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Abstract

Even though scientific studies have shown that humans are
inherently visual creatures, nearly every published network-
ing research paper presents its results in the form of figures
such as line graphs, histograms, bar charts, or scatter plots
that can be printed on paper but are often some of the least
memorable aspects of a paper. In this work, we call on net-
working researchers to be more creative in utilizing digital
media to communicate the findings of their studies and be
more cognizant of the extraordinary capabilities of human
readers to process and retain visual information, especially
as network telemetry datasets critical for monitoring and
diagnosing “network health” continue to grow in size and in
the amount of semantic-rich information they contain. To
illustrate what we have in mind, we consider the use case
where sets of simultaneously collected time series that rep-
resent latency measurements over time between different
pairs of routers or vantage points within a network (e.g., ES-
net) are used to define that network’s dynamically changing
delay space. By representing successive snapshots of this
delay space as 2D manifolds in 3D and animating the result-
ing manifold views, we transform the information contained
in all the simultaneously collected time series into a visu-
alization that effectively shows how a network “breathes”
and that can be directly used for diagnosing aspects of a
network’s health.
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1 Introduction

Humans are inherently visual creatures. A commonly cited
statistic is that humans remember 10% of what they hear,
but simply adding a visual aid increases recall to 65% [10].
While the exact numbers are contested, the picture superiority
effect is a well-known phenomenon [17]. However, even
just a cursory survey of the published scientific literature in
general, and in particular the networking research literature,
shows that authors of scientific papers seem to dismiss or be
largely unaware of the impact or importance of visuals on
readers’ understanding and memory retention. In fact, it is
rare for a networking researcher to remember a published
paper primarily because of a visual it contained and that
apparently succeeded in leveraging the reader’s cognitive
ability of correctly recalling the paper’s main topic and key
findings at a later date.

At the same time, today’s network operators are routinely
collecting increasingly rich telemetry data, from thousands
of vantage points in their networks, at ever finer temporal
granularity and for ever more performance-related metrics.
As a result, their challenge has changed from data collection
to effectively mining the resulting “big data” and extracting
intelligence that can be acted upon by network operators
to diagnose or mitigate encountered networking problems.
Unfortunately, existing analysis and inference tools produce
highly fragmented views of the data and easily overwhelm
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traditional dashboards that scale poorly with the dimension-
ality of contemporary network telemetry data (e.g., number
of different time series, performance metrics, geo-located
vantage points) and prevent operators from obtaining a high-
level understanding of their dynamically changing networks
that enables meaningful troubleshooting.

The purpose of this paper is to call on the networking
research community to acknowledge the challenges posed
by the emerging “big (network telemetry) data,” revamp its
largely dated approaches to scientific communication and
publication, and more fully exploit the demonstrable impact
of visuals on readers’ minds by exploring and leveraging
innovative and effective visualization and animation tech-
niques. However, for such techniques to be useful in prac-
tice, a concerted effort involving their developers (e.g., re-
searchers) and potential users (e.g., operators) will be needed
that calls for close collaboration between the networking
research and operator communities.

As a concrete instantiation of this broader challenge, we
present a use case that can serve as a roadmap for successfully
addressing the posed challenge and entails innovations on
three fronts:

The concept of “network delay space”: We rely on suit-
able mathematical techniques to represent simultaneously
measured network latencies between different pairs of van-
tage points in a network at a given point in time ¢t as a 2D
manifold in 3D (i.e., the network delay space at time f).
The notion of a “breathing” network: We exploit anima-
tion to transform sets of entire time series of these latency
measurements into a visualization that shows how these
network delay spaces breathe (i.e., change over time).

The need to be useful (i.e., more than “eye candy”): We
show that rather than trying to make sense of large collec-
tions of simultaneously measured latency time series, net-
work operators can use this animation to obtain a network-
wide view of their infrastructures’ evolving performance,
detect anomalies, and reason about observed changes in their
networks’ dynamics as captured in the totality of available
latency measurements.

To be even more concrete, we use ESnet, a DoE-funded
high-performance, unclassified network built to support sci-
entific research [15], to illustrate our use case.

We posit that compared to our novel manifold-based ani-
mation of network delay spaces, conventional line plot-type
representations of time series data, especially when shown
in large quantities, fail to appeal to visual creatures (i.e., read-
ers) and stand little to no chance of being remembered for
or associated with the notion of Internet latencies. While
some may object to using animations as visuals because they
cannot be viewed “on printed paper” but require a computer
monitor, we argue that it is about time for our community

Stephen Jasina, Logqman Salamatian, Paul Barford, Mark Crovella, and Walter Willinger

to fully embrace and make use of modern means of commu-
nication and publication, irrespective of whether or not they
are suitable for “printed paper”

This work does not raise any ethical concerns.

2 On Visualizing Data

Visualization plays a central role in making complex data
intelligible. As Tufte argues in his seminal works [21, 22],
well-designed visualizations are tools for reasoning about
quantitative information. They reveal structure, highlight
patterns, and support comparison, enabling users to per-
ceive relationships that would be difficult or impossible to
discern from raw numbers alone. Tufte emphasizes clarity,
integrity, and the efficient use of visual space as fundamental
to effective data graphics.

This paper contributes to this longstanding effort by cre-
ating animated maps that depict physical geography and
incorporate dynamic aspects of network performance explic-
itly into the geometry of the evolving maps. In particular, in
this work we focus on dynamic network aspects in the form
of measured latency time series between pairs of geo-located
routers or vantage points in a network. Building on estab-
lished techniques for manifold learning such as Principal
Component Analysis (PCA)[25], t-SNE[23], and UMAP [9]
that aim to extract meaningful low-dimensional embeddings
of complex high-dimensional datasets, our approach uses
curvature to reconcile measured latencies with geographic
space, producing visualizations that are both interpretable
and analytically rich.

However, these general-purpose dimensionality reduction
tools fall short in realizing our objective of creating inter-
pretable maps that preserve both spatial and performance
behavior by respecting geography as well as network seman-
tics. For similar reasons, we also have to rule out applying
ridge plots [24] or conventional cartograms [2, 20] for draw-
ing augmented maps, leveraging geographic information
systems (GISs) like ArcGIS [3] that allow for the animation
of (topographical) maps, or using Nam [4], an early network
visualization tool that supports packet-level animation.

To achieve our objective, we reinterpret the set of laten-
cies measured at a fixed point in time (i.e., a “snapshot”)
as defining an implicit metric space and use curvature to
mediate between this inferred geometry and real-world spa-
tial layouts. Specifically, we use Ollivier-Ricci curvature [16]
to quantify how measured network latencies diverge from
expectations based on Euclidean distance, translating these
differences into geometric deformations of a 2D surface em-
bedded in 3D space. In contrast to previous research such as
Ni et al. [13] that explored the use of curvature for simple
graph abstractions of Internet infrastructure, our focus is on
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latency data and its continuous embedding into a geographi-
cally grounded surface, and we leverage Ricci curvature to
provide a rigorous framework for understanding how metric
properties differ across neighboring regions.

Earlier work [18, 19] introduced a method and an initial
tool for using curvature-based techniques to expose and visu-
alize key features of these snapshots derived from measured
network latencies in a real-world network. This paper ex-
tends those ideas by considering a series of such snapshots
taken at successive points in time and then gluing them to-
gether to create an animation over time that incorporates
physical geography and network dynamics (i.e., latencies)
directly into the geometry of the evolving maps itself.

From a data representation perspective, the importance of
such an animation is that it provides an effective and com-
pact, though unconventional, alternative perspective of the
joint behavior in time of a large number of simultaneously
measured latency time series, one time series for each pair of
geo-dispersed locations within a given network. On the one
hand, the simultaneous depiction of hundreds to thousands
(or more) of univariate times series in ways that is informa-
tive, effective and prevents “cluttering” is a known difficult
problem data visualization [12, 21, 24]. At the same time,
some of today’s large service providers have the capability to
routinely measure and collect increasingly fine-grained and
voluminous telemetry data for the pertinent performance
metrics that inform the providers’ operators about the health
of their global-scale network infrastructures [1, 5, 11]. Faced
with such large and semantics-rich Internet datasets that
typically include thousands or more performance metric-
specific time series, the ability to effectively and intelligently
visualize a large number of them takes on new urgency.

3 Methodology

To describe how we transform raw data in the form of mea-
sured latency time series into a full-fledged animation, we
break down our method into three main steps: data collection
and preprocessing, manifold creation, and finally, animation.
An open source implementation of these tools is available
on GitHub [8].

3.1 Data Collection and Preprocessing

The input to our method is a collection of delay measure-
ments in the form of time series, one time series per pair of
geo-located routers or vantage points in a network. In our
case, we collect data from the perfSONAR (7] endpoints of
the U.S. portion of ESnet [15], which is a DoE-funded high-
performance, unclassified network built to support scientific
research. We obtain a week’s worth of round-trip time (RTT)
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measurements between each pair of endpoints’ from March
24 to March 31, 2025, and we aggregate the data across 1
hour time intervals. For each endpoint, we also collect its
location as a latitude-longitude pair.

With these week-long per-hour time series, we can take
snapshots of (aggregated) RTT measurements at each hour.
However, for the purpose of our envisioned animation, this
data may be too noisy with respect to time. In particular,
our method creates a graph where an edge between end-
points u and v exists when its RTT is measured to be below
some threshold T,,,. This graph and the choice of T,,, will be
further detailed in Section 3.2. If the RTT between u and v
oscillates only slightly, then the edge between u and v will
appear and disappear in quick order, resulting in undesirable
behavior from an animation point of view. We avoid this be-
havior by preprocessing the data and annotating each RTT
measurement with a boolean for whether we will include or
exclude the corresponding edge from the graph. Specifically,
we employ a “windowing” strategy to ensure that an edge
only changes its inclusion in the graph if its RTT changes
by at least w. In practice, choosing w = 1ms filters out most
undesired noise while still allowing for significant variations
in the animation across time.

3.2 Manifold Creation

Our goal for this second step is to turn a given time ¢ snapshot
of aggregated RTT measurements within ESnet into a 2D
manifold in 3D space. In other words, we create a compact
and interpretable representation of the delay space of the
network at time ¢. To this end, we closely follow the steps
described by Salamatian et al. in [19], where a more detailed
explanation can be found.

We first select a performance threshold? e that typically
ranges between 5ms and 25ms. Selecting lower values of
€ captures local behavior of the network, while the use of
higher values of e reveals the global network structure. For
a pair of endpoints u and v, we set T, = GCL,,, + €, where
GCL,, is the great circle latency between u and v. Then we
follow the graph construction described in 3.1.

For a snapshot at time ¢, we now have a graph G; with
nodes representing endpoints and edges connecting pairs
with acceptable latency. To capture the structure of this
graph more precisely, we compute the Ricci curvature of
each edge. In this context, Ricci curvature quantifies how
much an edge contributes to the overall “connectivity” of the
network: edges that act as structural bottlenecks or bridges

1perfSONAR endpoints in ESnet are time synchronized via NTP and measure
RTT across the network on 10min intervals.

2[19] refers to € as the residual latencyand includes a comprehensive strategy
for selecting this parameter.
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tend to have more negative curvature, as in [19]. For an intu-
itive understanding and formal treatment of Ricci curvature,
we refer the reader to [14], especially [14, Figure 4].

We then embed the network into a 2D surface in 3D space
whose Gaussian curvature approximates the Ricci curvature
of the graph. Our goal is to recover a surface whose curvature
structure reflects that of the graph; this curvature alignment
indirectly shapes the geodesics on the surface, so that they
reflect the network’s underlying delay and routing behavior.
To construct such a surface, we define a loss function with
two components: (1) a curvature-matching term that penal-
izes discrepancies between the Ricci curvature of each edge
and the Gaussian curvature of the corresponding location
on the surface, and (2) a regularization term that encourages
smoothness in the resulting surface.

By minimizing this loss function using a standard opti-
mization routine [6], we obtain a manifold that approximates
the delay space of the network at time ¢, meaning that for
any two points on the manifold, walking along the shortest
path on the surface between the two points connects them by
their geodesic whose length encodes the measured latency
at time ¢ between the pair of points.

We further post-process this manifold by flattening the
surface around the edges of the network (i.e., in regions not
covered by the network graph). We also highlight (in red)
areas of the manifold that significantly change over a short
period of time by comparing the heights at time ¢ to a moving
average of the heights before time t. These additional steps
help to draw attention to the relevant parts of the surface.

3.3 Animation and Scalability

Finally, we consider all time ¢ snapshots and stitch together
the resulting manifolds from Section 3.2 to create a single,
cohesive animation. Our strategy is to use the different time
t manifolds as key frames. For the frames in between the
snapshots, we simply interpolate linearly between the z-
coordinates (or “heights”). While other methods of interpo-
lation (splines, etc.) are possible, we find that linear interpo-
lation produces sufficiently smooth animations.

Note that our manifold animations are aggregations of
673 time series of hourly RTT measurements taken over the
course of a week, totaling more than 100,000 data points. The
thresholding process described in Sections 3.1 and 3.2 allows
for an even greater degree of scalability in the case of larger
latency data sets.

4 Network Delay Space:
A Snapshot in Time
Figure 1 shows a single key frame generated using the tech-

nique from Section 3.2. Drawn onto the manifold are the lo-
cations of the perfSONAR endpoints colocated with routers
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Figure 1: A snapshot in time of the ESnet delay space.
Circles on the surface are the locations of perfSONAR
endpoints in ESnet. The black line spanning the surface
is the geodesic path from Seattle to Boston.

in ESnet. The figure also includes a single geodesic (shortest)
path on the manifold from Seattle to Boston. Notably, even
with this single frame, a viewer can quickly attain an under-
standing of the delay space by looking for hill and valleys
and saddle shapes. Hills/valleys correspond to areas with rich
connectivity, whereas saddles go with links that are critical
to connectivity. As demonstrated by the depicted geodesic,
shortest paths circumvent hills/valleys (Wisconsin) and are
attracted to saddles (Colorado).

5 Network Delay Space:
A “Breathing” Network

Stitching together a series of snapshots yields the moving
surface shown in Figure 2a. For additional clarity, as men-
tioned in Section 3.2, we draw translucent red patches onto
the surface in regions where the manifold changes signifi-
cantly. As seen by the sparsity of these red patches, changes
in ESnet’s delay space tend to be localized, rarely radiating
across larger portions of this network. We view this as an
indication of effective network management whereby in-
stances such as link failure are prevented from cascading
across the larger network.

Overall, we see the manifold changing in fits and starts,
exhibiting stable behavior over disjoint stretches in time
that are interspersed with “active” durations during which
the manifold undergoes easily visible shifts. The animation
depicts the evolution of ESnet’s delay space over time and
in (geographic) space and exposes just a few “interesting”
periods that deserve the network operators’ attention. How-
ever, as can be expected from an operational network such as
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(a) Wall clock-aligned animation (each hour lasts half a sec-
ond in the animation).

(b) Enhanced animation (time is sped up during uninteresting
periods when manifold is stable).

Figure 2: Animations of ESnet’s delay space over 1
week, with significant height changes shown in red.
Click anywhere on the images above to watch the videos
online.

ESnet, stable periods dominate over “active” periods, creat-
ing the association of a relatively “uninteresting” or “boring”
animation with a well-performing and smoothly-operating
network. Such wall clock-aligned animations can easily be
enhanced with a small amount of postprocessing that sim-
ply speeds up time during “uninteresting” periods when the
manifold remains largely unchanged. To illustrate, the ani-
mation in Figure 2b is such an enhanced version of the wall
clock-aligned animation in Figure 2a.

The visualization can be further embellished by draw-
ing geodesic paths between endpoints. Figure 3 shows an
overhead view of the surface along with the geodesic path

Figure 3: An animation of ESnet’s delay space high-
lighting how the Seattle-Boston geodesic changes with
measured RTT. In the animation, a supplementary line
plot shows the measured RTT (blue) and geodesic dis-
tance on the manifold (orange) between Seattle and
Boston.

Click anywhere on the image above to watch the video
online.

between Seattle and Boston. As the surface morphs, the ge-
odesic shifts and curves to avoid newly formed peaks and
valleys in favor of saddles.

Notably, the shown geodesic on the manifold between
Seattle and Boston moves around within the manifold and
increases and decreases in length depending on how the
measured RTT between the two routers behaves.

6 Network Delay Space:
More Than “Eye Candy”

In this section, we demonstrate how an animated manifold of-
fers a powerful new lens for detecting and localizing network
disruptions. By embedding time-varying latency measure-
ments into an animated manifold, we create a visual diag-
nostic tool that is sensitive not only to when performance
shifts occur, but also to where they are happening within
the network. We illustrate this point through events drawn
from our week-long ESnet trace, as illustrated by Figure 4.
The first incident occurs on March 25, 2025 from 02:00
UTC to 07:00 UTC. Examining the time series individually
reveals a sudden increase in latency across a range of paths,
but offers little clarity about how these changes relate to each
other. Without anchoring the paths in space, it is difficult to
tell whether these increases reflect a meaningful spatially
coordinated disruption or are simply a distributed set of
unrelated shifts. In other words, the time series view suggests
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Figure 4: Animation of ESnet delay space over a 1 week
period along with the timeseries of delays shown on
the manifold. The animation highlights the scope and
impact of several “events" that occurred during this
period.

Click anywhere on the image above to watch the video
online.

something is happening, but it cannot tell us what or where
that something is happening.

In contrast, the manifold view reveals meaningful and
rich insights: a large peak emerges near Utah, lifting a broad
region of the surface. This topographical change radiates
outward in multiple directions, effectively splitting the man-
ifold into two regions connected only by a narrow bridge
through Arizona. As a result, paths between the East and
West coasts are redirected toward that saddle point, causing
a significant bundling of all of the geodesics.

Importantly, making this initial diagnosis would be diffi-
cult based on looking at the time series alone. In fact, many
of the affected end-to-end paths do not obviously traverse
Utah, and uncovering that detail would require traceroute
data—and even then, the presence of MPLS tunnels could
obscure the true path.

The animation highlights several other regional-scale dis-
ruptions throughout the week (e.g., March 26 near Louisiana,
Arkansas, and Kentucky, or March 27 near Texas). As a repre-
sentative example, we focus on an event beginning at 14:00
UTC on March 28, 2025. While the time series view reveals
an increase in latency across a limited set of paths, it again
offers little guidance about scope or cause. The manifold,
in contrast, clearly shows that the disturbance is highly lo-
calized: two small peak form in the southern portion of the
map, one centered around New Mexico, West Texas, and an-
other one around Tulsa, while the remainder of the surface
remains stable. Affected geodesics bend gently upward in
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this region, tracing a coherent visual ripple, while unaffected
paths stay identical. This kind of subtle but spatially struc-
tured deformation is easy to overlook in raw time series but
clearly stands out in the animation. This visual signature
of a confined regional event helps operators quickly triage
which parts of their network to investigate and narrow down
which ones deserve more focus.

7 What’s Next?

Extending beyond latency: While this paper focuses on la-
tency measurements, we are actively extending our method-
ology to incorporate other telemetry signals such as packet
loss and link utilization. In ongoing work, we construct over-
lays on top of the delay manifold that represent link-level
metrics. For example, we draw arcs between nodes corre-
sponding to physical links and annotate them with utilization
measurements. This construction is feasible in networks like
ESnet, which publish link utilization statistics. These met-
rics are directly attributable to specific links and integrate
naturally into our spatial visualization.

In many other networks, however, link-level utilization
is not directly observable. Instead, operators or researchers
must rely on end-to-end throughput measurements (e.g.,
from iPerf), which do not easily decompose into per-link
contributions. Extending our methodology to incorporate
throughput in these settings presents a major challenge: it
requires inferring the internal path taken by each flow and
attributing observed throughput to load along that path. One
possible direction is to overlay inferred routing paths on the
delay manifold and annotate them with throughput-based
estimates of load or bottlenecks, but this method calls for
more complex inference techniques and requires assump-
tions about routing behavior. Building such overlays remains
an open and promising area for future work.

Network respiration. We are developing a diagnostic play-
book grounded in manifold representations to help operators
connect visual patterns to real network behaviors. While our
current animations primarily highlight sudden disruptions,
we have initial evidence that they can also capture more sub-
tle, continuous dynamics—what we refer to as a network’s
“breathing.” These dynamics manifest as a slow, spatially co-
ordinated deformations that reflect underlying diurnal cycles,
shifting traffic loads, and baseline variability. Although such
rhythms are only faintly visible in a lightly loaded research
network like ESnet, we expect them to emerge more clearly
in production networks that experience sustained, high uti-
lization, and richer traffic dynamics resulting from realistic
mixtures of residential and commercial customer traffic.

Beyond ESnet: The public Internet. Generalizing our ap-
proach to the public Internet poses substantial challenges.
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Within a single network, manifold-based representations
often work well because routing decisions tend to follow
physical constraints: shortest-path routing over a known,
relatively stable topology. When traffic shifts, those shifts
typically reflect changes in the underlying cost (in the OSPF
sense) or availability of physical links. Because routing deci-
sions still aim to minimize end-to-end path cost over a fixed
topology, the resulting changes tend to preserve the overall
spatial structure of the network: nearby nodes remain nearby,
path lengths change gradually, and traffic continues to follow
topologically plausible paths. In this sense, the deformation
remains structurally coherent and reflects continuous adap-
tation within a stable underlying graph, rather than abrupt
or arbitrary redirections.

In contrast, when traffic traverses multiple administrative
domains, the assumptions that underlie this geometric coher-
ence begin to break down. At interconnection points, traffic
is often not routed based on physical proximity or network
distance, but rather based on business agreements, BGP poli-
cies, and peering strategies. These decisions can introduce
abrupt and opaque transitions in path selection, resulting
in discontinuities that cannot be easily reconciled with a
smooth manifold. Each independently operated network can
be viewed as defining its own delay space or manifold, shaped
by internal policies, topology, and traffic engineering objec-
tives. The connections between these networks, however,
resemble discontinuous “wormholes”—transitions that obey
an entirely different logic and do not preserve the geometric
assumptions of the underlying spaces. Modeling how these
independent manifolds can be stitched together remains an
open and difficult problem.

This challenge is especially relevant to large CDNs and
cloud providers that collect rich telemetry not only from
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within their controlled infrastructure but also from user-
facing traffic that traverses third-party networks. While in-
ternal telemetry is well-instrumented and tied to known
infrastructure, external data often lacks the context neces-
sary for interpretation: we may observe path changes or
performance degradation, but lack visibility into the routing
policies, economic incentives, or topology that caused them.
Developing new ways to model these new stitched manifolds
across networks could unlock new diagnostic capabilities,
enabling CDNss to reason more precisely about performance
and resilience in the Internet at large.

8 Conclusion

The broader goal of this work is to reimagine how interac-
tive visualization can support both network research and
network operations. Networks are spatiotemporal systems,

and we argue for the importance of reclaiming time as a
first-class visual dimension. In particular, our work demon-

strates one way to build tools that not only summarize large-
scale telemetry but also support intuitive exploration and
pattern recognition. We hope this work encourages others
to embrace more dynamic and expressive visualizations—
especially as network telemetry continues to grow in volume
and complexity.
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