
Automatically Surfacing Opportunities for
Improvements In Internet-Scale Applications

Vipul Harsh1, Sayan Sinha1,2, Henry Milner1, Haijie Wu1,
B Aditya Prakash1,2, Vyas Sekar1,3, Hui Zhang1,3

1Conviva 2Georgia Tech 3Carnegie Mellon University

Abstract
Modern Internet services generate massive volumes of ob-
servability data, yet identifying opportunities for business per-
formance improvements remains elusive. Inmany cases, such
insights manifest only within sub-populations defined by de-
rived attributes that cannot be predefined, might evolve over
time, and often cannot be exhaustively enumerated ahead
of time. Unfortunately, existing commercial and research
systems fall short in one or more aspects of generating such
improvement opportunities: expressiveness, automation, and
scalability. We present a vision for automatically surfacing
opportunities for improvements to tackle these seemingly
conflicting and intractable requirements. We highlight the
early promise from a proof-of-concept system, showing eval-
uation on three real-world services and discuss open chal-
lenges for future work.

CCS Concepts
• Networks → Network monitoring; Network reliabil-
ity; Network management.
ACM Reference Format:
Vipul Harsh1, Sayan Sinha1,2, Henry Milner1, Haijie Wu1,, B
Aditya Prakash1,2, Vyas Sekar1,3, Hui Zhang1,3 . 2025. Auto-
matically Surfacing Opportunities for Improvements In Internet-
Scale Applications. In The 24th ACM Workshop on Hot Topics in
Networks (HotNets ’25), November 17–18, 2025, College Park, MD,
USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3772356.3772423

1 Introduction
Modern Internet-scale services across many business verti-
cals (e.g., E-commerce, OTT video platforms, ride-sharing)
are increasingly getting large and complex with multiple
sub-systems, geo-distributed backends, third-party services,
intricate user workflows among others. To monitor such

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
HotNets ’25, College Park, MD, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2280-6/2025/11
https://doi.org/10.1145/3772356.3772423

systems, operators invest significant effort in observability,
product analytics, and data warehousing tools. Such ser-
vices collect large volumes of telemetry (metrics, events,
logs, traces) collected from multiple vantage points (client,
backend, network).
However, operators and business owners continue to be

frustrated in terms of the value these provide, as existing
tools consistently fail to surface opportunities for improving
Key Performance Indicators (KPIs) relating to user experi-
ence, user engagement, performance, and business outcomes.
These tools are very valuable in identifying “smoking gun”
issues such as outages or large deviations but fail to identify
opportunities for improvements that actually matter.

To see why, consider two scenarios inspired by real-world
phenomena in a large e-commerce application. In the first
case, users on a specific app version who trigger a partic-
ular sequence of actions (e.g., Click on buy -> Experience
browser error -> Timeout) cause a disproportionate number
of backend database deadlocks. In another scenario, return-
ing users, who are accessing the app for a second or later
time, experience higher error-rates. These are not anomalies
in the classical sense as they do not manifest as significant
deviations in KPIs for any obvious user cohort of interest.
Over a long time range, however, these types of occurrences
can potentially result in significant drop in user satisfaction,
and ultimately revenues.

Such nuanced “long tail” opportunities to improve business
outcomes are the norm not the exception in Internet-scale
services [13]. We define an opportunity as any discernible
pattern that suggests a concrete avenue to improve some
KPIs of interest (e.g., performance and user engagement).
Crucially, this definition not only encompasses anomalous
patterns that signal outages, but also non-anomalous pat-
terns which nevertheless can lead to improvements. Cap-
turing a diverse set of opportunities, such as the scenarios
described earlier, requires expressing a combinatorially large
set of user-journeys that are not just characterized by user
metadata, but the unique sequence of actions they perform,
the transient state of the backend services they hit, and the
parameters associated with the requests they send.
Ideally, we want to have an expressive, scalable and

automated mechanism to spot such opportunities to guide

https://doi.org/10.1145/3772356.3772423
https://doi.org/10.1145/3772356.3772423
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3772356.3772423


HotNets ’25, November 17–18, 2025, College Park, MD, USA Vipul Harsh, et al.

potential interventions and improvements. Unfortunately,
simultaneously achieving all three goals is easier said than
done, and even achieving just two of these may be impossible
with current solutions. For example, existing OLAP-style an-
alytics systems [1] rely on pre-computed static attributes to
slice and dice data through manual query interfaces. As such,
these cannot express the sequential/stateful requirements of
the scenarios above. On the other hand, there are more ex-
pressive stateful analytics schemes [2, 4, 26]. However, they
are expensive and require significant manual effort. While
there are efforts at automating detection and root cause anal-
ysis [5, 8, 17, 19, 20, 25, 27, 28], they too rely on a small,
scoped set of precomputed attributes and cannot capture the
complexities of user-journeys described above.
In this paper, we articulate our vision to automatically

surface business-critical insights to drive continuous perfor-
mance improvement in Internet-scale services. To achieve
this goal, we argue for a paradigm shift, moving away from
analysis based on predefined static attributes of the teleme-
try database, towards on-demand data slicing to generate
derived attributes on the fly. Computing derived attributes
allows us to capture the space of all possible user-journeys.
We identify three major challenges in designing such a sys-
tem spanning algorithms, ML, and system-design —

(1) Hypothesis generation: The space of hypotheses based
on derived attributes is vast and potentially infinite. One
needs (1) an efficient way to express hypotheses in this
space using a concise language, and (2) automated meth-
ods to narrow down potentially insightful regions in this
space.

(2) Scalable attributes computation: On-the-fly computa-
tion of derived attributes necessary for testing generated
hypotheses requires efficient data processing tools capa-
ble of handling complex and stateful logic efficiently.

(3) Opportunity finder: The system needs to generate hy-
potheses from the computed derived attributes and out-
put opportunities which are truly related to KPI degrada-
tions, using suitable ML models.

As a pragmatic first step towards solving these challenges,
we envision a human AI collaborative approach where hu-
man operators can express their intents of capturing certain
classes of behavioral opportunities and the system automat-
ically surfaces the important ones from those classes. We
outline an end-to-end design of a system, sketching the key
components in our solution to address hypothesis generation,
scalable attributes computation and opportunity finder (§ 4).
We implement a proof-of-concept prototype combining sim-
ple yet expressive hypothesis generation based on derived
attributes, a basic stateful attributes computation engine that
is efficient, and an “ensemble of experts” approach to vali-
date hypotheses to find opportunities. We show that even

User clicks 
on buy plan

payment 
incomplete 
within T sec

CORS 
error

Timeout
Error

Events in a failed user session
t t + T

(a) Example 1

2025-06-10 2025-06-15 2025-06-21
Time

0.2

0.3

0.4

0.5

0.6

E
rr

or
 R

at
e

First session
Second and next sessions

(b) Example 2

Figure 1: Illustrative examples from a production setup.
(a) Example 1: Event timeline for a user session ending
in a payment conversion failure: we hypothesize that
the initial CORS error leads to client-side retries, cul-
minating in the timeout_error, which ultimately leads
to payment not finishing in the 10-second window. (b)
Example 2: How a specific error affects a group of users
differently from others. For a specific OS version, error
rate is higher when a user accesses the app a second
time compared to the first time.

this preliminary design reveals interesting opportunities in
real-world applications that would otherwise be difficult to
discover with existing tools (§ 5).

2 Motivation
In this section, we present two illustrative real-world scenar-
ios (Figure 1) from a production system. We use anonymized
data from a large application-level monitoring and analyt-
ics service provider. The provider gives its customers (who
run global-scale applications) fine-grained visibility into the
digital experience observed by their users in the field, en-
abling its customers to create custom KPIs/metrics (e.g., error,
conversion, timing) to track business outcomes [9, 15].
Example 1: Errors impacting a content-platform ser-
vice. Customer X runs a digital subscription service. They
created a KPI metric to check how “fast” new users were
able to subscribe. To this end, they created a binary metric to
track whether a prospective subscriber who “clicked on buy
plan” button was able to complete “payment” within a spe-
cific time. When debugging an unrelated problem, we saw
that many sessions where this failure metric was flagged (i.e.,
payment did not occur within T seconds) showed a specific
event sequence: users who clicked buy_plan, then encoun-
tered a web_cors_error, and subsequently a timeout_error,
were not finishing the payment flow (Figure 1a). The initial
CORS error (a browser security feature) triggered client-side
retries that led to the timeout. Now, a non-trivial fraction
1 − 2% users were impacted, but the overall payment failure
rate was not high enough to trigger an alert.



Automatically Surfacing Improvement Opportunities HotNets ’25, November 17–18, 2025, College Park, MD, USA

Example 2: Figure 1b shows a different but subtle problem
that we observed for a different customer Y. Here, the cus-
tomer had defined a global error metric to track user-sessions
that experience application errors. Once again, we observe a
subtle but noteworthy pattern in the error rate — users on a
specific OS version exhibit higher error rates in their second
or subsequent session compared to their first visit (affecting
approximately 35% of sessions on that OS). We speculate that
this return pattern may trigger distinct backend workflows,
such as cache accesses or follow-up onboarding steps, which
could be contributing to the observed errors.
Note that these incidents were not covered by any exist-

ing capabilities developed in-house by the service provider
or deployed by the customer. Rather, these were uncovered
serendipitously by customer-facing and research investiga-
tion teams who were trying to troubleshoot unrelated issues.

Discovering such opportunities for improvement today is
either absent, or at the very least painstaking and involves
significant manual effort. In many cases, the KPI drops for
specific user behaviors will go unnoticed. Even if an operator
notices the KPI change, they may have no clear starting
point. Guided only by intuition, they might manually craft
a few SQL queries to test simple hypotheses based on pre-
computed attributes present in the telemetry— ’Is it an issue
with Android users? Or users in Germany?’.

The operator then is left to guess at more complex be-
havioral or temporal patterns, a process that is ad-hoc, un-
scalable, and entirely dependent on the operator’s luck and
prior experience with the system. Even if an operator were
to somehow conceive a few potentially useful hypotheses,
they face a significant barrier— each new hypothesis requires
writing a complex, bespoke query that is computationally
expensive. In Example 1, to test the behavioral hypothesis for
payment failures, an operator must construct a multi-stage
query involving stateful scans over the event table, following
by joins with the KPI metrics table. In Example 2, an operator
must first write a subquery on the sessions table, grouping
the sessions by user-id and then apply a window function to
identify which session was their second. A seemingly natu-
ral solution is to use event-processing systems [2, 4, 26] to
pre-compute every possible attribute that could be used to
validate some hypothesis and store them as regular columns
in the database. However, this approach is infeasible: (1) the
space of candidate attributes is combinatorially vast, even po-
tentially innumerable, and (2) the attribute itself may evolve
as user-behavior changes (e.g., frequent vs infrequent user).
Finally, we highlight another noteworthy aspect of such

incidents. Given the subtle and nuanced nature of these is-
sues, they “fly under the radar” of classical anomaly and
deviation detection techniques. Over time, however, the cu-
mulative effect of many such issues will inevitably lead to

poor user-experience. Hence, we want to automatically un-
cover such opportunities for intervention to improve the
user-experience.
Ideally, we want a system to identify such opportunities

that satisfies three natural goals (Table 1): (1) expressivity
to easily define and test a hypothesis for any interesting user
journey; (2) automation to systematically generate and test
thousands of hypotheses, moving beyondmanual guesswork;
and (3) scalability to efficiently compute several attributes
simultaneously that are needed to test those hypotheses.

Table 1: Comparison of Related Work Categories
Against System Goals

Solution Category Expressivity Scalability Automated

Classical OLAP systems
(e.g., SQL, Spark [1])

X ✓ X

Stateful event processing sys-
tems
(e.g., [2, 4, 26])

✓ X X

Automated anomaly detec-
tion/root cause analysis
(e.g., [5, 8, 17, 19, 20, 25, 27, 28])

X ✓ ✓

LLM-based insight detection
e.g., InsightPilot [22])

X X ✓

3 Problem Formulation
In this section, we define our requirements to understand
why current solutions fall short. We begin by formalizing a
general data model, applicable to many observability settings
in large-scale services.
Data model: We assume that the most atomic unit of data
is an event 𝑒 ∈ E, where each event is a structured object
with attributes such as timestamp, user ID, request ID. In our
setting, these are client-side events streaming from collec-
tion agents on end-user devices, but more generally, events
could be structured objects (e.g., JSON), sensor readings, log
updates, etc. We assume that events arrive as a time-ordered
stream S = {𝑒1, 𝑒2, . . . , 𝑒𝑛}.

Events are grouped into partitions {𝐶𝑔} based on some nat-
ural event attributes 𝑔, such as user ID, session ID, request ID
etc. This grouping is sometimes referred to as sessionization.
Each group 𝐶𝑔 is internally ordered by event timestamps to
reflect sequential behavior. For each group𝐶𝑔 , we compute a
vector of metrics m(𝐶𝑔) ∈ R𝑑 , where each component repre-
sents a KPI such as session duration, user activity frequency,
or backend response time.
Analytics Goal: We envision a data analytics system that
generates a set of hypotheses H , where each hypothesis
guides computation of the derived attributes required to
test the hypothesis e.g. a binary attribute for whether the



HotNets ’25, November 17–18, 2025, College Park, MD, USA Vipul Harsh, et al.

user is frequent to test whether a KPI is worse for infrequent
users. The system then evaluates the hypotheses and surfaces
corresponding opportunities for operators of internet-scale
services.
Static vs. Derived Attributes: The central challenge here
is w.r.t. the types of hypotheses we generate and validate to
surface opportunities for improvement.
Classical data analytics workflows rely on hypotheses

based on static attributes that are predefined and stored di-
rectly in the database e.g. device_type, region, or app_version [5,
8, 17, 19, 20, 25, 27, 28]. More precisely, static attributes
are directly observable within individual events, such as
operating system, device type, or browser family.

Recall, however, in Example 1, the errors occurred for users
who were going through a particular sequence of events.
Similarly, in Example 2, the errors occurred within a specific,
transient phase of the user lifecycle. Both involve subtle and
complex aspects of the session and user history and sequence
of actions that cannot be captured by the conventional lens
of static attributes as defined above.

Instead, we argue that we should focus on more expressive
hypotheses that are based on derived attributes– defined
by behavioral, temporal, or non-local context that are not
present as simple database columns. These must be com-
puted on the fly from raw event data and other data tables.
These hypotheses are necessary to explain subtle shifts or
degradations in computed metrics m(𝐶𝑔). More concretely,
to construct such rich hypotheses, we consider three specific
types of derived attributes.

• Indirect: Attributes computed from static attributes using
zeroth-order predicates, e.g., night = (hour(𝑒) < 9) OR
(hour(𝑒) > 21).

• Stateful: Attributes defined over event sequences, com-
puted via stateful queries e.g., session duration, time spent
waiting in rebuffering state, or number of retries before
success. These depend on the temporal structure of the
groupings 𝐶𝑔.

• Non-local: Attributes computed by referencing external
or global context—e.g., whether a session occurred when
the backend nodes were exhibiting high CPU usage, or the
result of network request accesses corresponding to top
20 URLs accessed during login across all sessions.

Unfortunately, such derived attributes pose stringent re-
quirements for data processing efficiency, defined by scal-
able context-aware stateful computations. We call a com-
putation context-aware if the data needs to be filtered or
grouped based on other telemetry sources e.g. grouping
user-sessions based on error-timestamps from backend logs.
Context-aware processing can require complex expensive
joins betweenmultiple tables. For stateful computation, while
powerful interactive analytics tools like Kusto (KQL) [4],

EQL [2] and TLB [26] provide the necessary expressivity,
they are not architected to compute thousands of them.
Hence, they do not meet our requirements of automation and
scalability. LLM-based frameworks such as InsightPilot [22]
aim to automate the analysis process, but rely on tools that
operate only over static attributes [14], preventing execution
of expressive queries involving derived attributes.
Overall problem statement: Summarizing, we frame the
problem of automatically surfacing opportunities in terms
of generating and validating interesting and useful hypothe-
ses that link some derived attributes to degradations in key
performance indicators (KPIs). More precisely, given a group-
ing over events (e.g. sessions, users, backend-services), our
objective is to automatically generate a rich set of candi-
date hypotheses, efficiently compute corresponding derived
attributes and finally test those hypotheses.

4 Design
Figure 2 shows a high-level view of our system design with
the key components. Next, we highlight how we tackle key
challenges in hypotheses generation, attribute computation,
and hypothesis validation for surfacing opportunities.

4.1 LLM-Assisted Hypothesis Generation
The space of plausible hypotheses based on derived attributes
is vast and combinatorial, hence we need to narrow down
useful regions. We further observe that hypotheses gener-
ation is in fact a domain-specific problem: an anomalous
signal in one domain may not be anomalous in another. For
instance, a temporary spike that comes back to its usual
value might not be alert-worthy for a “heart rate” metric, but
would indicate a severe issue for a metric indicating blood in-
fection rates. We tackle this problem by leveraging the world
knowledge embedded in large language models (LLM) and in-
corporating the natural language metadata about the domain.
Specifically, we design a LLM-assisted hypothesis genera-
tor that synthesizes candidate hypotheses classes given the
following inputs:

• Hypothesis templates: A library T = {𝑇1,𝑇2, . . . ,𝑇𝑚} of
parameterized hypotheses classes, where each template
𝑇𝑗 defines a family of hypotheses over event-groups 𝐶𝑔

(sessions, users and so on). Each 𝑇𝑗 is associated with a
computation DAG 𝐷 𝑗 that specifies how to compute the
derived attributes required to test all hypotheses in that
class. These hypotheses templates are pre-defined and are
a part of the system.

• Metadata: Natural language artifacts such as KPI descrip-
tions, user reviews, source code, and telemetry schema.



Automatically Surfacing Improvement Opportunities HotNets ’25, November 17–18, 2025, College Park, MD, USA

Hypothesis Generator
1

Attribute Computation Engine Opportunity finder
2 3

Feedback

Human-
input

Parameterized 
hypothesis-classes

A hypothesis class comes with a data 
computation DAG that specifies how 
to compute derived attributes for it

…

Natural language 
metadata e.g. KPI 
metric description, 
user reviews, app 
source code

Context-aware stateful data 
processing for derived attributes 

computation

A Mixture of Experts model to find 
valid hypotheses and output 
corresponding opportunities

Opportunities

LLM-assisted generation of 
parameters for hypothesis-classes

Concrete 
hypothesis-

classes

Hypotheses + 
Derived attributes

Figure 2: Our envisioned system consists of three components: (1) an LLM-assisted hypothesis generator that
generates concrete hypothesis-classes based on a library of parameterized hypothesis-classes, textual metadata
and human prompt (2) an attributes computation engine that performs context-aware data processing to compute
derived attributes necessary to test generated hypotheses, and (3) an opportunity finder that appliesMLmodels (e.g.,
regression, outlier detection) to test hypotheses and surface opportunities corresponding to the valid hypotheses.

• Human prompts: Natural language instructions that
guide the LLM towards generating hypothesis-class pa-
rameters, targeting potentially useful regions in the hy-
potheses space.

Given a prompt, such as “find patterns associated with
high rebuffering,” the LLM selects a subset of relevant tem-
plates T ′ ⊆ T and instantiates each 𝑇𝑗 ∈ T ′ by filling in
its parameters to produce a corresponding set of concrete
hypothesis-classes. These concrete-hypothesis classes will
then be passed to the attributes computation engine (§ 4.2)
for execution (see section 4.2). By leveraging human intent,
system metadata, and prior context, this design enables the
LLM to generate hypotheses that are semantically grounded
and better aligned with domain-relevant diagnostic needs.

4.2 Stateful and Expressive Computation
The attribute computation engine receives a set of concrete
hypothesis-classes from the hypothesis generator. It takes
the associated computation DAG for each hypothesis-class
that specifies how to compute its corresponding derived at-
tributes and compiles all of them into one giant computation
DAG. It reuses computation whenever possible, merging du-
plicate nodes across the individual DAGs for efficiency. Note
that for attributes involving temporal or behavioral context,
some nodes in the DAG would have to be computed using
stateful operators over event streams. Conceptually, the at-
tribute computation engine will create new columns in the
database that correspond to the derived attributes.

4.3 Mixture-of-Experts Opportunity Finder
The Opportunity Finder receives from the attributes compu-
tation engine, derived attributes (e.g. frequency of use in the
last week for each user), corresponding to the hypotheses
classes generated by the Hypothesis generator.

To narrow down the relevant hypotheses from the hypothesis-
classes that may be leading to KPI degradation, the Oppor-
tunity Finder applies a mixture of “experts” approach i.e.,
suite of statistical and machine learning pipelines; to assess
the relevance of computed hypotheses. These can include
trend analysis, outlier detection, change point detection, sim-
ilarity analysis between cohorts (e.g., treatment vs. control)
etc. If the validator detects a statistically significant effect
(e.g., uplift or drop beyond a configured threshold), the cor-
responding hypothesis ℎ𝑖 is marked as an opportunity and
passed on for visualization or downstream action.
Feedback loop: We envision a feedback loop where the hy-
pothesis generator receives feedback from the Opportunity
Finder to refine its generation policy. After each hypothesis
is assessed, i.e., quantified by statistical metrics such as effect
size or correlation strength, the feedback is used to bias the
LLM towards more informative hypotheses subclasses.

5 Proof of concept
We implement a proof of concept and evaluate it on produc-
tion data. We show that even our preliminary design can
uncover novel opportunities in real-world applications.

5.1 Implementation
Hypothesis generation:We implemented hypotheses based
on two types of derived attributes:



HotNets ’25, November 17–18, 2025, College Park, MD, USA Vipul Harsh, et al.

• Event patterns: This generates attributes related to se-
quence of user events that may correlate with failures in a
KPI metric (e.g., login success/failure). As part of the input,
the user can specify the length of the pattern sequence
𝑘 , an event-to-token mapping function𝑀 , and a filtering
function 𝐹 that specifies event-types to ignore. The system
generates all relevant unique event sequences of length 𝑘
that appear in the data.

• User lifecycle patterns: This generates attributes related to
patterns in user engagement across sessions (e.g., first-time
vs. repeat usage). As a part of the input, inactivity threshold
𝑓 used to define sparse users (e.g., no activity for > 30
days), and a session boundary𝑘 that defines lifecycle-based
attributes can be specified. Users with session indices ≤ 𝑘

(e.g., first, second etc.) are treated as new users in contrast
to users with session indices > 𝑘 (long-term users). We
used Llama 3.2 [18] for generating the hypothesis class
parameters.

Attribute computation: we use a tailored, efficient strategy
for stateful processing to compute the above attributes:

• For 1, we use an approximation route– it first takes a ran-
dom sample of all sessions within a time window and then
employs the Aho-Corasick string-matching algorithm [6]
to efficiently compute the occurrence counts for all n-
gram sequences within the sampled sessions, separately
for faulty and normal sessions.

• For 2, we use a partition-based analysis approach– it first
counts the number of occurrences of each user ID in the
retrieved data, then computes the given attribute based on
the count.

Opportunity Finder: Given the attributes, we use a heuris-
tic validation layer to surface opportunities for improvement:

• Expert 1: An event-sequence pattern is deemed a signifi-
cant opportunity if it occurs in at least 10% of faulty ses-
sions and its rate of occurrence in faulty sessions is at least
2x higher than its rate in normal sessions.

• Expert 2: We deem the binary attribute-hypothesis as an
opportunity, if (1) there are outliers in the KPI metric break-
down for user-cohorts induced by the binary derived at-
tributes (e.g. frequency of use, first-time) or (2) if the ab-
solute difference in the KPI metric between the derived
user-cohort and all users is > 25%

The final output of our system is a unified list of validated
opportunities from all experts.

5.2 Evaluation on real-world data
We ran the above workflow for one week of production data
for 3 digital services for various KPIs. To prune the analy-
sis, we first find user-cohorts based on static attributes with

KPI Impacted Opportunity Lead

Login success rate High error rate in Step 1 of Login (OTP
verification)

Buy plan click to payment
complete conversion rate

User sequence: Buy plan→CORS error→
Timeout error leads to conversion failure

Session crash rate API to retrieve user location fails
Subscription start to finish
conversion rate

Subscription API returns failure (unex-
pected response)

Subscription viewed to pay-
ment conversion rate

New UI version of subscription page leads
to conversion failure

Global error rate High error rate in second and later ses-
sions

User-induced error rate Higher error rate for first-time users
Login error rate Gradual increase in error rate for first-

time users on new app version

Table 2: Opportunity leads identified by our prototype
as potential areas for improvement.

significant number of users. For each such user-cohort, we re-
port a subset of the opportunities identified by our prototype
in table 2, those we (manually) deemed to be insightful.
Overall, expert 1 surfaced opportunities for 18 scenarios

across all services, producing the top-5 ranked hypotheses,
for each scenario. Using manual inspection, we deemed op-
portunities in 5 out of 18 scenarios to be useful. Expert 2
surfaced opportunities for 20 scenarios for each service, out
of which 8 were useful on average. While the false positive
“rate” may seem high at first, it imposes a very reasonable
cognitive burden; i.e., the effort to manually inspect ≈ 20
opportunities for improvements over the course of one week
for a large service provider is quite reasonable. Further, op-
erators with domain knowledge can quickly discard false
leads.
Scalability: Expert 1 processed and analyzed > 1000 hy-
potheses in less than 10 minutes. Expert 2 processed and
analyzed a batch of 250 hypotheses in less than 3 minutes
per KPI metric on average. While these numbers are prelim-
inary and there’s a lot of room for optimization, they still
suggest that our proposed system will be scalable.

6 Discussion and future work
Realizing the full potential of opportunities-generation re-
quires significant research in several key areas:

LLM-assisted feature generation: A key next step is to
leverage more capable LLMs for more effective exploration
of the hypothesis space. Related approaches exist in other
domains—for example, RcaCopilot [12] uses an ML model



Automatically Surfacing Improvement Opportunities HotNets ’25, November 17–18, 2025, College Park, MD, USA

to select RCA handlers based on incident type. In our set-
ting, effective use of system metadata may be enabled by
hierarchical [11] and multi-modal LLMs [29].
Rigorous validation and causal inference: To move be-
yond correlation, integrating formal causal inference meth-
ods like synthetic controls [7] or doubly robust estimation [16]
can be helpful to reduce false positive rates.
More complex event patterns: Future work should focus
on using an expressive declarative language for defining hy-
potheses. This includes incorporating temporal logic (e.g.,
"event A occurs until event B") and richer predicates to cor-
relate different datasets such as client-side user-experience
metric and backend load. Some earlier works have developed
primitives to express specific kinds of data slicing e.g., Pivot-
Tracing [23] employs a happens-before primitive, [21] uses
primitives to query the web.
User interfaces: A new class of UIs is needed to move be-
yond manual query writing similar to [3] but for writing
new attribute templates. UIs can also be very helpful for
visual exploration of hypotheses based on derived attributes,
as [24] does for static attributes.
Scalable data processing: Computing thousands of derived
attributes requires new data processing systems designed for
high-throughput, stateful, context-aware and scalable query
execution, focusing on approximation algorithms, query
planning and resource management techniques.
Opportunity finder for Agentic systems: Our framework
is naturally suited for troubleshooting agentic AI systems
to automatically discover complex failure modes in systems
whose behavior is defined by high-dimensional data like
prompts and generated plans [10].
Privacy-Preserving Community Insights: One avenue
of future work is to create a framework for sharing abstract
hypothesis-class templates or signatures across organiza-
tions. This would allow a community to crowdsource a li-
brary of effective patterns for discovering long-tail issues
without sharing sensitive raw data.
Incorporating auxiliary datasets: The system’s expres-
sivity can be enhanced by joining client-side telemetry with
auxiliary datasets, such as performance and health metrics
for third-party services, backend telemetry, etc.

References
[1] Apache Spark. https://spark.apache.org/.
[2] Event Query Language (EQL). https://www.elastic.co/docs/explore-

analyze/query-filter/languages/eql.
[3] GoFlow. https://go-flow.co/.
[4] Kusto Query Language overview. https://learn.microsoft.com/en-us/

kusto/query/?view=microsoft-fabric.
[5] Root Cause Analysis with DoWhy, an Open Source Python Library for

Causal Machine Learning. https://www.pywhy.org/dowhy/v0.12/.

[6] A. V. Aho and M. J. Corasick. Efficient string matching: an aid to
bibliographic search. Communications of the ACM, 18(6):333–340,
1975.

[7] M. Amjad, D. Shah, and D. Shen. Robust synthetic control. Journal of
Machine Learning Research, 19(22):1–51, 2018.

[8] R. Bhagwan, R. Kumar, R. Ramjee, G. Varghese, S. Mohapatra,
H. Manoharan, and P. Shah. Adtributor: Revenue debugging in ad-
vertising systems. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 43–55, 2014.

[9] P. Carbone et al. Apache flink: Stream and batch processing in a single
engine. Bulletin of the IEEE Computer Society TCDE, 36(4), 2015.

[10] M. Cemri, M. Z. Pan, S. Yang, L. A. Agrawal, B. Chopra, R. Tiwari,
K. Keutzer, A. Parameswaran, D. Klein, K. Ramchandran, et al. Why
do multi-agent llm systems fail? arXiv preprint arXiv:2503.13657, 2025.

[11] S. Chakraborty, J. W. Stokes, L. Xiao, D. Zhou, M. Marinescu, and
A. Thomas. Hierarchical learning for automated malware classifica-
tion. In MILCOM 2017-2017 IEEE Military Communications Conference
(MILCOM), pages 23–28. IEEE, 2017.

[12] Y. Chen, H. Xie, M. Ma, Y. Kang, X. Gao, L. Shi, Y. Cao, X. Gao, H. Fan,
M. Wen, et al. Automatic root cause analysis via large language mod-
els for cloud incidents. In Proceedings of the Nineteenth European
Conference on Computer Systems, pages 674–688, 2024.

[13] J. Dean and L. A. Barroso. The tail at scale. Communications of the
ACM, 56:74–80, 2013.

[14] R. Ding, S. Han, Y. Xu, H. Zhang, and D. Zhang. Quickinsights: Quick
and automatic discovery of insights from multi-dimensional data. In
Proceedings of the 2019 international conference on management of data,
pages 317–332, 2019.

[15] O. Etzion et al. Event-driven architectures and complex event process-
ing. In IEEE SCC’06, 2006.

[16] M. J. Funk, D. Westreich, C. Wiesen, T. Stürmer, M. A. Brookhart, and
M. Davidian. Doubly robust estimation of causal effects. American
journal of epidemiology, 173(7):761–767, 2011.

[17] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou. Sage: practical
and scalable ml-driven performance debugging in microservices. In
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
135–151, 2021.

[18] A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle,
A. Letman, A. Mathur, A. Schelten, A. Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[19] V. Harsh, W. Zhou, S. Ashok, R. N. Mysore, B. Godfrey, and S. Banerjee.
Murphy: Performance diagnosis of distributed cloud applications. In
Proceedings of the ACM SIGCOMM 2023 Conference, pages 438–451,
2023.

[20] A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic
anomalies. In Proceedings of the 2004 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications,
SIGCOMM ’04, page 219–230, New York, NY, USA, 2004. Association
for Computing Machinery.

[21] L. V. Lakshmanan, F. Sadri, and I. N. Subramanian. A declarative lan-
guage for querying and restructuring the web. In Proceedings RIDE’96.
Sixth International Workshop on Research Issues in Data Engineering,
pages 12–21. IEEE, 1996.

[22] P. Ma, R. Ding, S. Wang, S. Han, and D. Zhang. Insightpilot: An llm-
empowered automated data exploration system. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, pages 346–352, 2023.

[23] J. Mace, R. Roelke, and R. Fonseca. Pivot tracing: Dynamic causal
monitoring for distributed systems. ACM Transactions on Computer
Systems (TOCS), 35(4):1–28, 2018.

https://spark.apache.org/
https://www.elastic.co/docs/explore-analyze/query-filter/languages/eql
https://www.elastic.co/docs/explore-analyze/query-filter/languages/eql
https://go-flow.co/
https://learn.microsoft.com/en-us/kusto/query/?view=microsoft-fabric
https://learn.microsoft.com/en-us/kusto/query/?view=microsoft-fabric
https://www.pywhy.org/dowhy/v0.12/


HotNets ’25, November 17–18, 2025, College Park, MD, USA Vipul Harsh, et al.

[24] S. Malik, F. Du, M.Monroe, E. Onukwugha, C. Plaisant, and B. Shneider-
man. Cohort comparison of event sequences with balanced integration
of visual analytics and statistics. In Proceedings of the 20th International
Conference on Intelligent User Interfaces, pages 38–49, 2015.

[25] A. Manousis, H. Shah, H. Milner, Y. Li, H. Zhang, and V. Sekar. The
shape of view: an alert system for video viewership anomalies. In
Proceedings of the 21st ACM Internet Measurement Conference, pages
245–260, 2021.

[26] H. Milner, Y. Cheng, J. Zhan, H. Zhang, V. Sekar, J. Jiang, and I. Sto-
ica. Raising the level of abstraction for time-state analytics with the

timeline framework. In CIDR, 2023.
[27] G. Somashekar, A. Dutt, M. Adak, T. Lorido Botran, and A. Gandhi.

Gamma: Graph neural network-based multi-bottleneck localization for
microservices applications. In Proceedings of the ACM Web Conference
2024, pages 3085–3095, 2024.

[28] S. J. Taylor and B. Letham. Forecasting at scale. The American Statisti-
cian, 72(1):37–45, 2018.

[29] S. Yin, C. Fu, S. Zhao, K. Li, X. Sun, T. Xu, and E. Chen. A survey on
multimodal large language models. National Science Review, 11(12),
2024.


	Abstract
	1 Introduction
	2 Motivation
	3 Problem Formulation
	4 Design
	4.1 LLM-Assisted Hypothesis Generation
	4.2 Stateful and Expressive Computation 
	4.3 Mixture-of-Experts Opportunity Finder

	5 Proof of concept
	5.1 Implementation
	5.2 Evaluation on real-world data

	6 Discussion and future work
	References

