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Abstract Keywords

Al training now floods datacenter fabrics with thousands
of simultaneous collectives, yet most frameworks still move
data the hard way: O(N) unicasts for a group of N proces-
sors. Classic multicast could slash those bytes but has long
been deemed unscalable: computing an optimal tree in an
asymmetric Clos is NP-hard and group-specific rules quickly
exhaust switch TCAM.

We contend that both obstacles disappear once we em-
brace two mundane facts of today’s Al deployments. (i)
Layer regularity. Even after link failures, Clos paths rise and
fall cleanly through layers. We propose a novel layer-peeling
heuristic that exploits this to build near-optimal Steiner trees
in polynomial time. (ii) Job locality. GPU schedulers bin-
pack tasks into a few racks, enabling us to design a power-of-
two prefix method through existing datacenter switch opera-
tions. Pre-installing the k — 1 prefixes per pod, which shrinks
state from exponential to linear and adds less than 8 B per
packet. In a 64-ary fat-tree (65,536 hosts) our prototype uses
just 63 rules, down from four billion—and performs within
1.4% of the Steiner optimum. We do not claim a finished sys-
tem; rather, we argue that multicast is finally within reach
for trillion-parameter models and invite the community to
revisit the assumption that “multicast simply doesn’t scale.”
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1 Introduction

The great Al growth spurt has a networking Achilles’
heel. While GPU performance has vaulted 60,000x in two
decades, network links inside the same datacenters have im-
proved barely 30x [15]. The resulting “bandwidth gap” reg-
ularly starves multi-billion-parameter models that stretch
across thousands of accelerators. Datacenter networks in-
creasingly emerge as bottlenecks in Al datacenters [6, 33].
Yet, counter-intuitively, production Al frameworks still rely
on application-level unicast [23]: every GPU individually
sprays its updates to every peer. Popular logical topolo-
gies—rings, double binary trees, or pipelined meshes—only
schedule these unicasts; they do not reduce the total traf-
fic. Figure 1 shows a simple Broadcast collective where uni-
cast rings and trees overshoot the minimum bandwidth by
70-80%.

Why not just multicast? Classic IP multicast [10] would
slash bytes, latency, and congestion, but two long-standing
scalability barriers keep it out of Al clusters:

(1) Tree construction at cloud scale. Computing a minimal
multicast tree in a Clos with failures—an asymmetric
Clos—is an NP-hard Steiner Tree problem [25].

(2) State explosion. Thousands of concurrent training jobs
can spawn thousands of multicast groups, quickly over-
flowing switch TCAMs if each group needs its own for-
warding entries [11, 12, 18]. Past fixes shrink state only at
the cost of jumbo headers, per multicast group churn, or
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Figure 1: Unicast-based Broadcast in a two-tier leaf-spine
Al cluster traverses the same core links up to 80% more often
than a multicast-optimal solution. Logical rings and trees
tame bursts and incast but do not curb total bytes.

(c) Optimal

added latency—none palatable for microsecond-sensitive
RDMA fabrics.!

Our thesis. We argue that both barriers crack open once we
leverage two unique facts about Al datacenters:

(i) Clos regularity with bounded asymmetry. Even after
random link failures or DoR (Disable-on-Repair) mainte-
nance, most paths rise and fall through layers. This structure
lets us recursively cover receivers layer-by-layer, yielding a
O(min(F,|D|))-approximate tree? in polynomial time.

(ii) Job locality. Collective groups are typically confined to
continuous arrays of racks or pods [3], so a compact set of
cover-set prefixes can label entire subtrees. By pre-installing
just O(k) such prefixes per switch in a k-ary fat-tree, we slash
data-plane state from O(2) to O(k) and encode group mem-
bership in only O(log k) header bits—comfortably within the
existing RDMA packet budget. This exponential-to-linear cut
is transformative: in a 64-ary fat-tree with 65,536 nodes, the

10ther practical hurdles—e.g., loss detection, congestion control, and path
observability—already leverage RDMA’s selective retransmissions, conges-
tion control, and cluster-wide telemetry used by today’s unicast collectives;
thus they do not re-inflate switch state or tree-construction cost and are
outside this paper’s scope.

29D is the set of destination nodes and ¥ is the length of the longest path
among the shortest paths from the source to the destinations in D.
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required entries plummet from over 4 X 10° to fewer than
64, making multicast practical on today’s RoCE hardware.

Deploy-once, touch-never multicast. The resulting sys-

tem, PEEL (Prefix-Encoded Efficient Layering), requires no

per-group switch updates and computes near-optimal trees

in polynomial time. In large-scale simulations (§4) when

performing Broadcast collectives with 8 MB messages, PEEL:

o outperforms Ring and Tree by up to 5x and 12X, respec-
tively, as we change the percentage of failed links from 1%
to 10%.

o uses 23% less aggregate bandwidth than unicast rings.

o fitsin a fixed 63 TCAM entries in a 64-ary fat-tree network,
adding less than 8 B overhead per packet.

Beyond scalability. A deployable multicast service must
also provide loss recovery, flow isolation, and rich telemetry.
Our prototype inherits RDMA’s selective repeat retransmis-
sions and introduces a lightweight heuristic for merging
per-receiver congestion signals (§4). All other congestion-
control and monitoring hooks reuse the mechanisms already
exercised by today’s unicast collectives, and are orthogonal
to this paper’s focus on tree construction and switch state.
We therefore zero in on the open scalability gap and reserve
a full treatment of reliability engineering for future work.
Take-away. A fresh look at tree algorithms and header/state
co-design turns multicast from a 1990s curiosity into a first-
class primitive for tomorrow’s trillion-parameter mod-
els.

2 Multicast Tree in Clos

Al clusters typically run on multi-tier Clos fabrics [14, 23].
Because these topologies come in two very different fla-
vors—symmetric (no failures) and asymmetric (one or more
failed links/switches)—we treat them separately.

2.1 Symmetric Clos: an Optimal Tree in
Polynomial Time

In a failure-free k-ary fat-tree or two-tier leaf-spine, every
leaf switch connects to all spine switches with identical link
costs. This symmetry collapses the core into a single logical
super-node, turning the problem into building a Steiner tree
on the host-leaf bipartite graph. Because the graph is now a
tree, a breadth-first sweep that starts at the source’s leaf and
branches down to destination leaves is optimal and runs in

O(|D]) time:

LEmMA 2.1. LetG = (V, E) be a symmetric leaf-spine fabric
with unit link costs, s the source host, and D the set of desti-
nation hosts. The minimum-cost multicast tree from s to D
can be computed in O(|D|) time by: (i) lifting all spines into a
logical super-node, (ii) adding the unique path (leaf(s), super),
and (iii) attaching each leaf(d), d € D, to the super-node.
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Figure 2: The layer-peeling greedy algorithm on an asymmetric leaf-spine fabric: each panel shows the additional switches
and links chosen while progressing from the outermost layer () toward the source (ly).

SkeTCH. The super-node abstraction converts G into a
tree; optimal multicast on a tree is found by including every
destination leaf and the unique connecting paths, which is
linear in |D|. O

In future work, we will extend this approach to deeper
multi-stage Clos fabrics (such as three-tier fat-trees) and
other multi-layer topologies such as rail-optimized topolo-
gies [28] which require additional bookkeeping.

2.2 Asymmetric Clos: NP-Hardness

Real fabrics suffer link and switch failures that shatter the
symmetry [7, 31]. With arbitrary link removals, no single
core may reach all leaves, and finding the minimum-cost mul-
ticast tree reduces to the classical Steiner Tree Problem—NP-
hard even on degree-bounded graphs [19]. Formally:

THEOREM 2.2. Given a k-ary fat-tree G’ with an arbitrary
subset of failed links, computing the minimum-cost tree that
spans source s and destinations D is NP-hard.

Proor skeTcH. We reduce the classical SET-COVER prob-
lem to multicast-tree construction. Given a universe U and a
family of sets S, we create a Clos fabric in which every ele-
ment u € U is mapped to a distinct leaf switch, and every set
S € § is mapped to a unique core-to—aggregation path that
connects exactly the leaves corresponding to the elements in
S. We attach the source host to all such core paths. Any mul-
ticast tree must select a subset of these paths so that every
destination leaf is reachable; thus the cost of the tree equals
the number of selected paths, i.e., the number of chosen sets.
Finding the minimum-cost multicast tree therefore solves
SET-COVER, which is NP-hard, implying that our problem is
NP-hard as well. O

2.3 O(min{¥F, |D|})-Approximation

Idea: peel layer-by-layer from the outside in. Imagine con-
centric “hop layers” around the source host: hop layer 0 holds

the source, layer 1 all neighbors one hop away, and so on un-
til layer 7, the farthest destination (B in Figure 2a). Our key
observation is that every destination must eventually attach
to some ancestor. By always choosing, on each hop layer, the
switch that covers the most still-unconnected nodes on the
next layer, we greedily mimic the classical set-cover heuristic
while preserving a layered, tree-shaped structure.

Walk-through example. Figure 2 shows the algorithm on
the asymmetric fabric in Figure 2a (left). We start with a
graph 7 that contains only the source S and all destinations
{A,B,D, E}.

o Layerls: add destination B.

e Layerls: B is still unconnected to Iy, so we pick switch @
(covers B and maximizes reach) and link it to B.

e Layerly: add destinations D and E, then choose switch @
to connect upwards toward

e Layer l3: between @ and @ @ covers more yet-
unconnected children, so we pick it.

o Continue inward until layer Iy, finally linking @ to the
source S.

The result (Figure 2e) is a loop-free tree that spans all
receivers with just five added switches—only one more than
the symmetric optimum.

Algorithm description.

1) Compute ¥ = maxge p dist(s, d).

2) Build hop layers [; = {v | dist(s,0) = j} for0 < j < F.
3) Initialize 7 ={s} U D.

4) For i = F down to 0:

(a) While some node in [;+1 N7 lacks a neighbor in ; N 7T,
add to 7 the switch in [; that attaches the most such
nodes.

(5) Return 7.

o~~~ o~

LEMMA 2.3. Assuming that T is the outcome of the greedy
algorithm, |T| = X7 [LNT| < |D| xF
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Figure 3: RSBF’s Bloom-filter header exceeds one full MTU
once k > 32; even at a generous false-positive ratio, band-
width overhead surpasses 100%.

LEMMA 2.4. Assuming that OPT is the optimal multicast
tree in the asymmetric Clos, |OPT| = max(|D|, F).

THEOREM 2.5. The algorithm’s approximation factor is

O(min(F,|D)|)).

Proor. Given that |OPT| > max(F,|D|) and |T| <

|D| x F, we conclude that |7| < |OPT| x (malf()lgél))
Therefore, the approximation factor is O(malxz()qulgl))

O(min(F, |D))).

We also empirically show that our greedy algorithm out-
performs Ring and Binary Tree [3] in asymmetric Clos (§4).
Open question: multicast vs. multipath. A single Steiner
tree funnels traffic onto one set of links, whereas load bal-
ancers’ goal is to stripe bytes across many paths. How should
a fabric reconcile these opposing objectives, e.g., by building
multiple near-optimal trees, or by re-hashing prior to branch
points—and what performance trade-offs does that create?

3 Keeping Per-Switch State Small

Commodity switches expose only a few thousand multicast
entries [12, 18], yet large Al clusters need orders of mag-
nitude more. Existing solutions fail for at least one reason:
they overflow TCAM outright [2, 10]; inflate headers and
exhaust bandwidth [9, 11, 18, 20, 29]; create redundant traf-
fic [9, 18, 24]; impose multi-millisecond setup delays [12, 23];
rely on unsupported switch operations [26]; or demand full-
fabric programmability, driving up cost [12, 18, 20, 24]. We
quantify these drawbacks for two state-of-the-art schemes in
§3.1. We then introduce PEEL, a power-of-two prefix aggre-
gation scheme that compresses per-switch state from expo-
nential to linear (§3.2). If some tiers are programmable, PEEL
optionally performs a two-stage refinement (§3.3): packets
launch immediately with static prefixes, and a background
controller optimizes the steady state for lowering bandwidth
overhead with no start-up latency.
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Figure 4: Orca’s SDN flow-setup delay inflates collective
completion time; the 99™"-percentile CCT for a 32 MB Broad-
cast rises by 8x.

3.1 Why Existing Schemes Fail to Scale

RSBF [18] is a recent Bloom-filter (BF) proposal that pushes
multicast state into the packet header: each switch encodes
all outgoing ports in a BF, and the header size is enlarged just
enough to hit a target false-positive ratio (FPR). In principle,
this trades TCAM (switch state) for packet header bits, but in
practice, header growth is explosive. Even with an aggressive
20% FPR, RSBF already exceeds one full 1500 B MTU once
the fat-tree degree passes k =32 (Figure 3); Elmo [29], LIPSIN
[20], and Yeti [11] incur still larger headers [18]. The false
positives that remain also spray redundant traffic onto links
outside the multicast tree, consuming yet more bandwidth.
At the other extreme, Orca [12], an SDN-based scheme,
improves scalability by installing rules only when needed
(i.e., when the multicast groups are active) via a centralized
controller. It also reduces header size by offloading each
ToR’s last hop fan-out to a host-side agent and then relies
on an SDN controller to push per-tree blacklist rules that
mask Bloom-filter false positives. Modelling the controller’s
flow setup time as N(10ms, 5ms) [16, 17] on an 8-ary fat-
tree with 1024 GPUs (128 hosts, 8 GPUs / host) in OMNet++
[1], we find that the 99"-percentile collective-completion
time for 32 MB Broadcast collectives inflates by 8x (Fig-
ure 4). These two case studies illustrate a broader pattern: BF
schemes hemorrhage bandwidth as the fabric grows, while
controller-driven techniques inject intolerable latency.

3.2 Hierarchical Power-of-Two Cover Sets

Paths in a Clos fabric split naturally into an upward funnel
and a downward fan-out. From the source host up to the
spine, only a single packet copy exists; load balancers such
as ECMP may choose among equal-cost links, but no switch
replicates the packet, so one rule suffices and state never
explodes. State blow-up occurs only on the way down [12].
Once the packet leaves the highest common ancestor, it may
be replicated—first across aggregation switches, then across
ToRs, and finally to the destination hosts. Receiver sub-trees
can grow exponentially at each tier, so each branch point
either needs per-group forwarding entries (IP multicast or
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SDN-installed) or must encode multiple outgoing ports in
the header (Bloom-filter schemes). Thus, all replication, state
growth, and control-plane churn arise in the downward seg-
ment, and optimizing this segment is essential for scalable
multicast. The remainder of this section therefore focuses
on the downward path; although we use the aggregate-to-
ToR tier in a fat-tree for concreteness, the same principles
apply to other downward segments (e.g., spine-to-leaf in a
leaf—spine).

Key idea. PEEL replaces per-group multicast entries with
a compact set of power-of-two prefix rules, exactly as CIDR
[13] coalesces contiguous IP addresses. Concretely, a single
rule can forward to all ToRs in a pod, two rules can each
cover half of the ToRs, four rules a quarter, and so on—every
rule’s mask length is a power of two. Because Al collectives
are bin-packed, i.e., job placements are localized [3], their
receivers tend to cluster in a handful of racks within the same
pod. We therefore assign every ToR in a pod a log, (k/2)-bit
identifier® and pre-install in each aggregate switch exactly
one forwarding entry for every power-of-two prefix of that
identifier space.

Packets carry a small header containing a tuple
(prefix value, prefix length) which selects one of the pre-
installed power-of-two prefix rules at the aggregate switch.
Upon receipt, the switch parses the header, applies the in-
dicated prefix rule, and replicates the packet to all ports in
the corresponding block. These operations are already sup-
ported by commodity datacenter switch hardware, requiring
no new ASIC features.

Packet generation and header overhead. The sender emits
one packet for each selected prefix. Each packet carries a single
{refix, len) tuple, whose size is

header bits = log,(k/2) + [1og2(1og2(k/z) +1)] -
[
prefix value

prefix length

O(log, k),
which is well under 8 B even for k=128, a fat-tree with
500+K hosts.

Switch-state overhead. Because the prefix space is fixed,
we can pre-install every power-of-two rack block once and
keep the data plane fully static. Let m = log,(k/2) be the
number of bits in a ToR identifier. For each prefix length ¢ €
{0,...,m} there are 2¢ disjoint blocks (e. g., length 0 covers
all ToRs, length m covers a single ToR), so an aggregate
switchneeds 1+ 2+ 4+ --- + 2™ =2m" — 1 =k — 1 TCAM
entries—linear in the port count, e.g., only 127 for k=128, a
fat-tree with over 500K hosts, versus the O(2%/2) blow-up of

3A k-ary fat-tree has k/2 ToRs per pod.

HotNets "25, November 17-18, 2025, College Park, MD, USA

naive IP multicast, roughly 2%* ~ 1.8 X 10'° entries for the
same network!
Example. Consider an 8-ary pod whose ToRs are numbered
000-111. A Broadcast collective targets racks 010, 011, 100,
101, 110, and 111. PEEL builds a small trie and selects the
outermost complete sub-trees, yielding prefixes 1x* (four
ToRs) and @1 (two ToRs). The source injects two packets:
one carrying the 3-bit prefix 1**/1 and one carrying 01%/2.
Upon arrival, the aggregate switch matches the first packet
on its 1** rule and multicasts to the four upper ToRs; the
second packet matches @1 and reaches the two lower ToRs.

3.3 Optional Two-Stage Refinement with
Programmable Cores

The power-of-two overlay eliminates switch-state blow-ups,
yet its coarse prefixes may over-cover a pod when resources
are fragmented, causing redundant packets that the ToRs
later discard. When even a single tier—the core layer—offers
limited programmability, PEEL can trim this bandwidth
waste without sacrificing the zero-latency start-up enjoyed
by static prefixes.

Fast start. As before, the source immediately launches one
packet per cover prefix; the core forwards these untouched,
guaranteeing that training begins within microseconds.
Background optimization. In parallel, a centralized con-
troller (such as an SDN controller) computes the exact set-
cover tree for the active collectives (e.g., using the algorithms
in §2). Once that computation finishes, it programs only
the core switches with a small number of per-group repli-
cation rules—typically one rule per destination pod. From
that moment on, the source transmits a single copy of each
packet through the core; the programmable core duplicates
the packet on the fly, appending the appropriate {refix, len)
tuple before forwarding it to the correct aggregates.

3.4 Open Questions

While PEEL closes the long-standing scalability gap by
bounding both tree state and per-packet overhead, its design
also exposes several new research frontiers.

e Congestion signals. Can multicast trees remain both
scalable and congestion-aware? A promising direction is
a tree-aware controller or lightweight in-network marking
scheme that curbs synchronized queue build-ups with-
out reintroducing per-group switch state. The key chal-
lenge is detecting congestion early on shared multicast
links—before queues synchronize across branches—while
keeping the data plane restricted to limited prefix rules.
This tension between visibility and statelessness raises
broader questions about what minimal feedback (e.g., ag-
gregated ECN marks or probabilistic telemetry) is suffi-
cient for stable multicast flow control at scale.
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¢ Resource fragmentation. How should prefix aggrega-
tion evolve as job placement becomes less compact? Even
in bin-packed clusters, GPU placement often leaves small
gaps across racks or pods, fragmenting prefix ranges and
preventing complete sub-trees in the prefix trie. Minor
fragmentation can thus reduce PEEL’s aggregation effi-
ciency and increase redundant transmissions. Future de-
signs could explore adaptive prefix packing, workload-
aware trie pruning, or hierarchical aggregation that toler-
ates sparse job layouts while preserving low overhead.

e Incremental deployment. If only a subset of switches
can be reprogrammed, which tier yields the highest re-
turn on investment—cores that replicate, aggregates that
rewrite prefixes, or ToRs that filter? What roll-out se-
quence minimizes transient imbalance or excess band-
width during transition? Studying the trade-off between
deployment cost, bandwidth savings, and stability could
guide how operators gradually adopt multicast support in
heterogeneous fabrics.

Together, these questions mark the next stage of the journey:
from feasibility to deployability. Solving them could turn mul-
ticast from a long-dismissed curiosity into a core substrate
for large-scale distributed Al training.

4 FEvaluation

We simulate PEEL in OMNet++ [1] and evaluate its latency
under Broadcast collectives. Our key findings are: (a) PEEL
performs closely to the optimal Steiner tree baseline, while
outperforming Ring, Binary Tree, and Orca. (b) With pro-
grammable core switches, PEEL’s performance becomes even
closer to the optimal case; with 512 MB messages, its mean
latency is only 1.4% above the bandwidth-optimal Broadcast.
Experimental setup. We simulate an 8-ary fat-tree with 4
servers per ToR; each server hosts 8 GPUs attached to a dedi-
cated NIC, and GPUs communicate via NVLink/NVSwitch at
900 GBps [5], while all physical links run at 100 Gbps [8, 30].
Traffic consists of Broadcast collectives whose arrivals follow
a Poisson process (CPS) [32], each parameterized by its scale
(GPU count) and message size; GPU selections honor job
locality [3]. We report the mean and 99"-percentile (tail)
collective-completion time (CCT)—the interval from collec-
tive initiation until the message has reached all GPUs.

Baselines. We evaluate PEEL against two widely deployed
collective communication algorithms, i.e., Ring and Binary
Tree, and Orca [12], a state-of-the-art scheme that uses cen-
tralized controllers to realize scalable in-network multicast.
We choose Orca as it does not face scalability challenges un-
der large networks, unlike RSBF [18], and does not require
operations unsupported by today’s programmable switching
fabric, unlike Cepheus [26]. We model the controller’s flow
setup delay as a normal distribution (N (10 ms, 5 ms)) [16, 17]
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Figure 6: PEEL is faster than Orca, Tree, and Ring.

for both Orca and PEEL. When distributing data among
nodes using Ring or Binary Tree topologies—similar to ex-
isting libraries such as NCCL [4]—we divide messages into
chunks to enable pipelined forwarding. This allows nodes
to forward fully received chunks while concurrently receiv-
ing the remaining ones, thereby increasing parallelism and
overall performance. In our implementation, each message
is divided into eight chunks. Lastly, we add the bandwidth-
optimal Broadcast mechanism (using an optimal Steiner tree)
as a baseline.

Congestion control. All schemes run atop DCQCN+PFC
configured as in prior work: 12MB switch buffers, ECN marks
between 5kB and 200kB (1% marking probability), and PFC
Stop/Resume at 11% free buffer space with a 5-MTU hystere-
sis [27, 34]. Multicast makes a single ECN mark fan out into
many CNPs, so PEEL replaces DCQCN’s receiver-side rate
limiter with a sender-side guard timer (one reaction every
50us). This small change slashes 99™-percentile CCT by 12x
for a 64-GPU Broadcast with 32 MB messages. Interactions
with other congestion signals are deferred to future work.
PEEL performs closely to bandwidth-optimal Broad-
cast. As the first experiment, we evaluate the CCTs of dis-
tinct baselines in performing Broadcast collectives among
512 nodes with various message sizes. We set the collective
arrival rates in a way that the average network offered load
in every scenario is 30%. The results, presented in Figure 5,
illustrate that PEEL outperforms Orca, Ring, and Tree while
performing closely to the optimal scheme regardless of the
message sizes. For instance, under 2 MB and 512 MB mes-
sages, PEEL’s tail CCT is 101X and 21% lower than Orca,
respectively. Meanwhile, under 2 MB and 512 MB messages,
PEEL’s mean CCT is only 23% and 18% higher, respectively,
than the bandwidth-optimal Broadcast.
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Figure 7: PEEL is fast in asymmetric Clos.

With programmable core switches, PEEL’s performs
even closer to the optimal scheme. We also simulate
PEEL with programmable cores. Figure 5 shows that having
programmable cores further reduces PEEL’s CCTs when
message sizes are large and completion times are larger than
controller setup time. For instance, with 512 MB messages,
the tail latency of PEEL+Programmable Cores is 14% better
than PEEL and only 1.4% higher than optimal Broadcast.
Scale independence. With a fixed 64 MB message, we vary
the Broadcast scale from 32 to 1024 GPUs as shown in Figure
6. Across the entire range, PEEL surpasses Ring, Tree, and
Orca while remaining closest to the optimal baseline. At 256
GPUs, for example, PEEL’s mean CCT is 5X lower than Ring,
13% lower than Tree, and 2.5% lower than Orca.
Robustness to failures. To gauge our greedy tree in an
asymmetric fabric, we simulate a two-tier leaf-spine with
16 spines, 48 leafs, two servers per leaf, and eight GPUs
per server; every NIC and link runs at 100 Gbps [14]. A 64-
GPU Broadcast of 8 MB messages is repeated while 1-10% of
spine-to-leaf links are randomly failed. As Figure 7 shows,
Ring’s latency grows more gently than Tree’s because it
spreads load, yet PEEL remains faster than both across
the board. Even with a high 10% failure rate, PEEL’s 9gth_
percentile CCT is 3x lower than Ring and 30X lower than
Tree, confirming that the non-optimal trees produced by our
greedy algorithm still deliver superior performance under
realistic fault conditions.

5 Related work

The prior work on realizing scalable multicast in modern
networks can be broadly categorized into three groups:

1) IP multicast: While IP multicast [2, 10] has been tradition-
ally used to facilitate message multicasting, it is impractical
in today’s datacenters [2, 12, 18, 26]. Specifically, IP multicast
requires significant state-keeping at the switches and contin-
uous control messages exchanged between them, which can
delay the process of a receiver joining a multicast session by
up to 23 seconds [2, 12].

2) Bloom Filter-based approaches: To shrink the per-
switch state, a group of proposals [12, 18, 20, 24], move the
multicast overhead to packet headers. Explicitly encoding the
forwarding information of every switch in the multicast tree
into packet headers significantly increases packet header size
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[12, 18]. To avoid this, a group of papers [9, 18, 20, 24] use
Bloom Filters (BFs) to shrink the packet header space over-
head of encoding multicast information. Unfortunately, BF
is by nature prone to false positives, resulting in redundant
traffic transmission on links that are not part of the multicast
tree [12]. Also, existing BF-based approaches [9, 18, 20, 24]
still create significant per-packet overhead and do not scale
to large networks, e.g., 64-ary fat-tree datacenters [12, 26].
3) Controller-based schemes: Another group of propos-
als [12, 23] rely on central controllers for updating routing
tables when performing multicast. Unfortunately, schemes
that exploit SDN-based centralized controllers [12, 14] expe-
rience millisecond-scale flow setup delays [16, 17, 21, 22], e.g.,
flow setup delays can be as high as 50ms depending on traf-
fic characteristics [16, 17]. To avoid this, Cepheus [26] uses
initiation messages. Carrying the multicast information, initi-
ation messages traverse the switches in the multicast tree and
update their routing tables. However, operations such as up-
dating the routing tables upon receiving initiation messages
are not widely deployable in today’s datacenter switching
fabric. Also, existing proposals [11, 12, 18, 24, 26] typically
assume programmability in every datacenter switch, making
their deployment extremely costly for the operators.

6 Conclusion

We argue that it is time to rethink the long-held view that
“multicast doesn’t scale” Our position rests on two early re-
sults: (i) a layer-peeling heuristic that turns the NP-hard tree
problem in an asymmetric Clos into a polynomial computa-
tion with bounded approximation, and (ii) a power-of-two
prefix method that collapses switch state to k-1 static rules
while adding <8 B of header. Preliminary simulations in a
fat-tree place these ideas close to the Steiner optimum and
ahead of Orca, Ring, and Binary Tree. Yet several questions
remain open, including how multicast trees interact with
multipath load-balancing, how to achieve congestion isola-
tion and control, and which tiers should be upgraded for
programmability. Tackling these issues could open a rich
line of inquiry for the community.
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