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Abstract

Recently, there has been increasing concern about a new fail-
ure mode in data-center systems: when there is an external
shock, such as a sudden load spike or some machine fail-
ures, systems will sometimes respond with reduced through-
put — but, in contrast to a traditional overload situation, the
throughput does not recover once the external shock disap-
pears, and remains permanently degraded. This phenomenon
has been called a metastable failure.

In this paper, we sketch a simple model that could help to
explain how and why metastability arises. We also show how
our model can be used to predict the presence or absence of
metastable states in a given system.
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1 Introduction

Metastable failures are a relatively new phenomenon. In-
stances have occasionally appeared in the literature, but
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more as a curiosity; they have not been studied systemati-
cally until a pair of recent papers [1, 4] identified them as
part of a larger and previously unexplored category of fail-
ures. So far, pretty much everything about them is unknown
or poorly understood: their causes, possible mitigation and
countermeasures, etc. However, there is concern in industry
about these failures because their prevalence seems to be
increasing, and because they are so much harder to mitigate
and even diagnose than classical failures: a single metastabil-
ity event can take hours to fully mitigate, and this can mean
losing millions of dollars in production. We have heard this
concern repeatedly, from multiple sides — most recently in
Marc Brooker’s keynote at SoCC 2023.

In this paper, we take a first step by suggesting a precise
definition of metastability and a general mechanism that can
give rise to it. The rough shape of the mechanism is already
known: Bronson et al. [1] suggested that metastability in-
volves 1) a bad state of some kind; 2) a trigger that causes
the system to enter it; and 3) a self-sustaining loop of events
that prevents the system from leaving the bad state even
when the trigger is removed. However, this is too vague to
start looking for metastability in a given system. Subsequent
papers have made things more concrete, but at the expense
of generality: Huang et al. [4] specifically studies load spikes
and capacity drops, while Qian et al. [6] and Habibi et al. [3]
specifically focus on retry storms. Based on our own deploy-
ment experience with a massive-scale distributed system,
this is at most a small part of the rather large and varied
range of metastable behaviors.

In order to answer the “VP’s plea” from [1] (“Can you
predict the next metastable failure, rather than explain the
last one?”), we need a fairly general pattern we can look for -
general enough to fit not just the existing examples but also
new ones we have not yet seen. For instance, we would prefer
to avoid the assumption that triggers are necessarily load
spikes, or that the bad state is necessarily, say, a 10% capacity
drop. Our goal was to find something like the definition of
deadlocks, whose presence can be detected from the presence
of a cycle in the resource allocation graph [2]. This captures
the essence of what a deadlock is, and it is general enough
to apply to a wide variety of systems.
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In this paper, we propose just a such definition. Our defi-
nition predicts the existence of a larger and more general set
of metastable behaviors than what has been described in the
literature so far. In addition, it reveals a duality between a
certain type of system and a certain class of linear equations;
the latter are somewhat easier to study and help with estab-
lishing a precise condition for the presence of metastable
states, somewhat analogous to the one for deadlocks. In fact,
this may be a sign of a connection to dynamical systems - a
rich area with decades of potentially relevant existing work.

2 System model

We begin by describing a system model that abstracts away
the functional behavior of a system and focuses exclusively
on how work flows through it. Our first goal is to convince
the reader that, when analyzing metastability, it makes sense
to describe complex distributed systems in this way.

In our model, systems are represented by components that
process streams of opaque tokens. The components can be
connected by “wires”; in addition, each system has at least
one input wire and one output wire. Execution proceeds in
synchronous rounds; in each round t, the system receives
some number of tokens on each input wire and can optionally
produce some number of tokens on each output wire. For
now, we will use the following four components:

e emitter(k): Emits k fresh tokens in each round.

e queue(c): A queue that can hold up to c tokens. At the
beginning of each round, emits all queued tokens.

e multiplier: Produces two or more streams of tokens
that each contain one token for every input token.

e subtractor: Receives two streams of tokens A and B
and outputs A — B tokens if A > B, or 0 otherwise.

Notice that our system model intentionally contains no nor-
mal state — there are no “variables” or memory locations
that could be used to remember things. The only state in
this type of system is the number of tokens in each queue.
Given some arbitrary ordering of the queues, we say that the
state of a system with N queues is an N-dimensional vector
S =(Si,...,Sn) such that S; is the number of tokens in the
i queue. In the first round, the system starts in the initial
state I := (0,...,0), that is, all the queues are initially empty.

2.1 Example: Retry storm

Figure 1 shows a simple example of how a system would be
represented using this approach. We intentionally start with
the classic example — the retry storm - that has appeared in
each of the earlier papers [1, 4].

This model consists of three queues, two subtractors, two
emitters, and one multiplier. Tokens represent requests; they
enter the model from the left and are initially stored in a
waiting queue. In each round, up to S requests are moved
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Figure 1: A system in which requests are retransmitted
after a timeout. Multipliers are shown as diamonds,
emitters as arrows, and subtractors as squares.

to a served queue; the rest go back to the waiting queue. If
the number of waiting requests exceeds a threshold T, the
requests time out and copies are moved to the rexmits queue,
which feeds back to the waiting queue. Both the number of
waiting requests and the number of retries are limited by the
queue capacities Qpqx and R4y, respectively. The system
outputs a token for each request that has been served.

In Section 3.1, we will show that this model captures a well-
known metastable behavior: once there are enough waiting
requests that the number of retransmissions exceeds the
service rate S, the number of requests explodes. The model
focuses on the essence of this problem: we do not need to
model what happens to individual requests, or what exactly
the requests do, in order to capture metastable behavior.

2.2 Connection to real distributed systems

For our model to be useful more generally, its components
should represent functionality that commonly occurs in real
distributed systems. Here are some practical examples:

Emitter: An emitter describes any part of a system that
is periodically active on its own, even without any input.
For instance, a periodic heartbeat message, periodic replica
maintenance, a periodic nightly backup, or periodic routing
updates could all be represented as emitters.

Queue: Queues are ubiquitous in distributed systems. The
variant in our model is a bit unusual in that it drains com-
pletely in each round. We made this choice to simplify the
mathematical model (Section 3.2) and to use the same com-
ponent to represent both queueing and delay: a sequence of
k queues causes a delay of k rounds.

Multiplier: This component represents any kind of amplifi-
cation: for instance, if a storage system maintains k replicas,
incoming writes would typically cause k internal writes, one
at each replica. Other examples include pub-sub systems,
multicast systems, and route distribution.

Subtractor: The subtractor represents situations where mul-
tiple activities compete for the same fixed set of resources.
For instance, a storage system might be handling high-priority
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Figure 2: Behavior of the system from Figure 1 for (a) a single 8-token spike; (b) a (4,0) trace, starting from I; (c) a
weakly metastable state (4, 0,0); and (d) a 10-token spike that enters strongly metastable state (10,0, 0). Each column

consists of the input trace (top), the state of the rexmits and waiting queues (middle) and the output (bottom).

requests while a low-priority backup is active in the back-
ground. Both activities would compete for the same, limited
I/O bandwidth; the subtractor can compute how much ca-
pacity is “left over” for the backup in each round.

3 Metastability

We now define metastability for systems that can be de-
scribed with our system model. Informally, our definition
captures that there is a trigger — represented by a finite prefix
P of the input trace — that is “remembered” by the system
and causes the subsequent behavior to be different indefi-
nitely. We also distinguish between cases where the behavior
change is permanent and cases where it can be reversed by
some kind of “anti-trigger”.

Definition 3.1. A state S is weakly metastable in a given
system iff (1) S is reachable from the initial state I, that is,
there is a finite input trace P that takes the system from I to
S; and (2) there exists an infinite input trace R such that, if
two instances of the system are started in the states S and I,
respectively, and both receive the same trace R, their outputs
differ infinitely often. S is strongly metastable if condition (2)
also holds for any finite extension of P.

This kind of “memory” is interesting because we have inten-
tionally defined our system model to contain no ordinary
state (say, in-memory or on-disk state); recall that this has
been abstracted away, and that the tokens merely represent
units of work. Instead, the “memory” arises from feedback
loops between its components, as we shall see shortly.

3.1 Examples of metastable states

We illustrate Definition 3.1 using the example system from
Figure 1. Suppose the server can handle S = 3 requests per
round, the input queue can hold Q,4x = 10 requests, requests
start timing out once there are more than T = 4 requests in
the queue, and there can be at most Ry,4x = 3 retransmissions
per round. Figure 2(a) shows a “normal”, execution without
metastable behavior, in which this system receives a few
smaller inputs followed by a larger spike in round 10 (top
graph). This causes some queueing in the waiting queue
which, after the spike, briefly exceeds the threshold T and
triggers some retransmissions (middle graph). The output is
steady and returns to zero each time (bottom graph).
However, the system does contain some metastable states.
S1:=(4,0,0) is an example of a weakly metastable state: it
can be reached with a single-element input trace P; := (4),
and if the trace then continues as R; := (4, 0) ad infinitum —
that is, alternates between 0 and 4 — the system’s behavior
(Figure 2(c)) is different than what it would be had the system
started from the initial state I (Figure 2(b)). The reason is
that Ry by itself just barely stays under the threshold for
retransmissions, but if the system already starts with enough
queued requests when it receives R;, retransmissions do
occur and cause the output to be higher. This is visible in
the middle graphs; notice how the waiting line exceeds the
threshold T in Figure 2(c), but not in Figure 2(b). Somewhat
counterintuitively, R} := (4) does not satisfy the definition: in
that scenario, the system is overloaded regardless of whether
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it starts in state S or I. In Ry, the difference becomes visible
in the rounds where the input is zero.

Sy is not a strongly metastable state: if we send three zero
inputs, the queues drain and the system returns back to I.
However, the state S; := (10,0,0) is strongly metastable
(Figure 2(d)). It, too, can be reached via a single-element
input trace P, := (10), and once the system is in that state, it
is “stuck”: in each round, the server handles S = 3 requests
but there are also 10 — S — T = 3 retransmissions, so the
queue never drains again, even if all future inputs are zero!
Thus, R, = (6) satisfies the definition: starting from I, the
output will be (0), but starting from Sy, it will be (3).

3.2 Mathematical model

An important question is whether we can tell whether a given
system has any metastable states. Before we can answer this
question, we need to provide a denotational semantics for
our otherwise operational model. In essence, each instance of
our model corresponds to a finite-state transducer (FST) that
transforms a sequence of inputs into a sequence of outputs
using a finite state space, namely the cross product of all the
queue lengths. (FSTs have limited expressivity, but recall that
we are only modeling how work flows through the system,
not the actual work itself, which can be substantially more
complex.) We can write down the transformation the FST
computes by associating a term with each wire as follows:
for wires starting at an emitter(k), the term is k; for wires
starting at a queue Q, it is Q(t-1); for the input, it is in(t — 1);
for a multiplier(k), it is the term on the multiplier’s input
wire; for a subtractor(A,B), it is (A — B) 1o (where (+)_ ¢ clips
negative arguments to zero); and for a wire with multiple
inputs, it is the sum of the terms on the input wires. Then
the equation for queue Q with capacity C is q(t) = X[§,
where X is the term on the queue’s input wire and (-)[S
clips arguments larger than C to C, and the equation for the
output is the term on the output wire. If we use this method
for our example system in Figure 1, we get:

wait(t) = (in(t—1)+(wait(t=1)—S) Lg+rexmits(t—1)) | 2"

served(t) = (wait(t — 1))13
rexmits(t) = (wait(t — 1) — T)I§max
out(t) = served(t — 1).

It is also possible to convert a given set of equations back
into a system, provided that it has the above format.

3.3 More complex examples

The system from Figure 1 has a metastable behavior: after an
input spike of sufficient magnitude, a permanent retry storm
occurs. However, metastable behaviors can be substantially
more complex. We provide a few examples here.
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Oscillation: Consider the system in Figure 3a. It can be
expressed with the following equations:

out(t) =in(t—1)+a(t—1)

a(t) = ((in(t —=1) = 5) 10+ b(t — 1)) [°
b(t) = a(t — 1) 720

Once an input spike of magnitude six or larger occurs, this
system will enter a strongly metastable state and perma-
nently add a spike to its output every two rounds. In general,
adding a k-round pattern will require a loop with k queues;
in this case, k = 2. We have not seen oscillation discussed in
the literature on metastability so far, but we have observed
instances of this in our data centers.

Specific triggering pattern: In the existing case studies
from the literature, the trigger tends to be a single input spike
above a certain magnitude. However, metastability can also
be triggered by specific patterns. For instance, the circuit in
Figure 3b triggers a runaway effect once the input contains
the specific sequence 5-4. The equations are:

preo(t) = in(t — 1)]°

saw5(t) = (in(t=1) = 4) [ — (in(t-1) = 5) ],
sawd(t) = (prev(t—1) — 3) 1, — (prev(t—1) — 4) [,
det(t) = (saw5(t—1) + sawd(t—1) +2 - det(t—1) — 1),
out(t) = in(t — 1) +det(t — 1).
In Figure 3b, saw5 and saw4 are implemented by groups of
components around p5/p4 and g4/q3, respectively. Notice
that we can essentially implement Boolean logic here: the
terms in saw5 are 1 if the previous input was at least 5 and
6, respectively, and 0 otherwise; det is the equivalent of an

AND gate. So, with enough queues, we can look for any finite
subsequence in the input!

Bistable system: The system in Figure 3c is similar to a
flip-flop: Its equations are:
saw5(t) = (in(t-1) —4) ] — (in(t—1) = 5) ],
sawd(t) = (in(t-1) = 3) [y — (in(t-1) - 4) ],
det(t) = (saw4(t) + (det(t—1) — saw5(t)) 10) o
out(t) = (in(t — 1) +det(t — 1)) [°
It outputs its input until exactly three tokens are observed
in any single round; after that, the outputs increase by one
token. This behavior continues until exactly five tokens are

input in any single round; then it returns to normal. This is
an example of a weakly metastable state.

Multiple metastable states: So far, we have only seen sys-
tems that have a single metastable behavior and a single
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Figure 3: Example system models with more complex metastable behaviors

trigger. But in fact, the same system can have multiple dif-
ferent triggers with different effects. Consider the following:

3to6(t) = (in(t—1) —2) [ — (in(t-1) - 6) ],

feed(t) = (3to6(t — 1) +2 - feed(t — 1)) ;™

mem(t) = ((in(t —1) — 9)18 + mem(t — 1))13
out(t) = (in(t — 1) + feed(t — 1) — mem(t — 1)) 1o.

Here, inputs between 4 and 6 will trigger a feedback loop
to output 100, whereas inputs greater than 9 will trigger a
permanent throughput drop.

3.4 Metastability requires a feedback cycle

Our model also allows us to formalize the hypothesis from [1]
— that metastability requires a feedback cycle - as follows:

THEOREM 3.2. If a system has a metastable state, it con-
tains at least one variable whose equation depends, directly or
indirectly, on an earlier value of the same variable.

Proor. Assume the opposite, that is, the system has at
least one metastable state S but no variable depends, directly
or indirectly, on its own earlier values. Then, whenever a
term V(¢ —x) for some variable V appears on the right side of
an equation, we can substitute in its place the right side of V’s
own equation, with the ¢ — x substituted in for the argument.
For instance, if a(t) = b(t — 1) + 6 and b(t) = in(t — 1)]°,
then we get a(t) = in(t — 2)[}° + 6. Since we have assumed
that there are no cyclic dependencies, a finite number of
substitutions will transform each equation to one that has
in as its only variable, i.e., that depends only on input values
at various past points in time. Let k be the smallest number
such that, whenever in(t — x) appears in the equation for
out(t), x < k. Then the output cannot depend on any input
that was received more than k steps ago. But now consider
what would happen if we run two copies of the system, one
from the initial state I and one from the metastable state S
we have assumed exists. Although the outputs of the two
systems can differ for the first k inputs, they will inevitably
be the same after that. But if S truly were a metastable state,

then the output would have to differ infinitely often. So S
cannot be a metastable state, and the claim follows. m]

Note that cyclic dependencies are not enough to cause
metastable states. For instance, if we take the three compo-
nents at the top of Figure 1 away, we get a simple queue:

wait(t) = (in(t—1) + (wait(t—1)=S) 1) | 2"
served(t) = (wait(t — 1))Ig
out(t) = served(t — 1)

This system has a feedback cycle for the queue wait, but
there are no metastable states.

3.5 Finding metastable states

How do we decide whether a given system has metastable
states — and if it does, how can we find them? In our model,
this can be done with the following procedure.

Let X be the original FST. First, we compute the set of
reachable states in X, along with a trace Ts that can be used
to reach each state S from I. Then, for each reachable state
S # I of X, we build a new FST Xs. The states of Xg are
concatenations (515;) of two states S; and S; of the original
FST X, plus a single terminating state T, and the starting
state is (IS). For the transition from a state (S1S,) with input
i, there are two cases. Suppose the original FST X produces
the outputs 0; and 0, when it receives i in states S; and S,
and transitions to S; and S;, respectively. Then, if S| # S, the
transition goes to (S;S;) and produces output 003, otherwise
it goes to T and produces an arbitrary output (say, 0101).

Intuitively, Xs simulates two instances of the original FST
“in parallel” and produces the outputs the two instances
would produce, as long as they are in different states; if
and when the two instances reach the same state, the FST
terminates because the two instances will always have the
same output after that point, as our systems are determinis-
tic. We can then look for cycles in this FST such that (1) the
cycle can be reached from (IS), and (2) the outputs along the
cycle contain at least one 070, with 01 # 0.
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It is easy to see that, if such a cycle is found, S is a weakly
metastable state: Ts satisfies the first condition of the defini-
tion (S is reachable from I if Ts is input), and the inputs along
the path from (IS) to the cycle, plus the inputs along the cy-
cle itself repeated ad infinitum, satisfy the second condition:
both instances go through a cycle of states indefinitely, with-
out ever reaching the same state, and produce at least one
different output along the way. Conversely, if S is a weakly
metastable state, such a cycle must exist in the FSM.

4 Conclusion and ongoing work

We admit that we are still far from our goal of fully un-
derstanding metastability. However, our model could be an
important step: rather than describing specific instances of
metastable behavior, like the earlier work [1, 3, 4, 6] has
done, it offers a possible mechanism that could explain how
metastability arises. Our model also hints at a potentially
much larger space of metastable behaviors: triggers can be ar-
bitrary patterns and not just spikes, and the sustaining effects
are not limited to work amplification or decreased efficiency
and can include, e.g., oscillation. Finally, our model can be
used to predict the presence or absence of metastable states
in the system it describes, which is an exciting prospect and
could a first step towards answering the “VP’s plea” from [1].

An important question is how one would generate a model
for a given system. We speculate that system identifica-
tion [5] could be used to build an initial model from diagnos-
tic data, which many large-scale systems capture anyway.
Another question is whether our set of four building blocks
is sufficient, or whether there are other behaviors that need
to be captured in the model. And finally, a practical solution
would need to go far beyond the toy examples we have pre-
sented here, and be able to operate at datacenter scales. We
hope to answer these questions in our ongoing work.
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