
One to Many: Closing the Bandwidth Gap in AI
Datacenters with Scalable Multicast

Sepehr Abdous

Johns Hopkins University

USA

Jinqi Lu

Johns Hopkins University

USA

Jiacheng Wan

Johns Hopkins University

USA

Erfan Sharafzadeh

Meta & Johns Hopkins University

USA

Ying Zhang

Meta

USA

Soudeh Ghorbani

Meta & Johns Hopkins University

USA

Abstract
AI training now floods datacenter fabrics with thousands

of simultaneous collectives, yet most frameworks still move

data the hard way: 𝑂 (𝑁) unicasts for a group of 𝑁 proces-

sors. Classic multicast could slash those bytes but has long

been deemed unscalable: computing an optimal tree in an

asymmetric Clos is NP-hard and group-specific rules quickly

exhaust switch TCAM.

We contend that both obstacles disappear once we em-

brace two mundane facts of today’s AI deployments. (i)

Layer regularity. Even after link failures, Clos paths rise and
fall cleanly through layers. We propose a novel layer-peeling

heuristic that exploits this to build near-optimal Steiner trees

in polynomial time. (ii) Job locality. GPU schedulers bin-

pack tasks into a few racks, enabling us to design a power-of-
two prefix method through existing datacenter switch opera-

tions. Pre-installing the 𝑘 − 1 prefixes per pod, which shrinks
state from exponential to linear and adds less than 8 B per

packet. In a 64-ary fat-tree (65,536 hosts) our prototype uses

just 63 rules, down from four billion—and performs within

1.4% of the Steiner optimum. We do not claim a finished sys-

tem; rather, we argue that multicast is finally within reach

for trillion-parameter models and invite the community to

revisit the assumption that “multicast simply doesn’t scale.”

CCS Concepts
• Networks → Traffic engineering algorithms; Data
center networks.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

HotNets ’25, College Park, MD, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-2280-6/2025/11

https://doi.org/10.1145/3772356.3772425

Keywords
Scalable multicast, AI clusters, Bandwidth-efficient collective

operations

ACM Reference Format:
Sepehr Abdous, Jinqi Lu, Jiacheng Wan, Erfan Sharafzadeh, Ying

Zhang, and Soudeh Ghorbani. 2025. One to Many: Closing the Band-

width Gap in AI Datacenters with Scalable Multicast. In The 24th
ACM Workshop on Hot Topics in Networks (HotNets ’25), November
17–18, 2025, College Park, MD, USA. ACM, New York, NY, USA,

8 pages. https://doi.org/10.1145/3772356.3772425

1 Introduction
The great AI growth spurt has a networking Achilles’
heel. While GPU performance has vaulted 60,000× in two

decades, network links inside the same datacenters have im-

proved barely 30× [15]. The resulting “bandwidth gap” reg-

ularly starves multi-billion-parameter models that stretch

across thousands of accelerators. Datacenter networks in-

creasingly emerge as bottlenecks in AI datacenters [6, 33].

Yet, counter-intuitively, production AI frameworks still rely

on application-level unicast [23]: every GPU individually

sprays its updates to every peer. Popular logical topolo-

gies—rings, double binary trees, or pipelined meshes—only

schedule these unicasts; they do not reduce the total traf-

fic. Figure 1 shows a simple Broadcast collective where uni-

cast rings and trees overshoot the minimum bandwidth by

70–80%.

Why not just multicast? Classic IP multicast [10] would

slash bytes, latency, and congestion, but two long-standing

scalability barriers keep it out of AI clusters:

(1) Tree construction at cloud scale. Computing a minimal

multicast tree in a Clos with failures—an asymmetric
Clos—is an NP-hard Steiner Tree problem [25].

(2) State explosion. Thousands of concurrent training jobs

can spawn thousands of multicast groups, quickly over-

flowing switch TCAMs if each group needs its own for-

warding entries [11, 12, 18]. Past fixes shrink state only at

the cost of jumbo headers, per multicast group churn, or

https://doi.org/10.1145/3772356.3772425
https://doi.org/10.1145/3772356.3772425

HotNets ’25, November 17–18, 2025, College Park, MD, USA Sepehr Abdous et al.

Bandwidth
Consumption

Physical
Topology

Logical
Topology

SwitchGPU Source GPU

S1S0

L0 L1

G0 G1 G2 G3 G4 G5 G6 G7

S0

S1L0

L1
G0

G7
G6

G5

G4

G3
G2

G1

S0

S1L0

L1
G0

G7
G6

G5

G4

G3
G2

G1

S0

S1L0

L1
G0

G7
G6

G5

G4

G3
G2

G1

S0

S1L0

L1
G0

G7
G6

G5

G4

G3
G2

G1

21
2
2

2
2

2

1 1
1
0

0

(a) Ring

S0

S1L0

L1
G0

G7
G6

G5

G4

G3
G2

G1 1
1

11
3

33

1
1

11
1

(b) Tree

S0

S1L0

L1
G0

G7
G6

G5

G4

G3
G2

G1

01
1

1
1

1 1

1
1

11

0

(c) Optimal
Figure 1: Unicast-based Broadcast in a two-tier leaf-spine
AI cluster traverses the same core links up to 80% more often
than a multicast-optimal solution. Logical rings and trees
tame bursts and incast but do not curb total bytes.

added latency—none palatable for microsecond-sensitive

RDMA fabrics.
1

Our thesis.We argue that both barriers crack open once we

leverage two unique facts about AI datacenters:

(i) Clos regularity with bounded asymmetry. Even after

random link failures or DoR (Disable-on-Repair) mainte-

nance, most paths rise and fall through layers. This structure
lets us recursively cover receivers layer-by-layer, yielding a

𝑂 (𝑚𝑖𝑛(F , |D|))-approximate tree
2
in polynomial time.

(ii) Job locality. Collective groups are typically confined to

continuous arrays of racks or pods [3], so a compact set of

cover-set prefixes can label entire subtrees. By pre-installing

just𝑂 (𝑘) such prefixes per switch in a𝑘-ary fat-tree, we slash
data-plane state from𝑂 (2𝑘) to𝑂 (𝑘) and encode group mem-

bership in only𝑂 (log𝑘) header bits—comfortably within the

existing RDMA packet budget. This exponential-to-linear cut
is transformative: in a 64-ary fat-tree with 65,536 nodes, the

1
Other practical hurdles—e.g., loss detection, congestion control, and path

observability—already leverage RDMA’s selective retransmissions, conges-

tion control, and cluster-wide telemetry used by today’s unicast collectives;

thus they do not re-inflate switch state or tree-construction cost and are

outside this paper’s scope.

2D is the set of destination nodes and F is the length of the longest path

among the shortest paths from the source to the destinations in D.

required entries plummet from over 4 × 10
9
to fewer than

64, making multicast practical on today’s RoCE hardware.

Deploy-once, touch-never multicast. The resulting sys-
tem, PEEL (Prefix-Encoded Efficient Layering), requires no
per-group switch updates and computes near-optimal trees

in polynomial time. In large-scale simulations (§4) when

performing Broadcast collectives with 8 MB messages, PEEL:

• outperforms Ring and Tree by up to 5× and 12×, respec-
tively, as we change the percentage of failed links from 1%

to 10%.

• uses 23% less aggregate bandwidth than unicast rings.

• fits in a fixed 63 TCAM entries in a 64-ary fat-tree network,

adding less than 8 B overhead per packet.

Beyond scalability. A deployable multicast service must

also provide loss recovery, flow isolation, and rich telemetry.

Our prototype inherits RDMA’s selective repeat retransmis-

sions and introduces a lightweight heuristic for merging

per-receiver congestion signals (§4). All other congestion-

control and monitoring hooks reuse the mechanisms already

exercised by today’s unicast collectives, and are orthogonal

to this paper’s focus on tree construction and switch state.

We therefore zero in on the open scalability gap and reserve

a full treatment of reliability engineering for future work.

Take-away. A fresh look at tree algorithms and header/state

co-design turns multicast from a 1990s curiosity into a first-
class primitive for tomorrow’s trillion-parameter mod-
els.

2 Multicast Tree in Clos
AI clusters typically run on multi-tier Clos fabrics [14, 23].

Because these topologies come in two very different fla-

vors—symmetric (no failures) and asymmetric (one or more

failed links/switches)—we treat them separately.

2.1 Symmetric Clos: an Optimal Tree in
Polynomial Time

In a failure-free 𝑘-ary fat-tree or two-tier leaf–spine, every

leaf switch connects to all spine switches with identical link

costs. This symmetry collapses the core into a single logical

super-node, turning the problem into building a Steiner tree

on the host–leaf bipartite graph. Because the graph is now a

tree, a breadth-first sweep that starts at the source’s leaf and

branches down to destination leaves is optimal and runs in

𝑂 (|D|) time:

Lemma 2.1. Let𝐺 = (𝑉 , 𝐸) be a symmetric leaf–spine fabric
with unit link costs, 𝑠 the source host, and D the set of desti-
nation hosts. The minimum-cost multicast tree from 𝑠 to D
can be computed in𝑂 (|D|) time by: (i) lifting all spines into a
logical super-node, (ii) adding the unique path ⟨leaf(𝑠), super⟩,
and (iii) attaching each leaf(𝑑), 𝑑 ∈D, to the super-node.

One to Many: Closing the Bandwidth Gap in AI Datacenters with Scalable Multicast HotNets ’25, November 17–18, 2025, College Park, MD, USA

Source Destination SwitchNode

S A B D EC F G

1 2 3 4

5 6

S

A

E
D

B

1
5
4

3
6
2

(a) Example of host-/switch-to-layer
allocation.

S

A

E
D

B

6
2

(b) Iterating 𝑙6, 𝑙5, and
𝑙4

S

A

E
D

B

3
6
2

(c) Iterating 𝑙3

S

A

E
D

B

1
5
3

6
2

(d) Iterating 𝑙2 and 𝑙1

S

A

E
D

B

1
5
3

6
2

(e) Adding 𝑆— 1○

Figure 2: The layer-peeling greedy algorithm on an asymmetric leaf–spine fabric: each panel shows the additional switches
and links chosen while progressing from the outermost layer (𝑙6) toward the source (𝑙0).

Sketch. The super-node abstraction converts 𝐺 into a

tree; optimal multicast on a tree is found by including every

destination leaf and the unique connecting paths, which is

linear in |D|. □

In future work, we will extend this approach to deeper

multi-stage Clos fabrics (such as three-tier fat-trees) and

other multi-layer topologies such as rail-optimized topolo-

gies [28] which require additional bookkeeping.

2.2 Asymmetric Clos: NP-Hardness
Real fabrics suffer link and switch failures that shatter the

symmetry [7, 31]. With arbitrary link removals, no single

core may reach all leaves, and finding the minimum-cost mul-

ticast tree reduces to the classical Steiner Tree Problem—NP-

hard even on degree-bounded graphs [19]. Formally:

Theorem 2.2. Given a 𝑘-ary fat-tree 𝐺 ′ with an arbitrary
subset of failed links, computing the minimum-cost tree that
spans source 𝑠 and destinations D is NP-hard.

Proof sketch. We reduce the classical Set-Cover prob-

lem to multicast-tree construction. Given a universe𝑈 and a

family of sets S, we create a Clos fabric in which every ele-

ment 𝑢 ∈ 𝑈 is mapped to a distinct leaf switch, and every set

𝑆 ∈ S is mapped to a unique core–to–aggregation path that

connects exactly the leaves corresponding to the elements in

𝑆 . We attach the source host to all such core paths. Any mul-

ticast tree must select a subset of these paths so that every

destination leaf is reachable; thus the cost of the tree equals

the number of selected paths, i.e., the number of chosen sets.

Finding the minimum-cost multicast tree therefore solves

Set-Cover, which is NP-hard, implying that our problem is

NP-hard as well. □

2.3 𝑶 (min{F, |D|})-Approximation
Idea: peel layer-by-layer from the outside in. Imagine con-

centric “hop layers” around the source host: hop layer 0 holds

the source, layer 1 all neighbors one hop away, and so on un-

til layer F , the farthest destination (𝐵 in Figure 2a). Our key

observation is that every destination must eventually attach

to some ancestor. By always choosing, on each hop layer, the

switch that covers the most still-unconnected nodes on the

next layer, we greedily mimic the classical set-cover heuristic

while preserving a layered, tree-shaped structure.

Walk-through example. Figure 2 shows the algorithm on

the asymmetric fabric in Figure 2a (left). We start with a

graph T that contains only the source 𝑆 and all destinations

{𝐴, 𝐵, 𝐷, 𝐸}.
• Layer 𝑙6: add destination 𝐵.

• Layer 𝑙5: 𝐵 is still unconnected to 𝑙4, so we pick switch 2○
(covers 𝐵 and maximizes reach) and link it to 𝐵.

• Layer 𝑙4: add destinations 𝐷 and 𝐸, then choose switch 6○
to connect upwards toward 2○.

• Layer 𝑙3: between 3○ and 4○, 3○ covers more yet-

unconnected children, so we pick it.

• Continue inward until layer 𝑙0, finally linking 1○ to the

source 𝑆 .

The result (Figure 2e) is a loop-free tree that spans all

receivers with just five added switches—only one more than

the symmetric optimum.

Algorithm description.

(1) Compute F =max𝑑∈D dist(𝑠, 𝑑).
(2) Build hop layers 𝑙 𝑗 = {𝑣 | dist(𝑠, 𝑣) = 𝑗} for 0 ≤ 𝑗 ≤ F .

(3) Initialize T ={𝑠} ∪ D.

(4) For 𝑖 = F down to 0:

(a) While some node in 𝑙𝑖+1 ∩T lacks a neighbor in 𝑙𝑖 ∩T ,

add to T the switch in 𝑙𝑖 that attaches the most such

nodes.

(5) Return T .

Lemma 2.3. Assuming that T is the outcome of the greedy
algorithm, |T | =∑F

𝑖=1 |𝑙𝑖 ∩ T | ≤ |D| × F

HotNets ’25, November 17–18, 2025, College Park, MD, USA Sepehr Abdous et al.

4 8 16 32 64
k

1

10

100

1000

10000

Pe
r-p

kt
ov

er
he

ad
 (B

)

FPR=1%
FPR=5%

FPR=10%
FPR=15%

FPR=20%

4 8 16 32 64
k

1

10

100

1000

10000

Pe
r-p

kt
ov

er
he

ad
 (B

)

Figure 3: RSBF’s Bloom-filter header exceeds one full MTU
once 𝑘 > 32; even at a generous false-positive ratio, band-
width overhead surpasses 100%.

Lemma 2.4. Assuming that 𝑂𝑃𝑇 is the optimal multicast
tree in the asymmetric Clos, |𝑂𝑃𝑇 | ≥𝑚𝑎𝑥 (|D|, F).

Theorem 2.5. The algorithm’s approximation factor is
𝑂 (𝑚𝑖𝑛(F , |D|)).

Proof. Given that |𝑂𝑃𝑇 | ≥ 𝑚𝑎𝑥 (F , |D|) and |T | ≤
|D| × F , we conclude that |T | ≤ |𝑂𝑃𝑇 | × (|D |×F

𝑚𝑎𝑥 (F, |D |)).
Therefore, the approximation factor is 𝑂 (|D |×F

𝑚𝑎𝑥 (F, |D |)) =

𝑂 (𝑚𝑖𝑛(F , |D|)). □

We also empirically show that our greedy algorithm out-

performs Ring and Binary Tree [3] in asymmetric Clos (§4).

Open question: multicast vs. multipath. A single Steiner

tree funnels traffic onto one set of links, whereas load bal-

ancers’ goal is to stripe bytes across many paths. How should

a fabric reconcile these opposing objectives, e.g., by building

multiple near-optimal trees, or by re-hashing prior to branch

points—and what performance trade-offs does that create?

3 Keeping Per-Switch State Small
Commodity switches expose only a few thousand multicast

entries [12, 18], yet large AI clusters need orders of mag-

nitude more. Existing solutions fail for at least one reason:

they overflow TCAM outright [2, 10]; inflate headers and

exhaust bandwidth [9, 11, 18, 20, 29]; create redundant traf-

fic [9, 18, 24]; impose multi-millisecond setup delays [12, 23];

rely on unsupported switch operations [26]; or demand full-

fabric programmability, driving up cost [12, 18, 20, 24]. We

quantify these drawbacks for two state-of-the-art schemes in

§3.1. We then introduce PEEL, a power-of-two prefix aggre-

gation scheme that compresses per-switch state from expo-

nential to linear (§3.2). If some tiers are programmable, PEEL

optionally performs a two-stage refinement (§3.3): packets

launch immediately with static prefixes, and a background

controller optimizes the steady state for lowering bandwidth

overhead with no start-up latency.

2 4 8 16 32 64 128 256 512
Message size (MB)

0.000

0.025

0.050

0.075

M
ea

n
CC

T
(s

)

With controller overhead
Without controller overhead

2 4 8 16 32 64 128 256 512
Message size (MB)

0.000

0.025

0.050

0.075

M
ea

n
CC

T
(s

)

2 4 8 16 32 64 128 256 512
Message size (MB)

0.000

0.025

0.050

0.075

p9
9

CC
T

(s
)

Figure 4: Orca’s SDN flow-setup delay inflates collective
completion time; the 99th-percentile CCT for a 32 MB Broad-
cast rises by 8×.

3.1 Why Existing Schemes Fail to Scale
RSBF [18] is a recent Bloom-filter (BF) proposal that pushes

multicast state into the packet header: each switch encodes

all outgoing ports in a BF, and the header size is enlarged just

enough to hit a target false-positive ratio (FPR). In principle,

this trades TCAM (switch state) for packet header bits, but in

practice, header growth is explosive. Even with an aggressive

20% FPR, RSBF already exceeds one full 1500 B MTU once

the fat-tree degree passes 𝑘=32 (Figure 3); Elmo [29], LIPSIN

[20], and Yeti [11] incur still larger headers [18]. The false

positives that remain also spray redundant traffic onto links

outside the multicast tree, consuming yet more bandwidth.

At the other extreme, Orca [12], an SDN-based scheme,

improves scalability by installing rules only when needed

(i.e., when the multicast groups are active) via a centralized

controller. It also reduces header size by offloading each

ToR’s last hop fan-out to a host-side agent and then relies

on an SDN controller to push per-tree blacklist rules that

mask Bloom-filter false positives. Modelling the controller’s

flow setup time as 𝑁 (10ms, 5ms) [16, 17] on an 8-ary fat-

tree with 1024 GPUs (128 hosts, 8 GPUs / host) in OMNet++

[1], we find that the 99
th
-percentile collective-completion

time for 32 MB Broadcast collectives inflates by 8× (Fig-

ure 4). These two case studies illustrate a broader pattern: BF

schemes hemorrhage bandwidth as the fabric grows, while

controller-driven techniques inject intolerable latency.

3.2 Hierarchical Power-of-Two Cover Sets
Paths in a Clos fabric split naturally into an upward funnel

and a downward fan-out. From the source host up to the

spine, only a single packet copy exists; load balancers such

as ECMP may choose among equal-cost links, but no switch

replicates the packet, so one rule suffices and state never

explodes. State blow-up occurs only on the way down [12].

Once the packet leaves the highest common ancestor, it may

be replicated—first across aggregation switches, then across

ToRs, and finally to the destination hosts. Receiver sub-trees

can grow exponentially at each tier, so each branch point

either needs per-group forwarding entries (IP multicast or

One to Many: Closing the Bandwidth Gap in AI Datacenters with Scalable Multicast HotNets ’25, November 17–18, 2025, College Park, MD, USA

SDN-installed) or must encode multiple outgoing ports in

the header (Bloom-filter schemes). Thus, all replication, state

growth, and control-plane churn arise in the downward seg-

ment, and optimizing this segment is essential for scalable

multicast. The remainder of this section therefore focuses

on the downward path; although we use the aggregate-to-

ToR tier in a fat-tree for concreteness, the same principles

apply to other downward segments (e.g., spine-to-leaf in a

leaf–spine).

Key idea. PEEL replaces per-group multicast entries with

a compact set of power-of-two prefix rules, exactly as CIDR

[13] coalesces contiguous IP addresses. Concretely, a single

rule can forward to all ToRs in a pod, two rules can each

cover half of the ToRs, four rules a quarter, and so on—every

rule’s mask length is a power of two. Because AI collectives

are bin-packed, i.e., job placements are localized [3], their

receivers tend to cluster in a handful of racks within the same

pod. We therefore assign every ToR in a pod a log
2
(𝑘/2)-bit

identifier
3
and pre-install in each aggregate switch exactly

one forwarding entry for every power-of-two prefix of that

identifier space.

Packets carry a small header containing a tuple

⟨prefix value, prefix length⟩ which selects one of the pre-

installed power-of-two prefix rules at the aggregate switch.

Upon receipt, the switch parses the header, applies the in-

dicated prefix rule, and replicates the packet to all ports in

the corresponding block. These operations are already sup-

ported by commodity datacenter switch hardware, requiring

no new ASIC features.

Packet generation and header overhead. The sender emits

one packet for each selected prefix. Each packet carries a single
⟨prefix, len⟩ tuple, whose size is

header bits = log
2

(
𝑘/2

)︸ ︷︷ ︸
prefix value

+
⌈
log

2

(
log

2
(𝑘/2) + 1

)⌉︸ ︷︷ ︸
prefix length

=

𝑂 (log
2
𝑘),

which is well under 8 B even for 𝑘=128, a fat-tree with

500+K hosts.

Switch-state overhead. Because the prefix space is fixed,

we can pre-install every power-of-two rack block once and

keep the data plane fully static. Let 𝑚 = log
2
(𝑘/2) be the

number of bits in a ToR identifier. For each prefix length ℓ ∈
{0, . . . ,𝑚} there are 2ℓ disjoint blocks (e.g., length 0 covers

all ToRs, length 𝑚 covers a single ToR), so an aggregate

switch needs 1 + 2 + 4 + · · · + 2
𝑚 = 2

𝑚+1 − 1 = 𝑘 − 1 TCAM

entries—linear in the port count, e.g., only 127 for 𝑘=128, a

fat-tree with over 500K hosts, versus the𝑂 (2𝑘/2) blow-up of

3
A 𝑘-ary fat-tree has 𝑘/2 ToRs per pod.

naïve IP multicast, roughly 2
64 ≈ 1.8 × 10

19
entries for the

same network!

Example. Consider an 8-ary pod whose ToRs are numbered

000–111. A Broadcast collective targets racks 010, 011, 100,
101, 110, and 111. PEEL builds a small trie and selects the

outermost complete sub-trees, yielding prefixes 1** (four

ToRs) and 01* (two ToRs). The source injects two packets:
one carrying the 3-bit prefix 1**/1 and one carrying 01*/2.

Upon arrival, the aggregate switchmatches the first packet

on its 1** rule and multicasts to the four upper ToRs; the

second packet matches 01* and reaches the two lower ToRs.

3.3 Optional Two-Stage Refinement with
Programmable Cores

The power-of-two overlay eliminates switch-state blow-ups,

yet its coarse prefixes may over-cover a pod when resources

are fragmented, causing redundant packets that the ToRs

later discard. When even a single tier—the core layer—offers
limited programmability, PEEL can trim this bandwidth

waste without sacrificing the zero-latency start-up enjoyed

by static prefixes.

Fast start. As before, the source immediately launches one

packet per cover prefix; the core forwards these untouched,

guaranteeing that training begins within microseconds.

Background optimization. In parallel, a centralized con-

troller (such as an SDN controller) computes the exact set-

cover tree for the active collectives (e.g., using the algorithms

in §2). Once that computation finishes, it programs only

the core switches with a small number of per-group repli-

cation rules—typically one rule per destination pod. From

that moment on, the source transmits a single copy of each

packet through the core; the programmable core duplicates

the packet on the fly, appending the appropriate ⟨prefix, len⟩
tuple before forwarding it to the correct aggregates.

3.4 Open Questions
While PEEL closes the long-standing scalability gap by

bounding both tree state and per-packet overhead, its design

also exposes several new research frontiers.

• Congestion signals. Can multicast trees remain both

scalable and congestion-aware? A promising direction is

a tree-aware controller or lightweight in-network marking

scheme that curbs synchronized queue build-ups with-
out reintroducing per-group switch state. The key chal-

lenge is detecting congestion early on shared multicast

links—before queues synchronize across branches—while

keeping the data plane restricted to limited prefix rules.

This tension between visibility and statelessness raises

broader questions about what minimal feedback (e.g., ag-

gregated ECN marks or probabilistic telemetry) is suffi-

cient for stable multicast flow control at scale.

HotNets ’25, November 17–18, 2025, College Park, MD, USA Sepehr Abdous et al.

• Resource fragmentation. How should prefix aggrega-

tion evolve as job placement becomes less compact? Even

in bin-packed clusters, GPU placement often leaves small

gaps across racks or pods, fragmenting prefix ranges and

preventing complete sub-trees in the prefix trie. Minor

fragmentation can thus reduce PEEL’s aggregation effi-

ciency and increase redundant transmissions. Future de-

signs could explore adaptive prefix packing, workload-

aware trie pruning, or hierarchical aggregation that toler-

ates sparse job layouts while preserving low overhead.

• Incremental deployment. If only a subset of switches

can be reprogrammed, which tier yields the highest re-

turn on investment—cores that replicate, aggregates that

rewrite prefixes, or ToRs that filter? What roll-out se-

quence minimizes transient imbalance or excess band-

width during transition? Studying the trade-off between

deployment cost, bandwidth savings, and stability could

guide how operators gradually adopt multicast support in

heterogeneous fabrics.

Together, these questions mark the next stage of the journey:

from feasibility to deployability. Solving them could turn mul-

ticast from a long-dismissed curiosity into a core substrate

for large-scale distributed AI training.

4 Evaluation
We simulate PEEL in OMNet++ [1] and evaluate its latency

under Broadcast collectives. Our key findings are: (a) PEEL

performs closely to the optimal Steiner tree baseline, while

outperforming Ring, Binary Tree, and Orca. (b) With pro-

grammable core switches, PEEL’s performance becomes even

closer to the optimal case; with 512 MB messages, its mean

latency is only 1.4% above the bandwidth-optimal Broadcast.

Experimental setup.We simulate an 8-ary fat-tree with 4

servers per ToR; each server hosts 8 GPUs attached to a dedi-

cated NIC, and GPUs communicate via NVLink/NVSwitch at

900 GBps [5], while all physical links run at 100 Gbps [8, 30].

Traffic consists of Broadcast collectives whose arrivals follow

a Poisson process (CPS) [32], each parameterized by its scale

(GPU count) and message size; GPU selections honor job

locality [3]. We report the mean and 99
th
-percentile (tail)

collective-completion time (CCT)—the interval from collec-

tive initiation until the message has reached all GPUs.

Baselines.We evaluate PEEL against two widely deployed

collective communication algorithms, i.e., Ring and Binary

Tree, and Orca [12], a state-of-the-art scheme that uses cen-

tralized controllers to realize scalable in-network multicast.

We choose Orca as it does not face scalability challenges un-

der large networks, unlike RSBF [18], and does not require

operations unsupported by today’s programmable switching

fabric, unlike Cepheus [26]. We model the controller’s flow

setup delay as a normal distribution (𝑁 (10ms, 5ms)) [16, 17]

2 4 8 16 32 64 128 256 512
Message size (MB)

0.0001
0.0010
0.0100
0.1000
1.0000

M
ea

n
CC

T
(s

)

Ring
Tree

Optimal
Orca

PEEL
PEEL+Programmable Cores

2 4 8 16 32 64 128 256 512
Message size (MB)

0.0001
0.0010
0.0100
0.1000
1.0000

M
ea

n
CC

T
(s

)

2 4 8 16 32 64 128 256 512
Message size (MB)

0.0001
0.0010
0.0100
0.1000
1.0000

p9
9

CC
T

(s
)

Figure 5: PEEL performs closely to the bandwidth-optimal
baseline.

2 4 8 16 32 64 128 256 512
Message size (MB)

0.0001
0.0010
0.0100
0.1000
1.0000

M
ea

n
CC

T
(s

)

Ring
Tree

Optimal
Orca

PEEL
PEEL+Programmable Cores

32 64 128 256 512 1024
Scale (# of GPUs)

0.001

0.010

0.100
0.300

M
ea

n
CC

T
(s

)

32 64 128 256 512 1024
Scale (# of GPUs)

0.001

0.010

0.100
0.300

p9
9

CC
T

(s
)

Figure 6: PEEL is faster than Orca, Tree, and Ring.

for both Orca and PEEL. When distributing data among

nodes using Ring or Binary Tree topologies—similar to ex-

isting libraries such as NCCL [4]—we divide messages into

chunks to enable pipelined forwarding. This allows nodes

to forward fully received chunks while concurrently receiv-

ing the remaining ones, thereby increasing parallelism and

overall performance. In our implementation, each message

is divided into eight chunks. Lastly, we add the bandwidth-

optimal Broadcast mechanism (using an optimal Steiner tree)

as a baseline.

Congestion control. All schemes run atop DCQCN+PFC

configured as in prior work: 12MB switch buffers, ECNmarks

between 5kB and 200kB (1% marking probability), and PFC

Stop/Resume at 11% free buffer space with a 5-MTU hystere-

sis [27, 34]. Multicast makes a single ECN mark fan out into

many CNPs, so PEEL replaces DCQCN’s receiver-side rate

limiter with a sender-side guard timer (one reaction every

50𝜇𝑠). This small change slashes 99
th
-percentile CCT by 12×

for a 64-GPU Broadcast with 32 MB messages. Interactions

with other congestion signals are deferred to future work.

PEEL performs closely to bandwidth-optimal Broad-
cast. As the first experiment, we evaluate the CCTs of dis-

tinct baselines in performing Broadcast collectives among

512 nodes with various message sizes. We set the collective

arrival rates in a way that the average network offered load

in every scenario is 30%. The results, presented in Figure 5,

illustrate that PEEL outperforms Orca, Ring, and Tree while

performing closely to the optimal scheme regardless of the

message sizes. For instance, under 2 MB and 512 MB mes-

sages, PEEL’s tail CCT is 101× and 21% lower than Orca,

respectively. Meanwhile, under 2 MB and 512 MB messages,

PEEL’s mean CCT is only 23% and 18% higher, respectively,

than the bandwidth-optimal Broadcast.

One to Many: Closing the Bandwidth Gap in AI Datacenters with Scalable Multicast HotNets ’25, November 17–18, 2025, College Park, MD, USA

1 2 4 8 10
Failure percentage (%)

0.01

0.10

0.30

M
ea

n
CC

T
(s

)

Tree Ring PEEL

1 2 4 8 10
Failure percentage (%)

0.01

0.10

0.30

M
ea

n
CC

T
(s

)

1 2 4 8 10
Failure percentage (%)

0.01

0.10

1.00

p9
9

CC
T

(s
)

Figure 7: PEEL is fast in asymmetric Clos.

With programmable core switches, PEEL’s performs
even closer to the optimal scheme. We also simulate

PEEL with programmable cores. Figure 5 shows that having

programmable cores further reduces PEEL’s CCTs when

message sizes are large and completion times are larger than

controller setup time. For instance, with 512 MB messages,

the tail latency of PEEL+Programmable Cores is 14% better

than PEEL and only 1.4% higher than optimal Broadcast.

Scale independence. With a fixed 64 MB message, we vary

the Broadcast scale from 32 to 1024 GPUs as shown in Figure

6. Across the entire range, PEEL surpasses Ring, Tree, and

Orca while remaining closest to the optimal baseline. At 256

GPUs, for example, PEEL’s mean CCT is 5× lower than Ring,

13× lower than Tree, and 2.5× lower than Orca.

Robustness to failures. To gauge our greedy tree in an

asymmetric fabric, we simulate a two-tier leaf–spine with

16 spines, 48 leafs, two servers per leaf, and eight GPUs

per server; every NIC and link runs at 100 Gbps [14]. A 64-

GPU Broadcast of 8 MB messages is repeated while 1–10% of

spine–to-leaf links are randomly failed. As Figure 7 shows,

Ring’s latency grows more gently than Tree’s because it

spreads load, yet PEEL remains faster than both across

the board. Even with a high 10% failure rate, PEEL’s 99
th
-

percentile CCT is 3× lower than Ring and 30× lower than

Tree, confirming that the non-optimal trees produced by our

greedy algorithm still deliver superior performance under

realistic fault conditions.

5 Related work
The prior work on realizing scalable multicast in modern

networks can be broadly categorized into three groups:

1) IPmulticast:While IPmulticast [2, 10] has been tradition-

ally used to facilitate message multicasting, it is impractical

in today’s datacenters [2, 12, 18, 26]. Specifically, IP multicast

requires significant state-keeping at the switches and contin-

uous control messages exchanged between them, which can

delay the process of a receiver joining a multicast session by

up to 23 seconds [2, 12].

2) Bloom Filter-based approaches: To shrink the per-

switch state, a group of proposals [12, 18, 20, 24], move the

multicast overhead to packet headers. Explicitly encoding the

forwarding information of every switch in the multicast tree

into packet headers significantly increases packet header size

[12, 18]. To avoid this, a group of papers [9, 18, 20, 24] use

Bloom Filters (BFs) to shrink the packet header space over-

head of encoding multicast information. Unfortunately, BF

is by nature prone to false positives, resulting in redundant

traffic transmission on links that are not part of the multicast

tree [12]. Also, existing BF-based approaches [9, 18, 20, 24]

still create significant per-packet overhead and do not scale

to large networks, e.g., 64-ary fat-tree datacenters [12, 26].

3) Controller-based schemes: Another group of propos-

als [12, 23] rely on central controllers for updating routing

tables when performing multicast. Unfortunately, schemes

that exploit SDN-based centralized controllers [12, 14] expe-

rience millisecond-scale flow setup delays [16, 17, 21, 22], e.g.,
flow setup delays can be as high as 50𝑚𝑠 depending on traf-

fic characteristics [16, 17]. To avoid this, Cepheus [26] uses

initiation messages. Carrying the multicast information, initi-
ation messages traverse the switches in the multicast tree and

update their routing tables. However, operations such as up-

dating the routing tables upon receiving initiation messages

are not widely deployable in today’s datacenter switching

fabric. Also, existing proposals [11, 12, 18, 24, 26] typically

assume programmability in every datacenter switch, making

their deployment extremely costly for the operators.

6 Conclusion
We argue that it is time to rethink the long-held view that

“multicast doesn’t scale.” Our position rests on two early re-

sults: (i) a layer-peeling heuristic that turns the NP-hard tree

problem in an asymmetric Clos into a polynomial computa-

tion with bounded approximation, and (ii) a power-of-two

prefix method that collapses switch state to 𝑘-1 static rules

while adding <8 B of header. Preliminary simulations in a

fat-tree place these ideas close to the Steiner optimum and

ahead of Orca, Ring, and Binary Tree. Yet several questions

remain open, including how multicast trees interact with

multipath load-balancing, how to achieve congestion isola-

tion and control, and which tiers should be upgraded for

programmability. Tackling these issues could open a rich

line of inquiry for the community.

Acknowledgments
We would like to thank our shepherd, Sujata Banerjee, the

anonymous HotNets reviewers, and Sana Mahmood for their

insightful feedback. This work was supported by NSF CNS

NeTS Grant No. 2313164, the Intel Fast Forward Award, and a

Meta Faculty Research Award. ChatGPT was used solely for

language editing and quality control; all ideas and content

are original. This research did not use any Meta resources

and was conducted at Johns Hopkins University.

HotNets ’25, November 17–18, 2025, College Park, MD, USA Sepehr Abdous et al.

References
[1] 2020. OMNeT++ Simulator. https://omnetpp.org/ .
[2] 2022. Multicast Group Capacity: Extreme Comes Out on Top. https:

//bit.ly/2H5sQ1n.
[3] 2024. Double Binary Tree Documentation. https://developer.nvidia.com/

blog/massively-scale-deep-learning-training-nccl-2-4/ .
[4] 2024. NVIDIA Collective Communications Library (NCCL). https://

developer.nvidia.com/nccl.
[5] 2024. NVLink and NVLink Switch. https://www.nvidia.com/en-us/data-

center/nvlink/ .
[6] 2025. State of AI Infrastructure Report. https://www.flexential.com/

resources/ report/2025-state-ai-infrastructure.
[7] Sepehr Abdous, Senapati Diwangkara, and Soudeh Ghorbani. 2024.

Tempus: Probabilistic Network Latency Verification. IEEE Access
(2024).

[8] Sepehr Abdous, Erfan Sharafzadeh, and Soudeh Ghorbani. 2023. Prac-

tical Packet Deflection in Datacenters. PACMNET (2023).

[9] Zihao Chen, Jiawei Huang, Qile Wang, Jingling Liu, Zhaoyi Li, Sheng-

wen Zhou, and Zhidong He. 2023. MEB: An Efficient and Accurate

Multicast using Bloom Filter with Customized Hash Function. In AP-
NeT.

[10] Stephen E Deering and David R Cheriton. 1990. Multicast Routing in

Datagram Internetworks and Extended LANs. TOCS (1990).
[11] Khaled Diab and Mohamed Hefeeda. 2022. Yeti: Stateless and General-

ized Multicast Forwarding. In NSDI.
[12] Khaled Diab, Parham Yassini, and Mohamed Hefeeda. 2022. Orca:

Server-assisted Multicast for Datacenter Networks. In NSDI.
[13] Vince Fuller, Tony Li, Jessica Yu, and Kannan Varadhan. 1993. Classless

Inter-Domain Routing (CIDR): An Address Assignment and Aggregation
Strategy. Technical Report.

[14] Adithya Gangidi, Rui Miao, Shengbao Zheng, Sai Jayesh Bondu,

Guilherme Goes, Hany Morsy, Rohit Puri, Mohammad Riftadi,

Ashmitha Jeevaraj Shetty, Jingyi Yang, et al. 2024. RDMA over Ethernet

for Distributed Training at Meta Scale. In SIGCOMM.

[15] Amir Gholami, Zhewei Yao, Sehoon Kim, Coleman Hooper, Michael W

Mahoney, and Kurt Keutzer. 2024. AI and MemoryWall. In IEEE Micro.
[16] Keqiang He, Junaid Khalid, Sourav Das, Aaron Gember-Jacobson,

Chaithan Prakash, Aditya Akella, Li Erran Li, and Marina Thottan.

2015. Latency in Software Defined Networks: Measurements and

Mitigation Techniques. In SIGMETRICS.
[17] Keqiang He, Junaid Khalid, Aaron Gember-Jacobson, Sourav Das,

Chaithan Prakash, Aditya Akella, Li Erran Li, and Marina Thottan.

2015. Measuring Control Plane Latency in SDN-enabled Switches. In

SOSR.
[18] Jiawei Huang, Zihao Chen, Yiting Wang, Hui Li, Zhaoyi Li, Qile Wang,

Sitan Li, Zhidong He, and Wanchun Jiang. 2024. Achieving High

Efficiency for Datacenter Multicast using Skewed Bloom Filter. In

ICPP.
[19] Frank K Hwang and Dana S Richards. 1992. Steiner Tree Problems.

Networks (1992).
[20] Petri Jokela, András Zahemszky, Christian Esteve Rothenberg, So-

maya Arianfar, and Pekka Nikander. 2009. LIPSIN: Line Speed Pub-

lish/Subscribe Inter-Networking. SIGCOMMComputer Communication
Review (2009).

[21] Murat Karakus and Arjan Durresi. 2017. A Survey: Control Plane

Scalability Issues and Approaches in Software-Defined Networking

(SDN). Computer Networks (2017).
[22] Ramin Khalili, Zoran Despotovic, and Artur Hecker. 2018. Flow Setup

Latency in SDN Networks. JSAC (2018).

[23] Mikhail Khalilov, Salvatore Di Girolamo, Marcin Chrapek, Rami

Nudelman, Gil Bloch, and Torsten Hoefler. 2024. Network-Offloaded

Bandwidth-Optimal Broadcast and Allgather for Distributed AI. In SC.
[24] Dan Li, Henggang Cui, Yan Hu, Yong Xia, and XinWang. 2011. Scalable

Datacenter Multicast using Multi-class Bloom Filter. In ICNP.
[25] Dan Li, Yuanjie Li, Jianping Wu, Sen Su, and Jiangwei Yu. 2011. ESM:

Efficient and Scalable Datacenter Multicast Routing. ToN (2011).

[26] Wenxue Li, Junyi Zhang, Yufei Liu, Gaoxiong Zeng, Zilong Wang,

Chaoliang Zeng, Pengpeng Zhou, Qiaoling Wang, and Kai Chen.

2024. Cepheus: Accelerating Datacenter Applications with High-

performance RoCE-capable Multicast. In HPCA.
[27] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng,

Lingbo Tang, Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Al-

izadeh, et al. 2019. HPCC: High Precision Congestion Control. In

SIGCOMM.

[28] Kun Qian, Yongqing Xi, Jiamin Cao, Jiaqi Gao, Yichi Xu, Yu Guan,

Binzhang Fu, Xuemei Shi, Fangbo Zhu, and Rui Miao. 2024. Alibaba

HPN: A Datacenter Network for Large Language Model Training. In

SIGCOMM.

[29] Muhammad Shahbaz, Lalith Suresh, Jennifer Rexford, Nick Feamster,

Ori Rottenstreich, and Mukesh Hira. 2019. Elmo: Source Routed Mul-

ticast for Public Clouds. In SIGCOMM.

[30] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani, Paolo Costa, Ki Suh

Lee, Han Wang, Rachit Agarwal, and Hakim Weatherspoon. 2019.

Shoal: A Network Architecture for Disaggregated Racks. In NSDI.
[31] Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent Vanbever, and

Martin Vechev. 2020. Probabilistic Verification of Network Configura-

tions. In SIGCOMM.

[32] Yongji Wu, Yechen Xu, Jingrong Chen, Zhaodong Wang, Ying Zhang,

Matthew Lentz, and Danyang Zhuo. 2024. MCCS: A Service-based

Approach to Collective Communication for Multi-Tenant Cloud. In

SIGCOMM.

[33] Zhen Zhang, Chaokun Chang, Haibin Lin, Yida Wang, Raman Arora,

and Xin Jin. 2020. Is Network the Bottleneck of Distributed Training?.

In NetAI.
[34] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina

Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mo-

hamad Haj Yahia, and Ming Zhang. 2015. Congestion Control for

Large-scale RDMA Deployments. In SIGCOMM.

https://omnetpp.org/
https://bit.ly/2H5sQ1n
https://bit.ly/2H5sQ1n
https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/
https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.flexential.com/resources/report/2025-state-ai-infrastructure
https://www.flexential.com/resources/report/2025-state-ai-infrastructure

	Abstract
	1 Introduction
	2 Multicast Tree in Clos
	2.1 Symmetric Clos: an Optimal Tree in Polynomial Time
	2.2 Asymmetric Clos: NP-Hardness
	2.3 O(minF, |D|)-Approximation

	3 Keeping Per-Switch State Small
	3.1 Why Existing Schemes Fail to Scale
	3.2 Hierarchical Power-of-Two Cover Sets
	3.3 Optional Two-Stage Refinement with Programmable Cores
	3.4 Open Questions

	4 Evaluation
	5 Related work
	6 Conclusion
	Acknowledgments
	References

