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Abstract
As network programmability promotes increasingly intel-
ligent hosts, NICs, and switches, we argue that the next
frontier lies in making the cables themselves smarter. By em-
bedding lightweight, wire-speed processing directly within
transceivers, we enable precise, low-latency, and energy-
efficient network functions, providing a modular and cost-
effective path to extend the life of legacy infrastructure
and to fundamentally rethink where intelligence belongs
in the data plane. To concretize such vision, this paper in-
troduces FlexSFP, a programmable variant of the standard
SFP+ transceiver, embedding lightweight FPGA-based logic
for in-line packet processing. Driven by both technical and
economic considerations, FlexSFP offers a compelling “cheap
path” alongside host CPUs and SmartNICs, enabling tar-
geted acceleration where cost, power, and deployment flex-
ibility are critical. We explore practical use cases, such as
per-port firewalling, in-line telemetry, and retrofitting legacy
switches, and outline a feasible architecture and program-
ming model.
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1 Introduction
Modern networks face increasing demands for performance,
flexibility, and efficiency. While control-plane programmabil-
ity has matured through software-defined networking (SDN),
and data-plane acceleration has advanced with the adoption
of SmartNICs and DPUs, these solutions remain costly and
power-intensive. Moreover, they are frequently deployed to
handle simple, repetitive tasks (e.g., filtering, tagging, etc.)
that do not require such powerful hardware, leading to over-
provisioning that is economically and architecturally difficult
to justify.

Yet acceleration and offloading remain essential to achiev-
ing high-performance network operation. We argue that
these capabilities should no longer be limited to hosts or spe-
cialized NICs, but should extend into the termination points
of the network cables themselves. At this physical boundary
lies a natural and underutilized candidate: the Small Form-
factor Pluggable module (SFP). Ubiquitous across network
infrastructure, SFPs terminate optical links, populate every
port of every switch and router, and serve as the primary
ingress and egress points of the data plane. As such, moving
computation directly into the transceiver itself appears to
us as a natural next step in the evolution of network pro-
grammability.
We introduce FlexSFP, a programmable SFP module em-

bedding lightweight logic (e.g., FPGA) within standard plug-
gable optics. This enables high-frequency operations—filtering,
tagging, and telemetry—to be performed at wire speed, with
minimal energy cost, directly at the physical network edge.
In essence, beyond the traditional slow path (CPU) and fast
path (SmartNIC), programmable SFP modules represent a
natural place to realize a third, complementary, cheap path:
a low-power, low-cost tier for in-line processing of ubiqui-
tous micro-tasks, deployable pervasively and incrementally
across the network.
Crucially, FlexSFP can refactor legacy switches into in-

telligent, policy-enforcing edge devices—without replacing
switch hardware or modifying control software. One can
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envision FlexSFP as the SmartNIC of the switch: a compact,
programmable datapath element embedded at every port,
capable of executing common packet-processing functions
inline. Just as SmartNICs brought intelligence to the server
edge, FlexSFP brings modular, cost-efficient computation to
legacy switching fabrics, unlocking new functionality with-
out costly infrastructure upgrades.

In the remainder of this paper, we outline our motivations
and vision in Section 2, followed by use cases in Section 3.
Section 4 describes the proposed architecture and program-
ming model, while Section 5 presents a preliminary feasibil-
ity evaluation based on a simple NAT implementation. We
conclude with open research challenges in Section 6.

2 Motivation
Modern SmartNICs [2–4, 29, 42] are powerful, general-purpose
accelerators featuring CPU clusters, substantial memory,
and programmable pipelines. They are designed for demand-
ing workloads such as full network virtualization [13, 22],
advanced storage protocols [18, 28], and data aggregation
for AI [40, 49]. While well justified in hyperscale and high-
performance computing environments, these capabilities
may be disproportionate for simpler tasks such as packet
filtering, VLAN tagging, or basic telemetry, where their use
can entail unnecessary cost, high power consumption, and
suboptimal resource utilization. This situation exposes a sig-
nificant acceleration gap, as network operators are often left
to choose between two suboptimal options:

• executing simple tasks on the host CPU, reintroducing
latency, jitter, and resource contention—the very issues
offloading was intended to avoid, or

• deploying a full-featured SmartNIC, incurring addi-
tional cost and power consumption for capabilities
that may remain largely unused.

FlexSFPs are conceived to fill this gap by offering a focused,
lightweight processing platform for the "long tail" of simple,
recurring packet-processing tasks, executed directly at the
optical edge, without the complexity or cost of a SmartNIC
or DPU. Beyond addressing architectural inefficiencies, this
approach also responds to two critical pressures in modern
network design: cost and power (see also Section 5 for further
quantitative cost and energy trade-offs).
Economic Drivers: The cost gap between conventional
and accelerated network interfaces is substantial. A modern
SmartNIC or DPU can add $800 to over $2,000 per port to
a server’s total cost, making widespread deployment eco-
nomically impractical. In contrast, one FlexSFP is expected
to add only a modest premium over standard SFP+ or QSFP
modules, which typically range from as little as less than $10
to several hundred dollars. This enables a more scalable and
cost-effective deployment model, bringing programmability

to a much broader portion of the network, not just to its
most critical or centralized nodes.
Energy Efficiency: Power consumption poses a similar con-
straint. A single SmartNIC may draw between 25 and 75
watts per port, contributing significantly to a rack’s thermal
and power budget. By comparison, a FlexSFP is designed to
stay within the 1–3W envelope of a standard transceiver,
achieving an order-of-magnitude reduction in power usage.
This low power profile enables deployment in edge environ-
ments with tight thermal limits, where traditional accelera-
tion platforms are infeasible.

2.1 Refactoring legacy switches
A strategically significant benefit of the FlexSFP is its ability
to decouple feature deployment from hardware replacement
cycles. Adding support for new tunneling formats, teleme-
try, or access policies typically requires replacing entire net-
work devices, indeed an expensive and disruptive process.
Rather, programmable SFPs enable a modular, plug-and-play
approach, allowing operators to extend the capabilities of
legacy infrastructure without modifying switch hardware or
control software.
A compelling application of the FlexSFP architecture is

in large-scale telecom deployments, where operators man-
age thousands of legacy aggregation switches across urban
and suburban networks. These fixed-function L2/L3 devices
connect residential fiber (FTTH) or mobile base stations to
metro cores but lack programmability, telemetry, and in-line
enforcement capabilities. As a result, per-subscriber policies
such as IPv6 filtering, DoH blocking, or basic rate-limiting
must be enforced upstream, introducing latency and added
complexity. The lack of local observability further prevents
early detection of congestion or spoofing, and makes trou-
bleshooting difficult.

Upgrading these switches with external SmartNICs is eco-
nomically and operationally impractical: it would require
full hardware replacement, at significant capital and energy
cost, and is incompatible with fanless, space-constrained
enclosures common at the edge. In contrast, replacing the ex-
isting SFPmodules with programmable SFPs offers amodular,
drop-in upgrade path. Each port becomes a programmable
enforcement point, capable of inline filtering, VLAN tagging,
flow marking, or telemetry export, without any modification
to the chassis or switch OS. This decoupled, drop-in upgrade
model allows legacy switches to be refactored into intelligent
edge nodes, and enables operators to selectively extend the
functionality of existing infrastructure, deploy new services
incrementally, and avoid the cost, disruption, and rigidity of
monolithic hardware refresh cycles.
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3 Use Cases and Scenarios
To illustrate the practical potential of programmable SFPs,
in this section we outline a (non-exhaustive) spectrum of
use cases, which aim to show how lightweight, wire-speed
programmability in SFP modules may enable deployments
that are impractical or uneconomical with SmartNICs or
centralized appliances.
Security and Policy Enforcement. Filtering is a classic
use case: access control lists (ACLs) are needed at almost
every edge point, yet are commonly offloaded to SmartNICs,
fixed-function appliances, or implemented inefficiently on
host CPUs. With programmable SFPs, packet filtering and
firewalling can occur directly at the optical edge, dropping
traffic before it reaches the NIC, the switch, or even the
customer premises. This architectural placement naturally
supports a clean separation between security and service
logic, allowing traffic to be screened before reaching service
endpoints. Inline security use cases may also include packet
sanitization and protocol validation, such as removing depre-
cated headers, blocking malformed packets, or rate-limiting
traffic from selected sources. The inline feasibility of these
primitives in the data plane has been demonstrated in pro-
grammable switches using P4, see e.g., P4DDPI’s DNS-based
filtering [1] and Nimble’s in-network rate limiting [19].
Packet Transformation and Forwarding. Many data-
plane operations, such as header encapsulation, VLAN tag-
ging, or flow-based load balancing, are repetitive, predictable,
and amenable to offload. These transformations are a per-
fect target for programmable SFPs: they are simple, do not
require deep buffers or complex scheduling, and can be exe-
cuted at line rate directly at the network edge. For example,
programmable SFPs can insert tunneling headers for GRE,
VXLAN, or IP-in-IP without involving the host, or apply
VLAN tagging and QinQ for L2 segmentation in legacy en-
vironments. Load balancing is another natural fit, such as
hashing over packet headers to distribute flows across up-
links, similar to Katran [15], but executed directly at the
optical boundary. Unlike traditional deployments where a
SmartNIC or host CPU performs rerouting in software, im-
plementing this logic within the SFP simplifies the datapath
and removes need for such external components. Besides,
programmable hardware platforms like FlowBlaze [32] and
Domino [44] have shown that even more advanced stateful
forwarding logic can be achieved at line rate using compact,
match-action logic.
Monitoring andObservability. Embedding telemetry logic
in the SFP allows in-line timestamping, labeling, or sam-
pling even on legacy switches without native support. For
instance, a FlexSFP could export NetFlow-like stats or insert
lightweight metadata for in-band measurements, similar to
what has been demonstrated in in-band network telemetry

Control
Plane

PPEEdge Fiber

(a) One-Way-Filter architecture

Control
Plane

PPEEdge Fiber

(b) Two-Way-Core architecture

Figure 1: Alternative architectures for FlexSFP packet
processing logic.

(INT) [8, 46]. These techniques bring modern observabil-
ity to infrastructure that can’t otherwise be instrumented,
without incurring high overhead. In addition to passive mon-
itoring, programmable SFPs can also play an active role in
detecting faults such as link flapping, microbursts, or fiber
breaks, with a "wire-level" capillarity that centralized tools
can hardly achieve.
Edge Acceleration. At the edge of mobile networks, links
between Radio Units (RUs), Distributed Units (DUs), and Cen-
tralized Units (CUs) often carry baseband data over Ethernet,
encapsulating digitized PHY signals. Especially in micro-
cell deployments, these links form a dense, time-sensitive,
distributed infrastructure with minimal space for compute.
Recent work like Janus [17] shows that telemetry and con-
trol tasks (throughput estimation, handover analysis, cell
occupancy tracking) can be performed with low overhead,
suggesting the feasibility of deploying similar codelets at the
optical edge. Similarly, in Passive Optical Networks (PONs),
programmable optical terminals could shape, classify, or drop
traffic directly at the fiber edge, and enforce per-user SLAs,
tag VoIP streams, or apply early traffic policing in multi-
tenant access networks without upgrading Optical Line Ter-
minals (OLT) hardware or customer routers.

4 FlexSFP design
We begin by examining the implications of embedding pro-
grammability within the constrained physical footprint of
an SFP module. Enabling such devices to execute meaningful
network functions requires a clear understanding of their
architectural and operational limitations. Specifically, we
identify key constraints common to embedded hardware
systems: Area, Power, and Thermal dissipation. To support
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programmability, we need to accommodate, alongside the
SFP components, a hardware chip such as a processor, an
FPGA, or a mixed system like a System on Chip (SoC).

This integration must be achieved within the tight size and
layout constraints of the SFP form factor, making efficient
Printed Circuit Board (PCB) utilization a key design chal-
lenge. While a detailed analysis of power and thermal limits
across SFP generations (e.g., SFP+, QSFP, OSFP) is left for
future work, it is worth noting that commercial SFP and SFP+
modules already exist with embedded low-performance pro-
cessors [31], or FPGAs [45], though, to the best of our knowl-
edge, only used for fixed-function tasks. For the FlexSFP pro-
totype, we used an off-the-shelf commercial product based
on the Microchip reference design [26].

4.1 Architecture
We now outline a component-level architecture for a pro-
grammable SFP, guided by functional requirements and im-
plementation constraints. We identify three possible logical
architectures that differentiate mainly by complexity and
type of packet processing needed in different scenarios. It is
worth noting that an SFP device has in itself two separate
networking interfaces, one connected to the host system
(identified as the Edge Connector in Figure 1) and the other
one typically connected to the fiber optical connectors. Plac-
ing programmability in between these two interfaces means
that an application could either be meant for unidirectional
traffic in either direction or bidirectional traffic.
To support runtime programmability rather than fixed-

function deployment, a lightweight control plane is essential,
enabling runtime control plane operations and over-the-air
reprogramming of packet processing logic.
With this in mind, we introduce a preliminary architec-

ture, referred to as One-Way-Filter, illustrated in Figure 1a.
In this design, the packet processing logic is placed only on
the path from the edge interface toward the optical link via
a Packet Processing Engine (PPE as referred to in the figures)
which is better detailed in §4.2. Traffic arriving from the
edge is demultiplexed: control-plane packets are directed
to the management core, while all other packets are for-
warded through the PPE. In the reverse direction, packets
arriving from the optical link are merged with control-plane
traffic and forwarded to the edge. We assume that control-
plane traffic is negligible compared to the data-plane traffic
traversing the module, such that the aggregation step does
not become a performance bottleneck and does not impact
overall throughput.

If applications are expected to interact with packets from
both interfaces, a modified version of the One-Way-Filter
architecture can be employed. We refer to this enhanced
design as the Two-Way-Core, illustrated in Figure 1b. In this

architecture, packets arriving from both the edge and opti-
cal interfaces are first aggregated and then passed through
the PPE. After processing, packets are demultiplexed and
forwarded to the appropriate egress interface based on appli-
cation logic. This design introduces two key considerations:
• Processing Load: Aggregating traffic from both inter-
faces effectively doubles the packet rate entering the
processing engine. To maintain line-rate throughput on
both ports, one feasible approach is to increase the oper-
ating frequency of the packet processing engine while
keeping the rest of the system components clocked at
their original rates.

• Hardware Overhead: Although the Two-Way-Core ar-
chitecture incurs a higher hardware footprint than the
One-Way-Filter, the increase is not linear. Shared compo-
nents mitigate the growth in required resources.
It is worth noting that in the One-Way-Filter, the PPE

could be placed in either direction (optical to electrical or
vice-versa) or even both if hardware resources suffice.

A third architectural model envisions integrating a ded-
icated control-plane network interface into the SFP, effec-
tively promoting the control plane from a passive manage-
ment entity to an active participant in the data path. In this
design, the control plane is not limited to configuring the
data plane, but can also originate and terminate traffic, trans-
forming the SFP from a reactive device into an active network
component capable of generating traffic.
This shift opens up new possibilities: if lightweight ap-

plication logic could be embedded directly into the control
plane, the SFP could act as a self-contained microservice
node. Such a model would require a more capable control
plane architecture, moving beyondminimal footprint designs
toward more feature-rich platforms.
Control Plane Considerations. To support this, a pro-
grammable SFP must include an embedded control plane.
Even in lightweight designs, aminimal control stack is needed
for configuration, monitoring, and runtime coordination. We
identify two main classes of embedded control logic:
• SoC-based designs, which embed full-featured ARM (or
RISC-V) hard processors alongside the dataplane logic.
These allow running standard OSes like Linux, enabling
support for complex services such as RPC protocols or
REST APIs. While more expensive and power-hungry,
SoC-based programmable SFPs are well-suited for envi-
ronments that require flexible reconfiguration or interac-
tion with external orchestration systems.

• Softcore-based designs, which embed minimal RISC-V
or MIPS CPUs as logic blocks within the FPGA fabric,
programmed with lightweight OSes like FreeRTOS [14]
or Zephyr [47]. These CPUs are resource-constrained
but are sufficient for many of the use cases described in
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Figure 2: Prototype for a programmable SFP with Mi-
crochip FPGA (MPF200T).

§ 3. In particular, use cases such as firewalling, tunneling,
or in-line telemetry often require only static rule loading
or coarse-grained updates that can be coordinated via
simple control messages.
In both cases, the FlexSFP must expose a basic network-

accessible control interface. As shown in Figure 1, the on-
board arbiter connects the programmable dataplane with
the host interface and the out-of-band management port, al-
lowing remote access to the control logic without disrupting
the dataplane. This is essential for centralized orchestration
across a fleet of FlexSFPs, while preserving the independence
of per-port behavior.

4.2 Programming model
In order to provide programmability at speed, we believe that
an FPGA chip, or at least some FPGA fabric inside a SoC, is
needed. Mainly because in such an embedded environment,
one cannot simply scale up performance linearly with the
number of general-purpose cores due to limitations in both
thermal constraints and chip area footprint.

We envision programmable SFPs being used by selecting
one of the proposed architecture shells and embedding cus-
tom applications within the PPE. Application development
may follow various approaches, including (but not limited
to): using High-Level Synthesis (HLS) tools for C-like pro-
grams [5, 23] or ML models [9] to generate IP cores; design-
ing custom pipelines based on RMT [10, 12, 21, 43, 44]; or
implementing offload mechanisms for eBPF/XDP [6, 11, 38].

In the FlexSPF workflow, the developer writes the packet
function (e.g., an XDP program). An HLS toolchain converts
it to HDL and generates an IP core. The build framework
integrates this into an architecture shell, finalizes clocks,
memory, and IO, and emits the SFP bitstream. During pro-
totype phase, the bitstream is loaded via JTAG, while in
production artifacts are deployed remotely.

Programmability is layered: the bitstream fixes the datap-
ath, while a minimal embedded control plane exposes APIs
to read/write tables and counters with atomic, runtime up-
dates at line rate. We also envision re-programmability over
the network: the control plane authenticates reconfiguration
packets whose payload carries a new bitstream; a small FSM
writes it to SPI flash and then triggers a reboot so the SFP
boots the new application.

4LUT FF uSRAM LSRAM
Mi-V 8696 376 6 4

Elec. I/F 6824 6924 118 0
Opt. I/F 6813 6924 118 0
NAT app 9122 11294 36 160
Used 31455 25518 278 164
Avail. 192408 192408 1764 616
Perc. 16% 13% 15% (≈20kb) 26% (≈4Mb)

Table 1: Resource usage for the simple NAT case study,
broken down by design component

4.3 Prototype
A prototype SFP+ [26] module has been developed featuring
a mid-range PolarFire® FPGA (MPF200T-FCSG325 [27]). The
FPGA offers approximately 200k logic elements and includes
13.3Mb of on-chip SRAM. As shown in Figure 2, the module
integrates a 128Mb SPI flash, two bidirectional 12.7Gbps
high-speed transceivers (one corresponding to the electrical
interface and the other to the optical one), and a JTAG bus.
The flash memory is such that multiple designs could be
stored, enabling the module to be reconfigurable at runtime
while the JTAG bus is mainly meant for initial prototyping.

5 Preliminary Evaluation
This section provides a concrete feasibility snapshot by de-
scribing the resources required to implement a simple NAT
application inside a programmable SFP. Our goal is to offer
an initial, grounded perspective on what is achievable within
the constraints of such a compact, power-limited platform.
We begin by outlining the implementation of a minimal

NAT function in the FlexSFP prototype (§5.1), followed by
a discussion of its resource footprint, including power con-
sumption, performance, and hardware cost (§5.2).

5.1 A simple NAT case study
To demonstrate the practical viability of the FlexSFP con-
cept, we coded a simple static Network Address Translation
(NAT) application and tested it in a prototype board like the
one described in §4.3. The goal was to implement a basic
one-to-one NAT function, capable of translating source IP
addresses for outgoing traffic at 10 Gbps line-rate. Due to the
simplicity of the networking application it is often handled
by software or larger appliances, making it an ideal candidate
for lightweight hardware offloading.
Implementation. Extending the reference design provided
by Microchip [25], in Table 1 is reported the overall resource
allocation for our case study implementation. In detail, with
Mi-V [24] we refer to a simple RISC-V core that we used to
implement the lightweight control plane, as discussed in §4,
tasked with startup configurations of the transceivers, laser
driver and limiting amplifier and the NAT table. Electrical
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Use case Logic BRAM

FlowBlaze (1 stage) 71 712 LUT6 (≈ 115 k LE)† 14 148
Pigasus [48] 207 960 ALM (≈ 416 k LE)‡ 64 400
hXDP (1 core) ≈ 68 689 LUT6 (≈ 109 k LE)† 1 799
ClickNP IPSec GW [20] ≈ 242 592 LUT6 (≈ 388 k LE)† 39 161

FlexSFP (MPF200T) 192 k LE 13 300

† 1 LUT6 ≈ 1.6 LE [7] ‡ 1 ALM ≈ 2 LE [16]
Table 2: FPGA resource usage of key designs; logic nor-
malized to 4-input LE equivalents, BRAM in kbit

and Optical Interfaces encompass respectively for the two
10G Ethernet IpCores needed to translate serial electrical and
optical signals into Ethernet packets to pass to the dataplane.
The NAT application serves as the Packet Processing Engine
for our implementation.
It is worth noting that the NAT uses a basic source IP

hash table to store 32,768 flows, which accounts for the high
LSRAM usage, while still showing promising potential for
larger tables. LSRAM and uSRAM are two types of on-chip
memory, respectively holding 20Kb and 64×12b each, hence
the need for LSRAM in the NAT. The design has been clocked
at 156.25 MHz with a 64b datapath, sufficient for line-rate.

We performed a simple end-to-end test, which confirmed
line-rate performance, as the NAT function is stateless.
Comparison. As a comparison of potential resource fit
within the FlexSFP, we report in Table 2 four FPGA imple-
mentations of network functions found in literature to check
whether they could potentially or not fit inside the FlexSFP
itself. While these numbers do not account for an extremely
accurate analysis due to aspects related to different vendors
FPGA devices-fluctuations on the numbers that could depend
on synthesis strategies and chosen routing algorithm-we ar-
gue that an overall estimate in terms of order of magnitude
of Logic Elements shows potential for programmable SFPs
to be viable devices for next generation networking.
Power consumption. To assess power consumption and
compare a typical SFP with the FlexSFP we used a custom
in-house testbed capable of measuring current drawn from
a Thunderbolt-connected NIC [33] with a single 10Gbps
Ethernet port. Initially, we established a baseline by mea-
suring the power consumption of the NIC without any SFP
inserted, which yielded a value of 3.800W. Then wemeasured
a connected SFP while in a stress test of receiving and trans-
mitting linerate traffic, resulting in a measured power draw
of 4.693W. Finally, when using the FlexSFP, power consump-
tion increased to 5.320W. Rather than in absolute values,
considerations can be drawn from the comparison. While
a single SFP draws ∼.9W of power, the FlexSFP shows an
increase in ∼.7W accounting for an overall ∼1.5W.

Solution Raw $ RawW $/10G W/10G

DPU (BF-2) 1.5–2k 75 300–400 15
Many-core (Ag./DSC) 0.8–1.2k 25 100–150 5
FPGA (U25/U50) >2k 45–75 200–400 7–10
FlexSFP 250-300 1.5 250–300 1.5
Table 3: Raw and ideal-scaled cost/power (per 10 Gb/s).

5.2 Cost
Talking about costs can be both confusing and misleading
when systems are not compared under consistent assump-
tions. Drawing inspiration from [39], we are briefly going
to assess the costs of a programmable SFP in comparison
to SmartNIC-based solutions. Providing an exact price is
inherently speculative, as no vendor currently offers such
modules at production scale, and key factors such as volume
discounts, yield, compliance costs, and vendor margins re-
main unknown. What we can offer, however, is a breakdown
of the cost structure derived from our FlexSFP prototype im-
plementation, suitable for an order-of-magnitude estimate.
The most significant cost driver is the FPGA. Accord-

ing to Microchip Direct, the 192k logic element MPF200T-
FCSG325E, which is suitable for our design, is priced at ap-
proximately $200 per unit for orders of 1,000 pieces or more
[27]. A standards-compliant 10GBASE-SR SFP transceiver is
inexpensive at scale (e.g., tier-one OEMs such as QSFPTEK
list single-unit prices around $10 and decreasing further in
bulk quantities [36]). The remaining components—including
the laser driver, voltage regulators, reference oscillator, SPI
flash, six-layer PCB, and associated manufacturing steps
such as reflow, inspection, and functional testing—lack pub-
lished volume pricing but are conservatively estimated to
add $50–$100 per unit. Summing these contributions yields
a direct production cost around $300 per unit, with potential
reductions toward $250 as volume increases.

Applying the ideal-scaling rule in [39], Table 3 normalizes
both capital expense and peak board power to a 10 Gb/s
slice. The comparison shows that a DPU such as NVIDIA’s
BlueField-2, still costs several hundred dollars and dissipates
tens of watts [29, 41], while a many-core or FPGA SmartNIC
(e.g., Pensando DSC-25, Alveo U25 and U50) remains above
$100 and 5 W per 10 Gb/s [2, 3, 42]; the proposed FlexSFP
stays in the $250–$300 band and around 1.5 W, confirming
a roughly two-thirds CAPEX saving an order-of-magnitude
power reduction for lightweight edge workloads.

5.3 Discussion
Scalability A key question is how the FlexSFP architecture
scales from the 10Gbps rate of our current SFP+ prototype
to higher line rates such as 100Gbps and beyond, where scal-
ing by 10× directly challenges the Packet Processing Engine
(PPE) to sustain proportionally higher throughput.This is
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typically achieved by adjusting the width of the internal
datapath (e.g., from 64-bit to 512-bit or wider) and/or rais-
ing the clock frequency if and when possible. Both adjust-
ments require a more powerful FPGA, which in turn leads
to three main constraints: physical size, power consump-
tion, and thermal dissipation. On the other hand, however,
performance is expected to improve with hardware advance-
ments. The current FlexSFP prototype is built on a mature
28nm FPGA; future iterations will leverage ongoing semi-
conductor trends to deliver greater processing power and
support faster transceivers in a more compact chip. It is
worth noting that the evolution of pluggable optical mod-
ules is governed by the so called, Multi-Source Agreements
(MSAs)[30, 34, 35]. Higher-speed interconnects rely on larger
form factors like QSFP, and OSFP. These modules are not
only physically larger than a FlexSFP but are also designed
with higher power and thermal envelopes.
Failure Recovery. The key consideration is identifying fail-
ure points within the FlexSFP architecture. Research demon-
strates that VCSELs (Vertical-Cavity Surface-Emitting Lasers)
exhibit accelerated wear-out compared to electronic compo-
nents, with time-to-failure following a lognormal distribu-
tion and gradual optical power degradation as the primary
failure [37]. This reduced VCSEL lifetime provides strongmo-
tivation for designing FlexSFP systems with replaceable op-
tical components. While standard SFPs are replaced entirely
when lasers fail (since component costs rival full module
prices), higher-cost FlexSFP units justify component-level
replacing of individual failed lasers, which becomes eco-
nomically viable given both the higher price and the known
reliability limitations of VCSEL. More favorably, the internal
visibility provided by the FlexSFP architecture can expose
more detailed insights into the specific fault, such as dis-
tinguishing between laser degradation and driver circuit
malfunction, facilitating targeted repairs.
SmartNIC vs FlexSFP. The SFP+ form factor and power
budget push the design toward FPGAs that physically fit
the module and stay within its thermal envelope, while still
offering integrated SERDES and enough on-chip resources
for compact pipelines with a lightweight control path. Rather
than replicating board-level architectures with deep state
and complex control planes, FlexSFP targets composed L2–L4
functions—multi-field parse/edit, label/tunnel manipulation,
per-packet hashing for steering, and in-band timestamp-
ing/telemetry—executed at the optical boundary.

In our MPF200T-based prototype, sustaining bidirectional
line rate in the Two-Way-Core typically means processing
at double the data rate for maximum usage of the bidirec-
tional traffic keeping chains compact (about 3–4 stages) or
modestly increasing the PPE clock. A few RISC-V like cores
and a small local DRAM are feasible, but deeply stateful
pipelines or very large tables (e.g., DPI/IDS with deep L7

parsing, high-throughput IPsec with large SA sets without
dedicated crypto) are out of scope by design and are better
placed on SmartNICs or hosts, consistent with their higher
CPU/memory budgets.

6 Conclusion and outlook
This paper highlights a promising direction in data-plane
programmability: bringing in-line processing directly to the
optical edge via programmable transceivers. FlexSFP, realizes
this vision by embedding lightweight programmable logic
into standard SFP modules. Programmable SFPs introduce a
cheap path for acceleration, offering a low-cost, low-power,
modular alternative for executing simple, high-frequency
network functions near the ingress point.We argue this archi-
tecture addresses key limitations of traditional approaches,
especially in environments where the cost, power, or com-
plexity of full-featured SmartNICs or programmable switches
is impractical.
Our goal is not to present a fully matured platform, but

rather to spark a broader conversation around this design
space. The FlexSFP vision opens up a set of compelling re-
search and engineering questions that we lightly touched in
§5.3 however merit further investigation, among which:

• Performance vs. simplicity: Are programmable SFPs
sufficient for common tasks, and how do they compare
to SmartNICs in latency, throughput, and flexibility?

• Latency overhead: Which practical impact of introduc-
ing processing within the SFP, and when is the trade-off
between added latency and early enforcement justified?

• Architecture choices:Which platforms (FPGAs, embed-
ded processors, or ASIC pipelines) strike the best balance
between power, cost, and programmability?

• Scalability: Can this approach be extended to higher-
speed and higher-density form factors like QSFP-DD or
OSFP while meeting power and thermal constraints?

We hope our work encourages further exploration of how
fine-grained, edge-centric programmability can be integrated
into legacy infrastructure, without the cost and disruption of
full-scale hardware refreshes. FlexSFP represents a small yet
strategically placed component with the potential to shift
how and where intelligence resides in the network.
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