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Modern NICs offer rich functionalities, but host-side soft-
ware lacks a unified way to express or adapt to their capa-
bilities. Instead, developers rely on device-specific code and
ad-hoc glue layers, leading to duplication, reduction to the
lowest common denominator, inefficiency, and poor reuse.
As NICs grow more flexible, the lack of a shared interface
description becomes a core architectural bottleneck.

We propose OpenDesc, a common description interface
based on P4. While P4 is typically used to define the data
plane, we additionally repurpose it to allow the NIC and host
to describe their roles in packet exchange.

The host declares an intent, specifying what functionali-
ties should be implemented by the NIC. Fixed-function NICs
describe what functionalities they can provide and their in-
terface. Programmable NICs describe the constraints of their
interface. OpenDesc uses the combinations of intents and
capabilities to select a NIC-compatible descriptor format and
compile a NIC-specific driver code that is tailored to the
application’s intent. Missing features are implemented in
software, or pushed to the programmable pipeline if avail-
able.

We showcase a prototype OpenDesc compiler that can
select the fittest interface from the NIC interface description,
and generate the associated host code for multiple NICs. The
OpenDesc prototype enables access to the metadata sent
from the NIC in eBPF through XDP or userlevel programs
directly accessing the NIC descriptors. Our compiler is a first
step towards enabling a generated minimalist driver datapath
that can leverage the growing capabilities of increasingly
feature-rich NICs.
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1 Introduction

Modern network interfaces have outgrown their original role.
Once simple Dumb DMA engines, NICs now carry out a wide
range of tasks: checksum verification, flow hashing, times-
tamping, encryption, tunneling, even limited forms of sched-
uling and stateful processing. At the same time, host-side soft-
ware has grown more dependent on these capabilities to save
CPU cycles and increase throughput [3, 16, 20, 24, 27, 39].

In a typical system, the host and NIC coordinate using
descriptor queues: structured memory regions shared via
Direct Memory Access (DMA). These descriptors control
how packets are sent and received, and they encode metadata,
such as timestamps, hashes, protocol state, offload flags, and
more. However, each vendor defines this metadata differently.
Even the presence or absence of a field is vendor-specific,
and the layout may change with firmware updates, product
revisions, or the addition of new features [2].

This problem will only get worse in the future. Program-
mable NICs can implement new parsing logic [32], config-
ure match-action pipelines [4, 19, 30, 50], and insert custom
metadata [53]. This raises two challenges. First, custom new
features often introduce a need to exchange metadata with
packets, such as cryptographic context for AES offload [21]
and more generally L5 offloads [38]. Dedicated queues for
off-path offloads can even be used to exchange (partial)
packets with specific metadata, for instance for RegEx of-
fload [29], or chunk of payloads instead of packets with TCP
offload [22, 28]. What is exchanged with the SmartNIC ac-
celerators often reduces to a pointer, a length, plus some
specific accelerator-dependent metadata. It is not possible
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Figure 1: OpenDesc is the bridge between various descriptor formats of fixed and programmable NICs, and various

application and drivers layouts

for a single interface to match all those use-cases. Second,
the behavior now depends on the program currently running
on the NIC. One device might, in one configuration, generate
a timestamp and a flow hash; in another, it might expect the
host to supply steering hints or scheduling directives. A sin-
gle NIC becomes both a producer and consumer of metadata,
depending entirely on the deployed data plane.

Exposing the ever-growing capabilities of modern NICs to
software remains fragmented and ad hoc. Kernel stacks like
Linux’ one use heavyweight abstractions such as sk_buff to
store metadata, which hurts performance [6, 42,47]. XDP [16]
improves efficiency by narrowing the interface, but supports
only a limited subset of metadata, and requires manual co-
ordination between drivers and applications for additional
fields. Embedding drivers in applications through a clean-
slate approach can offer performance benefits [6, 7, 35, 41],
but is difficult to maintain and scale to multiple NICs. Other
works moved the descriptor data inside the packet itself [47],
reimplemented them in software pipelines [14], or just re-
moved them [43]. This highlights the tension between stan-
dardization and performance, but ultimately falls short of
offering a unified, dynamic metadata handling mechanism
across devices.

We present OpenDesc, a model and implementation to
describe the NIC-host communication semantics using P4,
extended with some code annotations. P4 is used as a declar-
ative interface contract. This contract describes metadata
fields, types, semantics, and directionality. With it, software
frameworks can auto-generate parser code, validate NIC be-
havior, and negotiate features. NICs become self-describing;
host applications become portable. The result is a network

I/O path that is simpler, more predictable, and more future-
proof.

We further extend on the motivation behind our work
and previous work in Section 2. We describe the interface in
Section 3. We propose a prototype compiler that transforms
a given NIC interface description and application intent into
a descriptor layout and application accessor in Section 4. We
conclude with open research areas in Section 5.

2 Why OpenDesc?

To cope with diversity in NICs” descriptors and features, each
software stack writes its own interpretation logic. Linux dri-
vers extract nearly all possible metadata into large sk_buff
structure. As this interface is slow [6, 42, 43, 47], XDP [48]
was introduced and provide a least-common-denominator
through xdp_buff fields. However, XDP descriptors do not
contain any offload information, such as the packet’s times-
tamp or RSS hash. XDP, therefore, proposes 3 accessors (at
the time of writing), which are defined by a few drivers,
to fetch the supplementary data from the NIC descriptor if
the compiled eBPF program accesses it. Every new offload
requires coordination between firmware teams, driver au-
thors, framework maintainers, and application developers.
For instance, the BPF accessors only cover 3 of the 12 meta-
data information available in NVIDIA Mellanox ConnectX
descriptors. Kernel bypass solutions like Netmap [42] choose
the path of least-common-denominator, a buffer pointer
and the packet length. DPDK [25] has per-driver code, set-
ting some of the 128bytes DPDK descriptor space rte_mbuf.
Although the rte_mbuf structure is already quite large, it
eventually became insufficient to store the growing number
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of offloads [8]. DPDK, therefore, introduced an indirection
layer that copies metadata based on numerous configuration
flags [9], a mechanism that has itself become a performance
bottleneck [35, 47].

This process consumes engineering time. It ossifies inno-
vation: even if a NIC supports a new offload, it is only useable
if all the relevant software is updated to match. Worse, it
fragments the ecosystem. There is no standard way for a host
to ask, “What metadata can you give me for this packet?”
Nor for a NIC to declare, “Here is the structure and meaning
of what I will write.” Even the XDP accessor model cannot
cope with dynamic pipelines, as its static accessors would
need to be defined according to the programmable pipeline
currently running on the programmable NIC.

Observing the slowness introduced by the jungle of meta-
data in DPDK, TinyNF [35] observed a 1.7x throughput im-
provement by simply re-implementing the driver for a single
NIC. Similarly applications like VPP [7], Caladan [10] or
Cornflakes [41] moved away from DPDK and implemented
direct userlevel support for the NVIDIA ConnectX NICs,
because the datapath of DPDK became too slow for them.
Cornflakes particularly highlights the problem. To offload
protobuf-like serialization, Cornflakes needs to write many
TX descriptor entries to benefit from the scatter/gather sup-
port of the NIC, offloading serialization. Allocating many
DPDK structures proved too slow just to write a series of
lengths and offsets in the TX ring, leading authors to re-
implement a “mini-DPDK” [41]. This is, of course, not a prac-
tical solution as it needs a lot of engineering effort to stay
compatible with every firmware update, and scale to more
devices. X-Change [6] collapsed DPDK’s datapath driver and
DPDK application into a unified runtime using link-time
optimization (LTO). This reduces transformation overhead,
leading to an increase of 70% for the throughput and a reduc-
tion of 28% for the latency. X-Change requires a complete
rewrite of the driver datapath code and remains limited to
fixed functions. Most recently, ASNI [47] proposed aggre-
gating packets and their descriptors within a larger packet,
known as an ASNI frame. ASNI, therefore, circumvents the
problem by embedding metadata within the packet buffer
itself. Still, ASNI only works with programmable NIC and
does not allow to dynamically find out if a feature is available
or not as the layout of the descriptor is fixed, only enabling
or disabling some fields. ENSO [43] replaces descriptor rings
with a streaming model. This led to a 6x throughput im-
provement for raw payload processing, but does not enable
the exchange of packet metadata with the NIC. Therefore,
the model collapses if the application needs to recompute
metadata such as a hash in software [47]. Furthermore, by
removing the indirection provided by the descriptors, ENSO
does not allow packets to be processed in a different order
from the one in which they were received without copying
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them. SoftNIC [14] addresses the problem by introducing
a software-emulated NIC as a middle layer, implementing
complex functions (e.g., parsing, shaping, classification) in
software pipelines.

Following the guidelines of these previous works would re-
sult in reimplementing support for each NIC in every applica-
tion. Essentially, this is equivalent to reimplementing DPDK
drivers, but with a distinct datapath for each application.
SoftNIC highlights this tension: While it unifies application-
facing APIs, it requires developers to define detailed software
pipelines per target NIC to fill in missing functionality — with-
out any standardized way for the NIC to describe what it
does or does not provide.

In OpenDesc, we propose to generate the variable
portion of the datapath according to the specification
of the NIC, and the needs of the application. The rest -
which is a vast majority — of the drivers’ code remains intact.

Figure 1 shows an overview of OpenDesc. We consider an
application that wants to receive the checksum of a packet,
the decapsulated vlan TCI, the RSS hash and the result of
a specific feature, for instance the key of a key-value-store
request as done in previous work [20]. Each NIC comes with
a P4 definition of its descriptor parser and completion seri-
alizer. Fixed-function NICs declare the supported layouts;
older NICs like the early Intel e1000 series supported only a
single descriptor, giving the computed IP checksum of the
packet. Newer Intel NICs came with a bigger descriptor that
can contain the RSS hash, or the checksum, but not both.
One of the layouts must be chosen; the other 3 features must
be recomputed in software. Some partially programmable
NICs like the NVIDIA BlueField 3 enable a field for specific
metadata computed through a series of Match-Action tables,
recently programmable in P4 [30]. However, the complete
descriptor that can potentially fit the 4 offloads is large. One
might prefer to use the compressed descriptor format that
the NIC also supports, which might contain only the hash,
or only the checksum. Finally, fully programmable NICs, like
those using the Xilinx QDMA API [1], have fully program-
mable descriptors of 8, 16, 32 or 64 bytes.

The OpenDesc compiler infers what fields the NIC can
provide, synthesizes parser and accessor logic, and aligns
host and NIC capabilities automatically. This decouples ap-
plications from specific NIC quirks. We propose each offload
feature to come with a reference P4 implementation. If hard-
ware lacks capability, OpenDesc can delegate to software
(e.g., a SoftNIC-like augmentation) using P4-to-software com-
pilers [5, 44, 49]. For programmable NICs, missing features
can therefore be pushed to the NIC using one of the numer-
ous P4-to-device compilers [19, 30, 45, 50, 52]. We note our
current prototype compiler only lists the missing features
for the given NIC, and the one left out after considering all
possible layouts (more in §4), but does not currently offload
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or compile the P4 code to software.

OpenDesc builds on a long line of work on SmartNICs,
but provides a missing cornerstone: explicit, declarative de-
scriptor semantics that bridge the gap between hardware
capabilities and software needs.

Other prior systems than the one mentioned above have
tackled parts of the problem, often by moving functionality
rather than defining a shared language. Even the emerging
P4-based NIC architecture efforts leave descriptor semantics
open. The P4 Portable NIC Architecture (PNA) [32] explicitly
recognizes that NICs need on-card message processing for
DMA, segmentation, etc., but defers all details of descriptor
formats to the NIC vendor. FlexNIC [20] offloads some host
processing into the NIC itself, allowing applications to install
simple match-action rules on the NIC hardware. Both PNA
and FlexNIC give no prescription for how a host should
interpret NIC metadata fields and how to put both on the
same page.

Clara [40] and Alkali [23] explore related gaps: Clara
builds a performance model of how network functions use
NIC resources, and Alkali provides an intermediate repre-
sentation to target diverse NIC hardware. We explore how
performance interfaces of packet operations can be used to
tailor the choice in OpenDesc in Section 5.

In summary, past work has addressed programmability,
performance, and even interface alternatives, yet all rely
on implicit, hard-coded metadata interpretations. OpenDesc
bridges this gap by introducing a descriptor-level semantic
contract.

3 OpenDesc interface

What a NIC produces or consumes should not be inferred
from vendor documentation, reverse engineering, or con-
stant trial-and-error integration. It should be declared in a
language understood by both ends of the link. A compiler
can act as a mediator: map what the host wants to consume
to what the NIC can produce, based not on identical formats
but on shared structure and intent. The goal is not uniformity,
but semantic alignment.

P4 is typically used to describe how programmable data
planes parse packets and apply match-action logic. In our
setting, we repurpose P4 not only to define forwarding be-
havior but also to describe interface semantics, which means
specifying what metadata is exchanged between the host
and NIC, where it appears, and how it should be interpreted.
We select P4 as it is a domain-specific language designed
solely for describing the data plane behavior of network de-
vices. It also proposes a suitable bit-wise header description
format, at the heart of OpenDesc. While some alternatives,
such as eBPF, could be appropriate, they are often too ex-
pressive, which complicates the analysis of the parser code.
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Figure 2: OpenDesc Architecture.

We elaborate on the tradeoffs of P4 in Section 5.

Each direction of the packet (TX and RX) involves a pro-
ducer and a consumer. In RX, the NIC produces metadata
such as flow hashes, timestamps, and checksum status; the
host consumes it. On TX, the host produces intent — such
as requesting segmentation, tagging, or offload parameters
— and the NIC consumes it. These metadata structures vary
by pipeline, firmware, and device capability and must be
described explicitly.

Each direction, TX and RX, involves a producer and a
consumer of metadata. On TX, the host sets the packet to
be transmitted along with some offload hints. On RX, the
NIC DMAes the received packet along with some precom-
puted results such as flow hashes and timestamps. These
interactions can be categorized into five channels, as shown
in Figure 2:

e TX Desc @ : Transmit descriptors posted by the host,
containing buffer addresses, lengths, and offload flags
or parameters.

e TX Packet @ : The packet payload itself, which the
NIC’s DMA engine reads from host memory to pro-
cess/transmit onboard.

e RX Packet €) : The packet payload received from the
wire, which the NIC’s DMA engine writes into host
memory.
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e RX Cmpt @ : Completion records written by the NIC
back to the host, indicating the status of a received
packet and containing computed metadata such as
flow hashes or timestamps.

e Control Channel (Implicit): Configuration and con-
trol messages, typically handled out-of-band via mech-
anisms like MMIO writes to hardware registers

Packet data follows a predefined path (e.g., following PNA)
through a pipeline, with a (perhaps programmable) parser,
control, and deparser. But descriptor metadata requires addi-
tional machinery. We introduce two additional blocks, posi-
tioned logically outside the packet path, which describe how
descriptors and completions are interpreted or emitted:

e Descriptor Parser: interprets the host’s posted TX de-
scriptor. This typically involves raw memory mapped
through DMA and converted into structured fields. It
may depend on the context of the queue or the ring
layout.

e Completion Deparser: emits metadata from NIC to
host in the form of RX completions. This includes com-
puted hashes, timestamps, and offload results.

In OpenDesc, these roles are explicit as part of the pipeline
description. The relevant components appear as follows.

The Descriptor Parser shown in Figure 3 is a P4 parser
element that interprets a stream of bytes (of type desc_in)
using some context information-such as per-queue layout or
descriptor size-to guide the parsing logic. It outputs a struc-
tured collection of header fields that can be subsequently
accessed by the main packet processing pipeline or by the
completion logic (discussed next). The parser is designed as
a templated component, allowing each NIC implementation
to define its own descriptor parsing strategy tailored to its
specific layout and semantics.

The Completion Deparser shown in Figure 4 abstracts the
completion channel, which is DMA-ed back to the host to
convey both the status of the received packet and the asso-
ciated computed metadata. This control block is placed at
the final stage of the pipeline, where it has access to both
the parsed descriptor (that is, the output of the DescParser)
and the metadata produced by the pipeline logic itself (rep-
resented by the pipe_meta parameter). Its role is to serialize
the relevant fields from these inputs into a well-defined byte
stream that is emitted to host memory. For example, if the
pipeline computes a 5-tuple flow hash, the pipe_meta pig-
gybacks this value, and then the CmptDeparser ensures that
this value is emitted at the correct offset within the comple-
tion structure, aligned with the expectations of the host-side
facade API This alignment ensures proper interception and
interpretation of metadata by the application.

HotNets "25, November 17-18, 2025, College Park, MD, USA

The application declares its intent metadata as a simple
P4 header type as shown in Figure 5. Certain fields may
or may not be present depending on the NIC capabilities.
We use @semantic annotations to tag each field with a se-
mantic name that corresponds to a native type recognized
by OpenDesc. The application can define new @semantic
annotations that are tied, for instance, to a new feature that
will be offloaded in a programmable NIC or future NICs.

We note applications might use multiple OpenDesc in-
stance with different intents to obtain different queues tai-
lored for different kind of traffic. This is orthogonal to the
declarative interface itself.

4 Compiler Mapping
We implement an OpenDesc prototype compiler that bridges
a NIC’s metadata behavior and an application’s declared
intent. The prototype is implemented in C++, building on
the p4c frontend for parsing and IR analysis. The compiler
currently showcases how the declarative interfaces can be
used to select the best descriptors supported by the NIC and
generate accessors to the descriptor for an application.

In what follows, we describe the key steps of the process.

1. Control-flow graph extraction. The compiler parses
the body of CmptDeparser once, replacing each emit state-
ment by a vertex and each conditional by two directed edges
labeled with the branch predicate that guards them. A root-
to-leaf walk in this graph G = (V,E) is called completion
path, forming a concrete metadata layout that the NIC may
emit under a given context. Each vertex v € V carries three
static properties that can be determined by symbolic evalu-
ation. Figure 6 illustrates this process: the right-hand side
shows the original P4 logic of a simplified CmptDeparser for
the Intel e1000 newer NICs. The left-hand side depicts its
corresponding control-flow graph, in which the branch on
ctx.use_rss (i.e., a config variable) selects between emit-
ting a single RSS 32bits hash or two alternative metadata
fields (ip_id and csum). Each node in the graph corresponds
to a static emit call and carries three properties used for anal-
ysis: the emitted bit range, the associated semantic meaning
(e.g., rss, ip_checksum), and its byte size.

bits(v) contiguous byte range committed by v
sem(v) subset of ¥ that those bytes encode
size(v) |bits(v)| in bytes
2. Path characterization. For a path p = (v, ..., ;) let
k k
Prov(p) = U sem(v;), Size(p) = Z size(v;).

i=0 i=0

Applications request the set Req C X that appears in their
intent header. Every semantic s € Req \ Prov(p) must be
computed in software. A SoftNIC-like framework emulates
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parser DescParser<
typename H2C_CTX_T, typename DESC_T>(
desc_in desc_in,
in H2C_CTX_T h2c_ctx,
out DESC_T desc_hdr
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header intent_t{
@semantic("rss")
bit<32> rss_val ;

control CmptDeparser<
typename C2H_CTX_T,
typename DESC_T,
typename META_T>(
cmpt_out cmpt_out,
in DESC_T  desc_hdr,
in META_ T pipe_meta

@semantic("vlan")

bit <16> vlan_tag;
@semantic("ip_checksum")
bit <16> csum;

) );

Figure 3: Descriptor parser template

@card2host

control CmptDeparser(
cmpt_out out,
emit(hdr_info)

c2h_ctx_t ctx,
in h2c_desc_t dh,
in meta_t m) {
apply {
out.emit(m.pkt_info );
out.emit(m.hdr_info);
if (ctx.use_rss ==1) {
out.emit(m.rss_hash);
} else {
out.emit(m.ip_id );
out. emit(m.csum);

}

out.emit(m. status_error );
out.emit(m.length );
out.emit(m.vlan);

Path 1: 10 Path 2: 20

Figure 6: Simple completion serializer for e1000. Left:
control flow graph of the serializer program. Right: P4
logic of the CmptDeparser that emits completion fields
based on a single bit context.

each missing semantic at a run-time cost: w : & — R U
{oo}.

3. Optimization problem. The compiler chooses a comple-
tion path by solving the following optimization.

Size(p) ) @
~——
DMA completion footprint

min Z v
pEPaths(G) s€Req\Prov(p)

SoftNIC cost

The DMA completion footprint is a positive real value
proportional to the size of the completion descriptor for the
path p, and favors paths with smaller completions.

The first element minimizes CPU overhead; the second one
favors shorter descriptors, which reduce DMA bandwidth. If
the first element is oo for every path, the program is rejected
as unsatisfiable.

Because production NICs expose only a handful of comple-
tion paths (two in 1000, many formats for MLX5, one per
installed queue in fully-programmable cards like those based
on QDMA), optimization degenerates into enumerating a

Figure 4: Completion deparser template

}

Figure 5: Semantic annotations

small finite set and picking the best element of (1). Figure 6
provides the running example: when both rss and csum are
requested, the compiler prefers the right branch because it is
assumed that the software rss is cheaper than recomputing
the csum (using the cost given for the annotated feature).
4. Host stub synthesis. After selecting an optimal path p*
the compiler emits:

e Constant-time accessors for every s € Prov(p*) that
read the relevant bit slice directly.

o SoftNIC shims for the remaining semantics. Each shim
is a thin wrapper around a library routine that imple-
ments s. Currently, the user is informed of missing s
and is responsible for providing a linkable software
implementation. We envision to automatically compile
the routine from a given P4 reference implementation
using existing compilers [31, 49].

The metadata can then be accessed using the generated
accessor functions that read a fixed offsets relative to the
beginning of the descriptor. Using XDP, access to the de-
scriptor can be bounded and therefore read safely from an
eBPF program. In future work, we want to enable the use of
the accessors in DPDK by enabling a hook on the descriptor,
much like XDP is doing for kernel drivers. The accessors can
also be used by applications directly manipulating the NIC,
allowing to adapt to new offloads and firmware upgrades.

5 Discussion and future work

Our work establishes a foundation for portable, semantics-
aware NIC-host interfaces. Although our current prototype
focuses on completion metadata extraction, broader chal-
lenges remain in describing the full interface, reasoning
about offload trade-offs, and targeting diverse hardware. In
what follows, we outline several directions to extend Open-
Desc’s scope and impact.

Synthesizing the complete driver datapath Future work
is required in order to express the dynamics of the interface
atop the limited scope of the descriptors’ content. An appli-
cation could use batched descriptors, as ASNI [47] proposes,
or a streaming interface, as Enso [43] introduces, according
to the application’s potential for optimal performance on a
given NIC. Enabling a description of the interface semantics,
such as how the device moves from one descriptor to the
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next, would enable generating the full datapath driver code.
Feature equivalence In OpenDesc, we propose the use of
annotations that define the functionality desired by the appli-
cation. This choice posits that a clear definition of all possible
features should be provided so vendors and applications can
agree on the semantics of the metadata header. A reference
implementation should also be shipped for each functionality
to be synthesized in software, or the programmable hardware
if available. Several research efforts focused on compiling
P4 code to the specifics of SmartNICs [11, 12, 46, 54, 55],
showing that P4 is suitable to describe NIC functionalities.
Future work could enable the ability to use symbolic execu-
tion, as done in previous work on network functions and NIC
code [33, 36, 37], to understand if a feature described in the
NIC is equivalent to a feature described in application code
and avoid the need for standardization of functionalities.
Stateful offloads OpenDesc does not currently implement
stateful features, though in principle they could be described
using P4 primitives such as registers or externs. Since these
constructs are used only as a descriptive mechanism and are
not mapped to hardware resources, their number or size is
not a constraint. Nonetheless, a more generic and extensible
abstraction will be needed to express such stateful behaviors
in a portable way across NICs.

Limits of P4 for defining complex offloads P4’s restric-
tions also come with limitations in what can be expressed to
define complex offloads. Certain metadata extends beyond
per-header information, requiring context that spans mul-
tiple packets or even depends on inspecting payload bytes,
such as pattern-matching. However, we still believe P4 is
suitable for the interface itself. While the idea that all features
could be entirely defined in a unique language is undoubt-
edly appealing, the application demands have to match the
vendors’ definitions. If both sides describe a very complex
offload, the slightest difference will conclude that the feature
is not available in the NIC. Even for something relatively
simple, such as the RSS hash, we realized a symbolic analysis
approach wasn’t going to work as implementations from
vendors differ slightly and offer different hashing schemes.
However, the user only wants a mash-up of bits that is con-
sistent per-connection and as different as possible between
connections. The implementation details are less relevant for
the user. This is why, in the end, we resorted to using annota-
tions. P4, however, enables access to more complex offloads
through extern, special externally implemented objects or
functions that can be invoked from P4 code. Future work
could tie externs to a given implementation, using an appro-
priate language for a complex feature. There is, however, no
need for the interface to be able to peak in the feature itself.
Multiple previous works such as Floem [34], iPipe[26], or Al-
kali [23] enable some languages to define functionalities that
can be compiled to different targets. While these compilers
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could be used to define some complex functionalities, more
research is needed to assert if the opposite is true: whether
the limits of each target (FPGA, ASICs, muti-core NICs, ...)
can be expressed using a unique language.

Performance and programmable constraint Not all fea-
tures might be actionable at the same time, and program-
mable NICs offer constrained resources. Given all applica-
tions’ intent, an open question is still whether a feature
should be offloaded to the NIC even if technically possible,
or if sometimes using a software counterpart is not more
desirable. On the NIC side, Pipeleon [55] computes a perfor-
mance cost for a given P4 program for multiple SmartNICs.
Iyer et al. [18] advocate for a clear NIC performance inter-
face. LogNIC [13] proposes a packet-centric approach to
model the performance of a SmartNIC and its accelerators.
P4All [15] proposes elastic structures in P4 programs to dy-
namically size storage requirements when programming P4
pipelines. On the host side, PIX [17] enables building a per-
formance model of network functions. OpenDesc presents
the opportunity to combine these works for a more oppor-
tunistic placement beyond the question of whether a feature
is available or not. Similarly, Menshen [51] tackles the issues
of isolation when concurrent pipelines run in a program-
mable RMT architecture, which could be informed by the
application’s intents to provide isolation inside NICs.
SIMD and architecture-dependent optimization Most
DPDK drivers implement another version of the driver data-
path using SSE (128-bit) to read 4 descriptors at a time, and
one for different architecture (Altivec or Neon). This pose
a burden on maintainance. OpenDesc could be extended to
generate SIMD accessors instead, taking also advantage of
wider lanes to process more packets in parallel.
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