causal inference. PEERING [42] offers a nice tem-
plate: it lets researchers control BGP announcements from
a real AS, enabling experiments that selectively influence
routing decisions. Bringing similar flexibility to platforms
like RIPE Atlas and Ark would expand the space of causal
experiments. Examples include toggling IPv4 vs. IPv6 to alter
AS paths, rotating DNS resolvers to shift CDN edge selection.
These mechanisms act as instrumental variables, isolating
specific effects (e.g., of routing on performance) while mini-
mizing confounding.

(4) Unlike traditional causal inference settings where treat-
ments and observations are exogenous, Internet measure-
ment is reflexive: who measures and when depends on the
system’s internal state. Measurement is therefore an action,
shaped by cost, user intent, and system dynamics. Speed
tests, for instance, are triggered by users experiencing poor
performance. Recognizing this endogeneity as an asset is
an important dimension: who measures and when reflects
underlying network conditions. Rather than discarding this
bias, we should strive to treat it as signal, using it to guide
adaptive measurement and causal attribution.
Challenges, Limitations, and Feasibility. Establishing
causality on the Internet is inherently difficult. We cannot
observe every relevant variable across layers and networks;
user-initiated measurements sample non-randomly from the
true population; conditions evolve rapidly, making stable
baselines elusive; and interventions on one part of the Inter-
net can affect others on a much larger scale than in other
disciplines, often violating the assumption that an interven-
tion has “no interference” beyond its target. A routing change
or configuration tweak in one network can ripple across con-
tinents within seconds, altering congestion, reachability, and
performance far beyond its origin. In most domains where
causal inference is applied, interference is geographically or
socially bounded—for instance, the effects of a new teaching
method may influence other students in the same classroom
but not schools across the country. Ethical constraints com-
pound these limits: researchers cannot deliberately degrade
performance or trigger outages simply to test their hypothe-
ses. Yet acknowledging these challenges is not an argument
for inaction. Even when perfect isolation is unattainable and
fully random variation is unavailable, we can still design
analyses around natural experiments where partial variation
exists, revealing causal relationships without harming users,
and providing a structured way to articulate what can, and
cannot, be inferred from the data.

5 Conclusion
Internetmeasurement has long focused on observation rather
than explanation. Integrating causal inference offers a prin-
cipled way to connect what we see to why it happens. This
shift enables diagnosis and informed intervention in an in-
creasingly complex Internet. By treating measurement as a
causal instrument, we move beyond repeating observations
toward understanding the mechanisms that drive them.

Acknowledgements
I would like to acknowledge Tom Koch, Ethan Katz-Bassett,
Martin Devaux, and the anonymous HotNets reviewers and
Zili Meng, the shepherd, for their feedback on the earlier
versions of this paper.



HotNets ’25, November 17–18, 2025, College Park, MD, USA Loqman Salamatian

References
[1] 2004. Strategies for sound Internet measurement. In Proceedings of the

4th ACM SIGCOMM Conference on Internet Measurement (Taormina,
Sicily, Italy) (IMC ’04). Association for Computing Machinery, New
York, NY, USA, 263–271. doi:10.1145/1028788.1028824

[2] 2025. NAPAfrica IX Johannesburg – PeeringDB. https://www.
peeringdb.com/ix/592. Accessed: 2025-10-20.

[3] Alberto Abadie. 2021. Using synthetic controls: Feasibility, data re-
quirements, and methodological aspects. Journal of economic literature
59, 2 (2021), 391–425.

[4] Alberto Abadie, Alexis Diamond, and Jens Hainmueller. 2015. Com-
parative politics and the synthetic control method. American Journal
of Political Science 59, 2 (2015), 495–510.

[5] Muhammad Abdullah, Zafar Ayyub Qazi, and Ihsan Ayyub Qazi. 2022.
Causal impact of Android go on mobile web performance. In Proceed-
ings of the 22nd ACM Internet Measurement Conference (Nice, France)
(IMC ’22). Association for Computing Machinery, New York, NY, USA,
113–129. doi:10.1145/3517745.3561456

[6] Neil Agarwal, Rui Pan, Francis Y Yan, and Ravi Netravali. 2025. Mowgli:
Passively Learned Rate Control for {Real-Time} Video. In 22nd USENIX
Symposium on Networked Systems Design and Implementation (NSDI
25). 579–594.

[7] Abdullah Alomar, Pouya Hamadanian, Arash Nasr-Esfahany, Anish
Agarwal, Mohammad Alizadeh, and Devavrat Shah. 2023. CausalSim:
A Causal Framework for Unbiased Trace-Driven Simulation. In 20th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23). USENIX Association, Boston, MA, 1115–1147. https://www.
usenix.org/conference/nsdi23/presentation/alomar

[8] Abdullah Alomar, Pouya Hamadanian, Arash Nasr-Esfahany, Anish
Agarwal, Mohammad Alizadeh, and Devavrat Shah. 2023. CausalSim:
A Causal Framework for Unbiased Trace-Driven Simulation. In 20th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23). USENIX Association, Boston, MA, 1115–1147. https://www.
usenix.org/conference/nsdi23/presentation/alomar

[9] Muhammad Amjad, Devavrat Shah, and Dennis Shen. 2018. Robust
synthetic control. Journal of Machine Learning Research 19, 22 (2018),
1–51.

[10] Todd Arnold, Jia He, Weifan Jiang, Matt Calder, Italo Cunha, Vasileios
Giotsas, and Ethan Katz-Bassett. 2020. Cloud Provider Connectivity
in the Flat Internet. In Proceedings of the ACM Internet Measurement
Conference (Virtual Event, USA) (IMC ’20). Association for Computing
Machinery, New York, NY, USA, 230–246. doi:10.1145/3419394.3423613

[11] Keith Battocchi, Eleanor Dillon, Maggie Hei, Greg Lewis, Paul Oka,
Miruna Oprescu, and Vasilis Syrgkanis. 2019. EconML: A Python
package for ML-Based heterogeneous treatment effects estimation.
Version 0. x (2019).

[12] Zachary S. Bischof, Kennedy Pitcher, Esteban Carisimo, Amanda
Meng, Rafael Bezerra Nunes, Ramakrishna Padmanabhan, Margaret E.
Roberts, Alex C. Snoeren, and Alberto Dainotti. 2023. Destination
unreachable: Characterizing Internet outages and shutdowns. In Pro-
ceedings of the ACM SIGCOMM 2023 Conference (New York, NY, USA)
(ACM SIGCOMM ’23). Association for Computing Machinery, New
York, NY, USA, 608–621. doi:10.1145/3603269.3604883

[13] Randy Bush, Olaf Maennel, Matthew Roughan, and Steve Uhlig. 2009.
Internet optometry: assessing the broken glasses in Internet reachabil-
ity. In Proceedings of the 9th ACM SIGCOMMConference on InternetMea-
surement (Chicago, Illinois, USA) (IMC ’09). Association for Computing
Machinery, New York, NY, USA, 242–253. doi:10.1145/1644893.1644923

[14] Canadian Radio-television and Telecommunications Commission
(CRTC). 2024. CRTC Report: Rogers Communications July 2022 Net-
work Outage. https://crtc.gc.ca/eng/publications/reports/xona2024.

htm Accessed: 2025-06-23.
[15] Cloudflare. 2021. Understanding How Facebook Disappeared from the

Internet. https://blog.cloudflare.com/october-2021-facebook-outage/
Accessed: 2025-06-23.

[16] Facebook Engineering. 2021. More details about the October 4
outage. https://engineering.fb.com/2021/10/05/networking-traffic/
outage-details/ Accessed: 2025-06-23.

[17] Phillipa Gill, Christophe Diot, Lai Yi Ohlsen, Matt Mathis, and Stephen
Soltesz. 2022. M-Lab: User-Initiated Internet Data for the Research
Community. ACM SIGCOMM Computer Communication Review 52, 1
(2022), 34–37.

[18] Umar Javed, Italo Cunha, David Choffnes, Ethan Katz-Bassett, Thomas
Anderson, and Arvind Krishnamurthy. 2013. PoiRoot: Investigating
the root cause of interdomain path changes. ACM SIGCOMMComputer
Communication Review 43, 4 (2013), 183–194.

[19] Weifan Jiang, Tao Luo, Thomas Koch, Yunfan Zhang, Ethan Katz-
Bassett, and Matt Calder. 2021. Towards identifying networks with
Internet clients using public data. In Proceedings of the 21st ACM Inter-
net Measurement Conference (Virtual Event) (IMC ’21). Association for
Computing Machinery, New York, NY, USA, 753–762.

[20] Srikanth Kandula and Ratul Mahajan. 2009. Sampling biases in network
path measurements and what to do about it. In Proceedings of the 9th
ACM SIGCOMM Conference on Internet Measurement (Chicago, Illinois,
USA) (IMC ’09). Association for Computing Machinery, New York, NY,
USA, 156–169. doi:10.1145/1644893.1644912

[21] Ethan Katz-Bassett, Harsha V. Madhyastha, John P. John, Arvind Kr-
ishnamurthy, David Wetherall, and Thomas Anderson. 2008. Studying
black holes in the Internet with Hubble. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementa-
tion (San Francisco, California) (NSDI’08). USENIX Association, USA,
247–262.

[22] S. Shunmuga Krishnan and Ramesh K. Sitaraman. 2012. Video
stream quality impacts viewer behavior: inferring causality using
quasi-experimental designs. In Proceedings of the 12th ACM Internet
Measurement Conference (Boston, Massachusetts, USA) (IMC ’12). As-
sociation for Computing Machinery, New York, NY, USA, 211–224.
doi:10.1145/2398776.2398799

[23] Fangfan Li, Arian Akhavan Niaki, David Choffnes, Phillipa Gill, and
Alan Mislove. 2019. A large-scale analysis of deployed traffic dif-
ferentiation practices. In Proceedings of the ACM Special Interest
Group on Data Communication (Beijing, China) (SIGCOMM ’19). As-
sociation for Computing Machinery, New York, NY, USA, 130–144.
doi:10.1145/3341302.3342092

[24] Yang Li, Hao Lin, Zhenhua Li, Yunhao Liu, Feng Qian, Liangyi Gong,
Xianlong Xin, and Tianyin Xu. 2021. A nationwide study on cellular
reliability: measurement, analysis, and enhancements. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference (Virtual Event, USA) (SIG-
COMM ’21). Association for Computing Machinery, New York, NY,
USA, 597–609. doi:10.1145/3452296.3472908

[25] Matthew Luckie, Shivani Hariprasad, Raffaele Sommese, Brendon
Jones, Ken Keys, Ricky Mok, and et al. 2025. An Integrated Active
Measurement Programming Environment. In Proceedings of the 26th
International Conference on Passive and Active Network Measurement
(PAM 2025) (Lecture Notes in Computer Science, Vol. 15567). Springer,
137–152. doi:10.1007/978-3-031-85960-1_12

[26] Measurement Lab. 2025. Measurement Lab – an open, distributed
Internet measurement platform. https://www.measurementlab.net/.
A consortium providing open-source tools and the largest publicly
available Internet performance data collections.

[27] NAPAfrica. 2025. NAPAfrica: Africa’s most active Internet Exchange
Point. https://www.napafrica.net/. Accessed July 2025.

https://doi.org/10.1145/1028788.1028824
https://www.peeringdb.com/ix/592
https://www.peeringdb.com/ix/592
https://doi.org/10.1145/3517745.3561456
https://www.usenix.org/conference/nsdi23/presentation/alomar
https://www.usenix.org/conference/nsdi23/presentation/alomar
https://www.usenix.org/conference/nsdi23/presentation/alomar
https://www.usenix.org/conference/nsdi23/presentation/alomar
https://doi.org/10.1145/3419394.3423613
https://doi.org/10.1145/3603269.3604883
https://doi.org/10.1145/1644893.1644923
https://crtc.gc.ca/eng/publications/reports/xona2024.htm
https://crtc.gc.ca/eng/publications/reports/xona2024.htm
https://blog.cloudflare.com/october-2021-facebook-outage/
https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/
https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/
https://doi.org/10.1145/1644893.1644912
https://doi.org/10.1145/2398776.2398799
https://doi.org/10.1145/3341302.3342092
https://doi.org/10.1145/3452296.3472908
https://doi.org/10.1007/978-3-031-85960-1_12
https://www.measurementlab.net/
https://www.napafrica.net/


The Internet as Sisyphus: Repeating Measurements, Missing Causes HotNets ’25, November 17–18, 2025, College Park, MD, USA

[28] Hung X Nguyen and Matthew Roughan. 2012. Rigorous statistical
analysis of internet loss measurements. IEEE/ACM Transactions on
Networking 21, 3 (2012), 734–745.

[29] Hung X. Nguyen and Patrick Thiran. 2007. Network loss inference
with second order statistics of end-to-end flows. In Proceedings of the
7th ACM SIGCOMM Conference on Internet Measurement (San Diego,
California, USA) (IMC ’07). Association for Computing Machinery,
New York, NY, USA, 227–240. doi:10.1145/1298306.1298339

[30] Judea Pearl. 2010. Causal inference. Causality: objectives and assessment
(2010), 39–58.

[31] PeeringDB. 2025. PeeringDB: The Interconnection Database. https:
//www.peeringdb.com/. Accessed: June 2025.

[32] Alagappan Ramanathan, Rishika Sankaran, and Sangeetha Abdu Jyothi.
2024. Xaminer: An Internet Cross-Layer Resilience Analysis Tool. In
Abstracts of the 2024 ACM SIGMETRICS/IFIP PERFORMANCE Joint
International Conference on Measurement and Modeling of Computer
Systems (Venice, Italy) (SIGMETRICS/PERFORMANCE ’24). Association
for Computing Machinery, New York, NY, USA, 99–100. doi:10.1145/
3652963.3655091

[33] Andreas Reuter, Randy Bush, Italo Cunha, Ethan Katz-Bassett,
Thomas C Schmidt, and Matthias Wählisch. 2018. Towards a rig-
orous methodology for measuring adoption of RPKI route validation
and filtering. ACM SIGCOMM Computer Communication Review 48, 1
(2018), 19–27.

[34] Reuters. 2022. Rogers Communications services down for thousands
of users - Downdetector. https://www.reuters.com/business/media-
telecom/rogers-communications-services-down-thousands-users-
downdetector-2022-07-08/ Accessed: 2025-06-23.

[35] RIPE NCC. 2025. RIPE Atlas. https://atlas.ripe.net/.
[36] Matthew Roughan. 2005. Fundamental bounds on the accuracy of

network performance measurements. ACM SIGMETRICS Performance
Evaluation Review 33, 1 (2005), 253–264.

[37] Matthew Roughan. 2016. Lies, Damn Lies, and Internet Measurements:
Statistics and Network Measurements. In IFIP International Workshop
on Traffic Monitoring and Analysis (TMA). Louvain-la-Neuve, Belgium.
https://roughan.info/talks/tma_2015.pdf Keynote talk.

[38] Kavé Salamatian and Serge Fdida. 2003. A framework for interpreting
measurement over Internet. In Proceedings of the ACM SIGCOMMWork-
shop on Models, Methods and Tools for Reproducible Network Research
(Karlsruhe, Germany) (MoMeTools ’03). Association for Computing
Machinery, New York, NY, USA, 87–94. doi:10.1145/944773.944788

[39] Loqman Salamatian. 2025. The Internet as Sisyphus: Repeating
Measurements, Missing Causes (Code and Data Repository). https:
//github.com/Burdantes/Internet-As-Sisyphus. Accessed October
2025.

[40] Loqman Salamatian, Kevin Vermeulen, Italo Cunha, Vasilis Giotsas, and
Ethan Katz-Bassett. 2024. metAScritic: Reframing AS-Level Topology
Discovery as a Recommendation System. In Proceedings of the 2024
ACM on Internet Measurement Conference (Madrid, Spain) (IMC ’24).
Association for Computing Machinery, New York, NY, USA, 337–364.
doi:10.1145/3646547.3688429

[41] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett,
Harsha V. Madhyastha, Italo Cunha, James Quinn, Saif Hasan, Petr
Lapukhov, and Hongyi Zeng. 2017. Engineering Egress with Edge
Fabric: Steering Oceans of Content to the World. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication
(Los Angeles, CA, USA) (SIGCOMM ’17). Association for Computing
Machinery, New York, NY, USA, 418–431. doi:10.1145/3098822.3098853

[42] Brandon Schlinker, Kyriakos Zarifis, Italo Cunha, Nick Feamster, and
Ethan Katz-Bassett. 2014. Peering: An as for us. In Proceedings of the
13th ACM Workshop on Hot Topics in Networks. 1–7.

[43] Amit Sharma and Emre Kiciman. 2020. DoWhy: An End-to-End Library
for Causal Inference. (11 2020). doi:10.48550/arXiv.2011.04216

[44] Christopher A. Small, Narendra Ghosh, Hany Saleeb, Margo I. Seltzer,
and Keith Smith. 1997. Does Systems Research Measure Up? Techni-
cal Report TR-16-97. Harvard University, Computer Science Depart-
ment. https://dash.harvard.edu/bitstreams/7312037d-caf7-6bd4-e053-
0100007fdf3b/download Accessed: July 2025.

[45] Bruce Spang, Veronica Hannan, Shravya Kunamalla, Te-Yuan Huang,
Nick McKeown, and Ramesh Johari. 2021. Unbiased experiments
in congested networks. In Proceedings of the 21st ACM Internet Mea-
surement Conference. ACM New York, NY, USA, New York, NY, USA,
80–95.

[46] CAIDA Archipelago (Ark) Team. 2025. Archipelago (Ark) Measure-
ment Infrastructure. https://catalog.caida.org/collection/archipelago.
Accessed: 2025-07.

[47] Parth Thakkar, Rohan Saxena, and Venkata N. Padmanabhan. 2021.
AutoSens: inferring latency sensitivity of user activity through natu-
ral experiments. In Proceedings of the 21st ACM Internet Measurement
Conference (Virtual Event) (IMC ’21). Association for Computing Ma-
chinery, New York, NY, USA, 15–21. doi:10.1145/3487552.3487839

[48] Benito Van Der Zander, Johannes Textor, and Maciej Liskiewicz. 2015.
Efficiently finding conditional instruments for causal inference. In
Proceedings of the 24th International Conference on Artificial Intelligence
(Buenos Aires, Argentina) (IJCAI’15). AAAI Press, 3243–3249.

[49] Feng Wang, Zhuoqing Morley Mao, Jia Wang, Lixin Gao, and Randy
Bush. 2006. A measurement study on the impact of routing events
on end-to-end Internet path performance. ACM SIGCOMM Computer
Communication Review 36, 4 (2006), 375–386.

[50] Walter Willinger and Vern Paxson. 1998. Where mathematics meets
the Internet. Notices of the AMS 45, 8 (1998), 961–970.

[51] Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James
Hong, Keyi Zhang, Philip Levis, and Keith Winstein. 2020. Learning
in situ: a randomized experiment in video streaming. In 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
20). USENIX Association, Santa Clara, CA, 495–511. https://www.
usenix.org/conference/nsdi20/presentation/yan

[52] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett,
Matthew Holliman, Gary Baldus, Marcus Hines, Taeeun Kim, Ashok
Narayanan, Ankur Jain, Victor Lin, Colin Rice, Brian Rogan, Arjun
Singh, Bert Tanaka, Manish Verma, Puneet Sood, Mukarram Tariq,
Matt Tierney, Dzevad Trumic, Vytautas Valancius, Calvin Ying, Ma-
hesh Kallahalla, Bikash Koley, and Amin Vahdat. 2017. Taking the
Edge off with Espresso: Scale, Reliability and Programmability for
Global Internet Peering. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (Los Angeles, CA, USA)
(SIGCOMM ’17). Association for Computing Machinery, New York, NY,
USA, 432–445. doi:10.1145/3098822.3098854

[53] Jakob Zeitler, Athanasios Vlontzos, and CiaránMark Gilligan-Lee. 2023.
Non-parametric identifiability and sensitivity analysis of synthetic
control models. In Conference on Causal Learning and Reasoning. PMLR,
PMLR, 850–865.

https://doi.org/10.1145/1298306.1298339
https://www.peeringdb.com/
https://www.peeringdb.com/
https://doi.org/10.1145/3652963.3655091
https://doi.org/10.1145/3652963.3655091
https://www.reuters.com/business/media-telecom/rogers-communications-services-down-thousands-users-downdetector-2022-07-08/
https://www.reuters.com/business/media-telecom/rogers-communications-services-down-thousands-users-downdetector-2022-07-08/
https://www.reuters.com/business/media-telecom/rogers-communications-services-down-thousands-users-downdetector-2022-07-08/
https://atlas.ripe.net/
https://roughan.info/talks/tma_2015.pdf
https://doi.org/10.1145/944773.944788
https://github.com/Burdantes/Internet-As-Sisyphus
https://github.com/Burdantes/Internet-As-Sisyphus
https://doi.org/10.1145/3646547.3688429
https://doi.org/10.1145/3098822.3098853
https://doi.org/10.48550/arXiv.2011.04216
https://dash.harvard.edu/bitstreams/7312037d-caf7-6bd4-e053-0100007fdf3b/download
https://dash.harvard.edu/bitstreams/7312037d-caf7-6bd4-e053-0100007fdf3b/download
https://catalog.caida.org/collection/archipelago
https://doi.org/10.1145/3487552.3487839
https://www.usenix.org/conference/nsdi20/presentation/yan
https://www.usenix.org/conference/nsdi20/presentation/yan
https://doi.org/10.1145/3098822.3098854

	Abstract
	1 Introduction
	2 Related Work
	3 Primer on Causal Inference
	4 Measurement Design for Causal Analysis
	5 Conclusion
	References

