
Once Bitten, Still Shy: Can We Prevent Cloud Systems
from Repeating Their Mistakes?

Dimas Parikesit
University of Virginia

Charlottesville, VA, USA

Chang Lou
University of Virginia

Charlottesville, VA, USA

Abstract
Cloud systems constantly experience changes. Unfortunately,
these changes often introduce regression failures, breaking
the same features or functionalities repeatedly. Such failures
disrupt cloud availability and waste developers’ efforts in
re-investigating similar incidents. In this position paper, we
argue that regression failures can be effectively prevented by
enforcing low-level semantics, a new class of intermediate
rules empirically inferred from past incidents, yet capable of
offering partial correctness guarantees. Our experience shows
that such rules are valuable to strengthen system correctness
guarantees and expose new bugs.

CCS Concepts
• Computer systems organization → Reliability; • Soft-
ware and its engineering → Software verification and
validation.

Keywords
Cloud systems; Regression failures; Large language models;
Symbolic execution

ACM Reference Format:
Dimas Parikesit and Chang Lou. 2025. Once Bitten, Still Shy: Can
We Prevent Cloud Systems from Repeating Their Mistakes? . In
The 24th ACM Workshop on Hot Topics in Networks (HotNets ’25),
November 17–18, 2025, College Park, MD, USA. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3772356.3772385

1 Introduction
Cloud systems experience constant changes. To support dy-
namic workloads and customer requests, developers contin-
uously submit updates to add new features, adjust configu-
rations, fix bugs, etc. On a typical workday, Google Cloud
Platform sees around 16,000 changes committed by develop-
ers [51], not even including those submitted by automated

This work is licensed under a Creative Commons Attribution 4.0 International
License.
HotNets ’25, College Park, MD, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2280-6/25/11
https://doi.org/10.1145/3772356.3772385

systems. These updates unavoidably introduce new failures
and hurt cloud reliability.

Unfortunately, many of these are regression failures [46]–
issues that have been fixed by developers but are broken again
due to changes, as shown in Figure 1. In practice, develop-
ers are frustrated to find themselves dealing with the same
kinds of issues over and over again [1, 2, 10–12, 14, 15].
Those wasted efforts and computing resources could have
been saved.

Meanwhile, isn’t testing meant to catch and prevent these
very issues? Indeed, developers often add regression tests
after failures happen. However, their efforts did not success-
fully transform into guarantees. A recent study [44] shows
that 68% of the studied failures violate old semantics, which
have existed since the first major stable release of the system.
Tests often focus on specific bugs rather than the underly-
ing deeper causes. Consequently, similar issues may still be
introduced.

Thus, we need a more reliable approach to guarantee that
regression failures would not occur. Verifying software sys-
tems [22, 30, 34, 36, 39, 40, 48, 55, 61–63] is a tempting
approach. Nevertheless, cloud systems usually have a very
large code base containing tens of thousands of lines of code
with complicated interactions between components. Today,
it remains impractical to fully verify large production cloud
systems.

In this position paper, we ask this question: what would
it take to guarantee that after a failure is addressed, similar
root causes can never reappear in a modern cloud codebase?
To answer this question, we first perform a study of regression
failures across popular distributed systems. We find that the
recurrences often stem from violations of low-level semantics–
hidden, implementation-centric rules that developers implic-
itly rely on. These semantics are expressive enough to capture
the correctness expectations of the high-level system proper-
ties, yet grounded in the observable low-level behavior of the
code implementation. While formally verifying the entire sys-
tem is costly and often impractical, low-level semantics offer
an ideal middle ground—providing meaningful guarantees
with significantly lower overhead.

Manually authoring these rules is certainly feasible, mean-
while, the workflow is painfully slow and notoriously brittle.

https://doi.org/10.1145/3772356.3772385
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3772356.3772385

HotNets ’25, November 17–18, 2025, College Park, MD, USA Parikesit et al.

Bug A Bug A’

+

Regression Failures!

Figure 1: Regression failures in cloud systems.

ZooKeeper service

Kafka

consumer1

/kk/consumer1

ephemeral znode

disconnected

semantic violation: znode should be removed

Kafka client

get /kk/consumer1

Figure 2: A real-world failure example in ZooKeeper.

Each rule must first be reverse-engineered from scattered is-
sue tickets, code comments, and developer intuition. Worse,
crafting high-fidelity rules and encoding them in a form that
a checker or verification pass can consume is a fragile, labor-
intensive process, which discourages comprehensive coverage
and leaves gaps exactly where reliability matters most.

We envision a new cloud system development workflow
where every failure, once fixed, automatically becomes an ex-
ecutable contract that shields the system from ever repeating
the same mistake. To spark that conversation, we have built
LISA, a lightweight prototype that automatically (i) extracts
candidate semantics from LLM output, (ii) converts them into
executable assertions, and (iii) enforces those assertions in
CI/CD pipelines. Even in its current form, LISA uncovered
two previously unknown, community-confirmed bugs in the
latest releases of HBase and HDFS. We conclude by outlining
the open research questions that must be answered to turn this
vision into production reality.

2 Background and Motivation

2.1 Why Regression Failures Happen?
A central motivation for this work is understanding why cloud
developers often repeat the same mistake during the devel-
opment process. To shed lights into this question, we collect
and analyze 16 regression cases from widely used cloud sys-
tems, including ZooKeeper, HDFS, HBase, and Cassandra.
Each case includes one original bug and at least one new (re-
gression) bugs. In total we study 34 software bugs. For each
case, we examined developer discussions and code changes
(implementation fix and newly added tests) to understand the
lessons they learned after failures happened and how they
affect future occurrences. Our study yields some interesting
findings.

private void pRequest2TxnCreate(..){
 ..
 validateCreateRequest(path,
 createMode, request, ttl);
 DataTree.createStat(hdr.getZxid(),
 hdr.getTime(), ephemeralOwner);
 ..

 if (session == null) {
 if (session == null
 || session.isClosing()){
 throw new KeeperException();
 }

public boolean touchSession(..){
 SessionImpl s = sessionsById
 .get(sessionId);
 if (s == null) {
 if (s == null || s.isClosing()){
 return false;
 }
 ..
 set.sessions.add(s);
 return true;
}

ZK-1208

ZK-1496

(one year later)

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

Figure 3: The same semantics violated in both incidents.

We use one feature from ZooKeeper, ephemeral nodes,
as an example. Ephemeral nodes are temporary records that
automatically disappear when the client session ends. This
makes it a convenient function that allows applications to
detect service availability without manual cleanup.

Despite its importance, this feature has been a recurring
source of regression failures. According to our survey, this fea-
ture has been associated with 46 related bugs over the past 14
years. Figure 2 demonstrates one real-world incident [16]. In
this incident, developers deployed Kafka, a popular streaming
service in their cluster and used ephemeral nodes to register
consumer addresses for Kafka. However, a concurrency bug
in ZooKeeper allowed the creation of an ephemeral node on a
closing session, resulting in stale data that persisted even after
the session terminated. Clients continued to query the dead ad-
dress, leading to system-wide errors. Developers patched the
issue by adding a check to prevent node creation on closing
sessions. However, a year later, a similar failure [17] occurred
(Figure 3). Although the original bug was fixed, another ex-
ecution path that was not covered by existing tests allowed
ephemeral node creation on a closing session again. Again,
this caused the whole kafka cluster to get stuck in zombie
mode.

This case is a representative example that reflects the gap.
When the first incident happened, developers had already
learned that “an ephemeral node may be created on a closing
session, which is problematic”. They inspected the failure,
traced it to a race in the PrepRequestProcessor, and inserted
the guard shown in Figure 3. In their heads–and often only in
their heads–this became a semantic rule about ZooKeeper’s

Once Bitten, Still Shy: Can We Prevent Cloud Systems from Repeating Their Mistakes? HotNets ’25, November 17–18, 2025, College Park, MD, USA

system-level

properties

low-level

semantics

impl-level codes

infer assert

liftinfer

high-level model

…

impl-level codes

low-level model

(b) verification refinement (c) our approach

impl-level codes

(a) testing

~

Figure 4: Comparison with alternative approaches.

correctness: “Reject the create request if the session is closing”
Unfortunately, that rule was captured only informally (in Jira
comments and code-review notes) and reflected in a single
test that exercised the exact workload of the original bug. The
knowledge gained during incident response is rarely promoted
to a machine-checkable format in general scenarios. Such
tests are brittle–they encode one execution trace rather than
the underlying semantic invariant–and they run only under
the limited workloads available in CI. When the system later
evolved, another path in the request pipeline reached the same
node creation logic without hitting the original guard, and the
invariant was silently broken again.

This case reflects a recurring pattern in our study: regres-
sion failures often reappear because semantic assumptions
are embedded in ad hoc tests rather than captured as explicit
rules. Even when such rules are articulated, developers lack a
systematic way to validate them across executions. Address-
ing this gap requires mechanisms to extract the implicit rules
developers rely on during debugging and to enforce them
continuously, regardless of workload.

2.2 What Can Be Done Differently?
We propose an approach to proactively prevent regression
failures. We observe that many failures happen due to some
paths being executed under special triggering conditions. Take
the case in Figure 3 as an example. Both failures are triggered
by omission to set the protect flag for creating data nodes.
If developers enforce such rules after fixing the first issue,
the failure reocurrence could have be avoided. Thus, our
key idea is to extract these rules from historical failures and
systematically enforce the rules for updated system codes
thus preventing future issues.

Comparison with alternative approaches Our approach oc-
cupies the middle ground between testing and verification as
shown in Figure 4. Traditional testing validates concrete exe-
cutions directly against the implementation: each regression
test encodes one scenario, so coverage remains sparse and
latent assumptions (e.g., an ephemeral node is never created
on a closing session) stay implicit. Consequently, fixes can
regress as soon as code evolves outside the test scope.

On the other hand, refinement-based verification attacks the
opposite extreme: developers first craft an abstract high-level

model of the system, then prove via refinement that every
implementation path preserves the model’s properties. This
yields powerful guarantees, but at the cost of heavyweight
specifications, manual proof effort, and proofs that must be re-
built after each non-trivial change—barriers that have limited
uptake in large cloud codebases.

In contrast, we automatically infer low-level semantics
from past bug fixes, then assert these semantics with sym-
bolic execution across the code base. These semantics are
expressive enough to capture the root cause of clustered re-
gressions, yet concrete enough to be checked mechanically,
providing broader coverage than tests and lower overhead
than refinement.

A potential concern is that many distributed system bugs
stem from multi-components interactions, making formal
reasoning difficult to scale. Fortunately, our study suggests
that the semantics developers care about do not always require
reasoning over fully distributed or global states. In many cases,
we can enforce correctness using localized semantic rules. For
example, in the ephemeral node case, although the underlying
semantics span request handling, session management, and
data storage, the inferred local rules alone can already provide
strong guarantees and successfully expose a large number of
regression failures.

Challenges A central challenge is identifying the appropri-
ate level of abstraction for low-level semantics. If the seman-
tics are too high-level, they become difficult to assert and mon-
itor directly in the system. If the semantics are too low-level,
they risk being overly tied to syntactic details and may fail
to capture meaningful behaviors or connect with higher-level
properties. The semantics must strike a balance—serving as
a bridge between code implementation and system proper-
ties defined in the specification, while remaining expressive
enough to support diverse correctness expectations.

Another challenge is to support diverse types of system
properties. System failures often reflect violations of nuanced,
context-specific semantics. However, there is no uniform
framework for extracting such semantics, as different failures
may encode different assumptions or guarantees. Recovering
invariants from historical failures requires careful interpreta-
tion of system context and developer intent.

After semantics are extracted, systematically checking them
across a large, evolving cloud codebase is nontrivial. Cloud
systems often contain complex control paths and interactions,
making it difficult to ensure that all relevant execution paths
are exercised and verified against the intended semantics.

Opportunities Two observations motivated this project. First,
modern cloud systems have culminated in a rich repository of
semantic resources through decades of iterative development
and deployment. Modern cloud systems possess a signifi-
cant volume of test cases—on average 1,309 files among

HotNets ’25, November 17–18, 2025, College Park, MD, USA Parikesit et al.

Diff Concolic
execution

Failure
ticket

Full impl
Low-level

semantics

dst()

src()

cond

semantic

violations!
target

system

test

desp

Figure 5: System workflow.

studied systems—with satisfactory code coverage. Historical
failures are well-documented, with bug fixes, regression tests,
and detailed discussions. These resources are invaluable for
extracting insights to guide semantic checker construction.
Second, systematically reasoning semantics in large systems
software (e.g., ZooKeeper, HDFS, Kubernetes) is made possi-
ble with advances in program analysis, formal methods, and
machine learning [22, 24, 37, 42, 54, 65]. For example, sym-
bolic execution has recently been applied to MySQL [37, 38],
previously thought to be too complex for such technique.

3 System Design
We demonstrate the system workflow at a high level in Fig-
ure 5. The workflow starts with iterating over each failure
ticket, collecting the buggy code version, developer discus-
sion, code patch, and regression test, and feeding this bundle
to an LLM. Based on the collected information, the LLM
proposes likely low-level semantics as natural language de-
scriptions. Our tool then employs a hybrid strategy of using
static analysis assisted by LLMs to translate semantic de-
scriptions into a machine-checkable format. At the end of
the workflow, the system uses symbolic execution to assert
these semantics across all reachable paths and confirms their
correctness by feeding them into SMT solvers (e.g., Z3).

3.1 Inferring and Translating Low-Level
Semantics

Definition A low-level semantic includes two components.
The first component is a concise description in natural lan-
guage. The second component is a safety contract, where
s is the target statement (or basic block) identified from a
past bug fix and σ denotes the program state. Concretely, we
restrict P,Q to conjunctions of implementation-local predi-
cates of the form such as state relations (v = c) and resources
(handle.isOpen).

For the ZooKeeper bug, the recovered rule is:

<session.isClosing == f alse>createE phemeralNode<>

To capture the implicit behavioral contracts embedded in
production code, our system first infers low-level semantics
from historical failures using large language models (LLMs).
We designed our prompt based on the process of how ex-
perienced developers deal with failure cases. Given a past

failure ticket consisting of the textual description, code diff,
and the source code after the patch, we instruct the LLM to
extract both high-level and low-level semantic relations in the
modified logic. Listing 1 shows the current prompt we use.

You are an AI assistant that extracts violated low

-level semantics from a past system failure.

You will receive three inputs:

Failure description and developer discussion

Code patch (the diff)

Source code after the patch has been applied

Here are the steps you will take:

1. Identify the root cause of this failure

2. Identify the high-level semantics: a single

concise statement describing the

system-level behavioral change introduced by

this pull request.

3. Identify the low-level semantics: a single

concise statement describing the

implementation-local invariant that must hold

so that a corresponding high-level

property cannot be violated.

4. Translate the low-level semantics into a

checkable format:

- one condition statement (predicates over

concrete state and control-flow that needs

to be checked)

- one target statement (the code statement

where the condition should be checked)

5. Describe the reasoning for choosing those

statements

6. Repeat previous steps until all unique

checks have been reasoned

Output your answer in the exact format:

{"high_level_semantics": "< description>",

"low_level_semantics": {

"description": "<concise description>",

"target_statement": "<code text>",

"condition_statement": "<predicates>", ...},

"reasoning": "<summary>" ...}

Listing 1: LLM Prompt for low-level semantics inference

The inference operates in two phases. In the first phase,
the LLM identifies the high-level semantics (e.g., “Every
ephemeral node is deleted once its client session is fully dis-
connected”) and the low-level semantics (e.g., “No client may
create an ephemeral node when the session is in the CLOS-
ING state”) described in the failure ticket. In the second phase,
the LLM maps the low-level semantics to actual boolean

Once Bitten, Still Shy: Can We Prevent Cloud Systems from Repeating Their Mistakes? HotNets ’25, November 17–18, 2025, College Park, MD, USA

public class SyncRequestProcessor {

 public void serializeNode(...) {

 DataNode node = getNode(pathStr);

 if (node == null)

 return;

 String children[] = null;

 synchronized (node) {

 scount++;

 oa.writeRecord(node, "node");

 children = node.getChildren();

 }

 path.append('/');

 …

1

2

3

4

5

6

7

8

9

10

11

12

13

14

public class ReferenceCountedACLCache {

 public synchronized void serialize(...) {

 oa.writeInt(longKeyMap.size(), "map");

 Set<Entry<Long, List<ACL>>> set =

 longKeyMap.entrySet();

 for (Entry<Long, List<ACL>> val : set) {

 oa.writeLong(val.getKey(), "long");

 List<ACL> aclList = val.getValue();

 oa.startVector(aclList, "acls");

 for (ACL acl : aclList) {

 acl.serialize(oa, "acl");

 }

 oa.endVector(aclList, "acls");

 …

1

2

3

4

5

6

7

8

9

10

11

12

13

14

blocked for

a long time
ZK-2201

ZK-3531

(one year

later)

Figure 6: Example: low-level semantics should be generalized.

checks across the patch and surrounding source code. The
LLM is prompted to output JSON-formatted pairs: the condi-
tion statement (predicates over concrete state and control-flow
that needs to be checked), and the target statement (the code
statement where the condition should be checked).

We made two discoveries while tuning our prompts.
First, asking the LLM to “just list the low-level semantics”

yielded poor accuracy; forcing it to walk through its reason-
ing—linking code changes to developer intent and then to a
semantic rule—anchored the answer in both implementation
details and high-level properties.

Second, accuracy improved markedly once we clarified the
notion of low-level semantics in the prompt itself, refining the
definition and supplying concrete examples. To ensure robust-
ness, we augment the LLM prompt with examples, enforce
structural form on the outputs, and incorporate contextual em-
beddings (e.g., test case summaries) via retrieval-augmented
generation (RAG) to overcome input size limitations. This
allows us to accurately infer semantics even when critical
context is spread across multiple files or layers of abstraction.

The direct outputs often focus on specific functions or code
paths, limiting generality. Figure 6 shows such an example.
This regression involves a stuck serialization call inside a
synchronized block. The first failure manifested as a zombie
cluster where write operations were silently blocked. After de-
velopers fixed the issue, a similar bug reappeared a year later
in a different serialization function. This highlights the need
to generalize semantics beyond specific functions to a broader
class of serialization patterns. Naively broadening the scope
risks introducing many false positives. A more robust way is

to abstract these rules to reflect system-level behaviors—e.g.,
“no blocking I/O within synchronized blocks”-—which better
capture the underlying intent and apply across code changes.

3.2 Asserting Semantic Rules with Concolic
Execution

Once low-level semantics are inferred, our system verifies
whether other parts of the system adhere to these semantics.
While a more straightforward approach is to use static analysis
to leverage code patterns, we find that many semantic failures
have diverse patterns and often require substantial domain
knowledge. Instead, we use concolic execution [53], a tech-
nique that systematically explores a program with concrete
input and records the conditions for each execution path. It
does not rely on summarized code patterns thus more generic
towards different failures.

Complex systems have a vast space of execution paths,
making exhaustive checking impractical. To focus on paths
relevant to a given semantic, we identify those leading to the
target statement it constrains. We do this by statically building
a call graph and traversing all paths to each target. The result
is an execution tree rooted at the target statement, with leaves
representing entry functions for each path.

The tree can still be huge, so we prune further: the concolic
engine follows only branches whose guards involve variables
relevant to the semantic. We obtain that variable set by prompt-
ing an LLM–given the semantic’s Boolean condition and the
path’s source code–to map the condition’s placeholders to
concrete variables; other branches are skipped.

In addition to selective branch exploration, our tool injects
a code snippet right after all selected branches that will check
the path condition of each relevant variable (not the concrete
variable value) against the inferred condition in our semantic.
To check whether these conditions adhere to the conditions
of the semantic, we transform these trace conditions into Z3
formulas and compare them with the expected checker formu-
las derived from the semantics, and then check whether the
trace does not fulfill the complement of the checker formula.
Using the complement of the formula is important to guard
against missing checks being treated as true conditions.

For example, the condition for an ephemeral node to be
created is that the session must exist, not in closing state, and
must not have expired, which is represented as the formula (s

!= null && s.isClosing()== false && s.ttl > 0) which
has a complement of (s == null || s.isClosing()== true

|| s.ttl <= 0). If we have a trace where the ephemeral node
is created with a condition of (s == null) or (s!=null && s.

isClosing()== false), these traces fulfill the complement of
the checker formula, so they violate our semantic. Missing s.

ttl condition is treated as true value, so the second condition

HotNets ’25, November 17–18, 2025, College Park, MD, USA Parikesit et al.

is treated the same way as (s!=null && s.isClosing()==

false && s.ttl<=0). If we have (s!=null && s.isClosing()

== false && s.ttl>0), this trace does not fulfill the comple-
ment of the checker formula, so it adheres to our semantic.

Our execution tree now consists only of paths that are
relevant to the semantics we are checking. Do note that "fixed"
paths, which are paths that have been fixed in the pull request
are also a part of this tree. We do not exclude these paths
because these paths will act as our sanity check, where we
want at least one path in this execution tree that will give
verified result when checked against the semantic. The next
step is to verify our execution tree using concolic execution.

Instead of doing execution with random inputs, our tool
utilizes existing tests to act as our input because mature sys-
tems usually have extensive tests that cover all features in the
system. The key question to this approach is how to select the
relevant tests to act as concrete input? Our system automat-
ically selects relevant tests for each path using LLM-based
similarity search over test embeddings. This similarity search
works by creating an embedding of all the tests using an em-
bedding model. Then, an LLM model will be given an input
of an execution path and then asked to identify the features
involved by this execution path (remember that the execution
path contains an entry function that is specific to a feature)
and the condition for the feature to take this execution path.
After that, the LLM will choose test cases that closely resem-
bles the identified condition of the feature. These related tests
are over-approximations of each paths which is then used as
concrete input for the concolic execution engine.

Finally, we run these tests on the concolic execution engine.
During execution, the result of the injected code snippets will
determine whether the execution path is verified or not. If
there are any execution paths that are not run, it either means
the test suite does not have enough coverage, or the LLM
misses the related tests. Developers should provide the final
verdict for both cases.

To handle semantic mismatches between symbolic and
static expressions, we implemented a normalization process
between symbolic outputs and the LLM-inferred semantics.
This normalization is done as an extension to detecting rele-
vant variables, where we replace constant variables with their
actual value rather than ignoring them. After detecting the
class of the relevant variables in the LLM-inferred semantics,
our tool automatically converts the LLM-inferred semantics
into the format of our symbolic execution output.

4 Preliminary Results
We implemented an early prototype of LISA, based on the de-
sign described earlier. LISA extracts low-level semantics from
past failures using an LLM and then asserts them through sym-
bolic execution. We use OpenAI text-embedding-3-large [13]
as our embedding model, OpenAI o4-mini [9] as the LLM

model for our inference backend and build on WeBridge [37],
a symbolic execution framework for Java applications. For
call graph analysis, we employ Soot [56]. Applying LISA to
a small set of historical failures, we identified two previously
unknown bugs in HBase and HDFS.

Bug #1 [5] In HBase it is crucial to prevent expired snap-
shots from being used to avoid stale data. There have been
existing efforts [3, 4] adding snapshot expiration checks in
different scenarios to avoid such issues. However, in prac-
tice, users still observed expired snapshots returning to clients
successfully without generating any alarms. Our tool found
that such protection is not consistent and reported new exe-
cution paths missing such checks in the latest hbase version
(5dafa9e). We propose to add timestamp checks to other paths,
and the solution has been accepted by hbase developers.

Bug #2 [8] In HDFS if the block report of the observer
namenode is delayed, one or more of the listing results would
return blocks without any location. Missing locations indicate
that the observer namenode is not up-to-date compared to the
active namenode. In previous incidents [6, 7], a check was
added in a few locations that checks whether the found blocks
have valid locations. LISA found that these checks do not
provide full coverage in the latest HDFS version (e8a64d0)
and reported a new bug. We propose to complete the coverage
of location checks. HDFS developers have approved the fix.

5 Open Questions
Can we make LLM-generated semantics reliable? We cur-

rently employ LLMs to infer low-level semantics. However,
LLMs introduce two risks: (i) non-determinism—results may
vary across runs, undermining reproducibility, and (ii) hal-
lucination—generated semantics may be plausible-sounding
but incorrect. These limitations are particularly problematic
in the context of system verification where consistency and
correctness are critical. To address this, we consider incor-
porating a cross-checking mechanism that validates mined
semantics against test cases, ensuring that inferred rules are
grounded in actual system behavior.

Can we provide better interface for developers to encode
low-level semantics? Besides mining low-level semantics
from existing resources, another approach is to enable de-
velopers to explicitly express these semantic rules in a more
effective way. We plan to explore a solution that provides
developers with a structured prompt template to describe ex-
pected behaviors in natural language. These descriptions can
then be paired with LLM-assisted suggestions that generate
corresponding formal rules or symbolic assertions.

Can we verify high-level system properties by composing
multiple validated low-level semantics? Low-level semantics
might serve as building blocks for higher-level guarantee. Our

Once Bitten, Still Shy: Can We Prevent Cloud Systems from Repeating Their Mistakes? HotNets ’25, November 17–18, 2025, College Park, MD, USA

long-term goal is to logically composing multiple low-level
semantic rules and merge partial insights, so that it could
provide a more complete, high-level form of system correct-
ness guarantee. This is extremely challenging with current
techniques; therefore, we plan to begin with a preliminary
study on the collected cases as an initial step.

6 Related Work
Testing the correctness of distributed system implementa-
tions [27, 31, 32, 43, 45, 59, 66] has uncovered countless
production bugs, yet it remains a best-effort approach: cover-
age is never complete, and a bug that slips through In contrast,
we enforce insights learned from the past, aiming to stop the
same class of failures from ever re-appearing.

There have been increasing interests in applying formal
methods to enhance the correctness of distributed systems [22,
33, 40, 47, 64]. Meanwhile, the extensive cost of formal meth-
ods prevents its wide use in practice. Instead of full formal
verification, this work explores a new approach by fusing
lightweight formal methods with the generative power of
LLMs to enable affordable and realistic guarantees of system
reliability.

A line of work [18, 20, 25, 26, 29, 35, 41, 60] automati-
cally mines likely invariants from software execution traces.
Due to the high inaccuracy of statistics-based approach, they
mainly support simple forms of relations and only captures
violations at runtime, which is already late. Our approach
aims to prevent the issues before they manifest in production.

Some works [21, 28, 49] explore extending regressions to
systematically discover new issues. BESA [19] uses a combi-
nation of backward propagation and alias-aware analysis to
find new null-pointer dereferences similar to known issues.
Different from the relatively shallow, syntactic properties (e.g.,
variable ≠ null or f lag == 0) targeted at by existing works,
we focus on richer behavioral semantics that span multiple
methods or components in large-scale and complex cloud
systems.

Recently LLMs have become increasingly popular in as-
sisting developers to analyze existing resources for system
insights [23, 50, 52, 57, 58]. LISA introduces a new abstrac-
tion that encodes low-level system semantics by exposing
the right interface between natural language insights and
machine-checkable guarantees, then supplies a full workflow
that enforce them in development.

7 Conclusion
Regression failures constantly happen and cost unnecessary
cloud resources, as well as developer efforts to debug and
fix the issues. In this paper, we propose enforcing low-level
semantics to prevent regression failures. By combining the
reasoning capability of LLMs and verification from symbolic
execution, this approach not only exposes unknown bugs to

developers but also provides stronger guarantee that similar
issues will not repeat. Our preliminary results with popular
distributed systems show the promise of this approach.

Acknowledgment
We thank our shepherd Jon Crowcroft and the anonymous
reviewers for their insightful reviews. We thank our under-
graduate interns Julian Chandra Sutadi and Elva Chen for their
help in collecting preliminary data. This research project has
benefited from the Microsoft Accelerating Foundation Mod-
els Research (AFMR) grant program. Chang Lou is supported
by the National Science Foundation grant CNS-2441284.

References
[1] Aws outage analysis december 7, 2021. https://www.thousandeyes.

com/blog/aws-outage-analysis-dec-7-2021.
[2] Github hit with multiple back-to-back outages. https://www.zdnet.com/

article/github-hit-with-multiple-back-to-back-outages/.
[3] HBASE-27671: Client should not be able to restore/clone a snapshot

after it’s ttl has expired. https://issues.apache.org/jira/browse/HBASE-
27671.

[4] HBASE-28704: The expired snapshot can be read by copytable or
exportsnapshot. https://issues.apache.org/jira/browse/HBASE-28704.

[5] Hbase-29296: Missing critical snapshot expiration checks. https://
issues.apache.org/jira/browse/HBASE-29296.

[6] HDFS-13924: Handle blockmissingexception when reading from ob-
server. https://issues.apache.org/jira/browse/HDFS-13924.

[7] HDFS-16732: Avoid get location from observer when the block report
is delayed. https://issues.apache.org/jira/browse/HDFS-16732.

[8] Hdfs-17768: Observer namenode network delay causing empty block
location for getbatchedlisting. https://issues.apache.org/jira/browse/
HDFS-17768.

[9] Introducing openai o3 and o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/.

[10] It glue incident #dgrgk4kvz4n7. https://status.itglue.com/incidents/
dgrgk4kvz4n7.

[11] It glue incident #z8r5glspbq3m. https://status.itglue.com/incidents/
z8r5glspbq3m.

[12] Microsoft hit with teams, microsoft 365 outage issues.
https://www.crn.com/news/cloud/microsoft-hit-with-teams-
microsoft-365-outage-issues.

[13] New embedding models and api updates. https://openai.com/index/new-
embedding-models-and-api-updates/.

[14] Psn appears to be down for ps4 and ps5 right now. https://www.
androidcentral.com/psn-appears-be-down-ps4-and-ps5-right-now.

[15] Psn outage: Playstation network down for ps5 and ps4.
https://www.androidcentral.com/psn-outage-playstation-network-
down-ps5-and-ps4.

[16] ZooKeeper-1208: Ephemeral node not removed after the client session
is long gone. https://issues.apache.org/jira/browse/ZOOKEEPER-1208.

[17] ZooKeeper-1496: Ephemeral node not getting cleared even after client
has exited. https://issues.apache.org/jira/browse/ZOOKEEPER-1496.

[18] G. Ammons, R. Bodík, and J. R. Larus. Mining specifications. In Pro-
ceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’02, page 4–16, Portland, Oregon,
2002.

[19] J.-J. Bai. Besa: Extending bugs triggered by runtime testing via static
analysis. In Proceedings of the Twentieth European Conference on Com-
puter Systems, EuroSys ’25, page 1077–1091, Rotterdam, Netherlands,

https://www.thousandeyes.com/blog/aws-outage-analysis-dec-7-2021
https://www.thousandeyes.com/blog/aws-outage-analysis-dec-7-2021
https://www.zdnet.com/article/github-hit-with-multiple-back-to-back-outages/
https://www.zdnet.com/article/github-hit-with-multiple-back-to-back-outages/
https://issues.apache.org/jira/browse/HBASE-27671
https://issues.apache.org/jira/browse/HBASE-27671
https://issues.apache.org/jira/browse/HBASE-28704
https://issues.apache.org/jira/browse/HBASE-29296
https://issues.apache.org/jira/browse/HBASE-29296
https://issues.apache.org/jira/browse/HDFS-13924
https://issues.apache.org/jira/browse/HDFS-16732
https://issues.apache.org/jira/browse/HDFS-17768
https://issues.apache.org/jira/browse/HDFS-17768
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://status.itglue.com/incidents/dgrgk4kvz4n7
https://status.itglue.com/incidents/dgrgk4kvz4n7
https://status.itglue.com/incidents/z8r5glspbq3m
https://status.itglue.com/incidents/z8r5glspbq3m
https://www.crn.com/news/cloud/microsoft-hit-with-teams-microsoft-365-outage-issues
https://www.crn.com/news/cloud/microsoft-hit-with-teams-microsoft-365-outage-issues
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
https://www.androidcentral.com/psn-appears-be-down-ps4-and-ps5-right-now
https://www.androidcentral.com/psn-appears-be-down-ps4-and-ps5-right-now
https://www.androidcentral.com/psn-outage-playstation-network-down-ps5-and-ps4
https://www.androidcentral.com/psn-outage-playstation-network-down-ps5-and-ps4
https://issues.apache.org/jira/browse/ZOOKEEPER-1208
https://issues.apache.org/jira/browse/ZOOKEEPER-1496

HotNets ’25, November 17–18, 2025, College Park, MD, USA Parikesit et al.

2025.
[20] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy. Infer-

ring models of concurrent systems from logs of their behavior with
csight. In Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, page 468–479, Hyderabad, India, 2014.

[21] D. Beyer, S. Löwe, E. Novikov, A. Stahlbauer, and P. Wendler. Precision
reuse for efficient regression verification. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2013, page 389–399, Saint Petersburg, Russia, 2013.

[22] J. Bornholt, R. Joshi, V. Astrauskas, B. Cully, B. Kragl, S. Markle,
K. Sauri, D. Schleit, G. Slatton, S. Tasiran, J. Van Geffen, and
A. Warfield. Using lightweight formal methods to validate a key-value
storage node in amazon s3. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP ’21, page 836–850,
Virtual Event, Germany, 2021.

[23] Y. Chen, H. Xie, M. Ma, Y. Kang, X. Gao, L. Shi, Y. Cao, X. Gao,
H. Fan, M. Wen, J. Zeng, S. Ghosh, X. Zhang, C. Zhang, Q. Lin,
S. Rajmohan, D. Zhang, and T. Xu. Automatic root cause analysis
via large language models for cloud incidents. In Proceedings of the
Nineteenth European Conference on Computer Systems, EuroSys ’24,
page 674–688, Athens, Greece, 2024.

[24] V. Chipounov, V. Kuznetsov, and G. Candea. S2e: A platform for in-
vivo multi-path analysis of software systems. Acm Sigplan Notices,
46(3):265–278, 2011.

[25] M. Christodorescu, S. Jha, and C. Kruegel. Mining specifications of
malicious behavior. In Proceedings of the the 6th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, ESEC-FSE
’07, page 5–14, Dubrovnik, Croatia, 2007.

[26] C. Csallner, N. Tillmann, and Y. Smaragdakis. Dysy: dynamic symbolic
execution for invariant inference. In Proceedings of the 30th Interna-
tional Conference on Software Engineering, ICSE ’08, page 281–290,
Leipzig, Germany, 2008.

[27] D. Domingo and S. Kannan. pFSCK: Accelerating file system checking
and repair for modern storage. In 19th USENIX Conference on File and
Storage Technologies (FAST 21), pages 113–126. USENIX Association,
Feb. 2021.

[28] D. Felsing, S. Grebing, V. Klebanov, P. Rümmer, and M. Ulbrich. Au-
tomating regression verification. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, ASE
’14, page 349–360, Vasteras, Sweden, 2014.

[29] A. Fioraldi, D. C. D’Elia, and D. Balzarotti. The use of likely invariants
as feedback for fuzzers. In 30th USENIX Security Symposium (USENIX
Security 21), pages 2829–2846. USENIX Association, Aug. 2021.

[30] P. Fonseca, K. Zhang, X. Wang, and A. Krishnamurthy. An empirical
study on the correctness of formally verified distributed systems. In
Proceedings of the Twelfth European Conference on Computer Systems,
EuroSys ’17, page 328–343, Belgrade, Serbia, 2017.

[31] X. Fu, W.-H. Kim, A. P. Shreepathi, M. Ismail, S. Wadkar, D. Lee, and
C. Min. Witcher: Systematic crash consistency testing for non-volatile
memory key-value stores. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP ’21, page 100–115,
Virtual Event, Germany, 2021.

[32] S. Gong, D. Peng, D. Altınbüken, P. Fonseca, and P. Maniatis. Snowcat:
Efficient kernel concurrency testing using a learned coverage predictor.
In Proceedings of the 29th Symposium on Operating Systems Principles,
SOSP ’23, page 35–51, Koblenz, Germany, 2023.

[33] F. Hackett, J. Rowe, and M. A. Kuppe. Understanding inconsistency in
azure cosmos db with tla+. In Proceedings of the 45th International
Conference on Software Engineering: Software Engineering in Practice,
ICSE-SEIP ’23, page 1–12, Melbourne, Australia, 2023.

[34] T. Hance, A. Lattuada, C. Hawblitzel, J. Howell, R. Johnson, and
B. Parno. Storage systems are distributed systems (so verify them that
Way!). In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 99–115. USENIX Association, Nov.
2020.

[35] S. Hangal and M. S. Lam. Tracking down software bugs using automatic
anomaly detection. In Proceedings of the 24th International Conference
on Software Engineering, ICSE ’02, page 291–301, Orlando, Florida,
2002.

[36] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L.
Roberts, S. Setty, and B. Zill. Ironfleet: proving practical distributed
systems correct. In Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP ’15, page 1–17, Monterey, California, 2015.

[37] G. Hu, Z. Wang, C. Tang, J. Shen, Z. Dong, S. Yao, and H. Chen.
Webridge: Synthesizing stored procedures for large-scale real-world
web applications. Proc. ACM Manag. Data, 2(1), mar 2024.

[38] Y. Hu, G. Huang, and P. Huang. Automated reasoning and detection
of specious configuration in large systems with symbolic execution. In
Proceedings of the 14th USENIX Symposium on Networked Systems
Design and Implementation, OSDI ’20. USENIX, November 2020.

[39] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Der-
rin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. sel4: formal verification of an os kernel.
In Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, SOSP ’09, page 207–220, Big Sky, Montana, USA,
2009.

[40] A. Lattuada, T. Hance, J. Bosamiya, M. Brun, C. Cho, H. LeBlanc,
P. Srinivasan, R. Achermann, T. Chajed, C. Hawblitzel, J. Howell,
J. R. Lorch, O. Padon, and B. Parno. Verus: A practical foundation
for systems verification. In Proceedings of the ACM SIGOPS 30th
Symposium on Operating Systems Principles, SOSP ’24, page 438–454,
Austin, TX, USA, 2024.

[41] C. Lee, F. Chen, and G. Roşu. Mining parametric specifications. In Pro-
ceedings of the 33rd International Conference on Software Engineering,
ICSE ’11, page 591–600, Waikiki, Honolulu, HI, USA, 2011.

[42] A. Li, S. Lu, S. Nath, R. Padhye, and V. Sekar. {ExChain}: Exception
dependency analysis for root cause diagnosis. In 21st USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 24),
pages 2047–2062, 2024.

[43] G. Li, L. Zhou, N. Yu, Y. Ding, M. Ying, and Y. Xie. Projection-based
runtime assertions for testing and debugging quantum programs. Proc.
ACM Program. Lang., 4(OOPSLA), Nov. 2020.

[44] C. Lou, Y. Jing, and P. Huang. Demystifying and checking silent
semantic violations in large distributed systems. In 16th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
’22, pages 91–107, July 2022.

[45] T. Lyu, L. Zhang, Z. Feng, Y. Pan, Y. Ren, M. Xu, M. Payer, and
S. Kashyap. Monarch: A fuzzing framework for distributed file systems.
In 2024 USENIX Annual Technical Conference (USENIX ATC 24),
pages 529–543. USENIX Association, July 2024.

[46] A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing to large
software systems. In Proceedings of the 12th ACM SIGSOFT Twelfth
International Symposium on Foundations of Software Engineering,
SIGSOFT ’04/FSE-12, page 241–251, Newport Beach, CA, USA, 2004.

[47] L. Ouyang, X. Sun, R. Tang, Y. Huang, M. Jivrajani, X. Ma, and T. Xu.
Multi-grained specifications for distributed system model checking
and verification. In Proceedings of the Twentieth European Confer-
ence on Computer Systems, EuroSys ’25, page 379–395, Rotterdam,
Netherlands, 2025.

[48] A. Panda, M. Sagiv, and S. Shenker. Verification in the age of microser-
vices. In Proceedings of the 16th Workshop on Hot Topics in Operating
Systems, HotOS ’17, page 30–36, Whistler, BC, Canada, 2017.

Once Bitten, Still Shy: Can We Prevent Cloud Systems from Repeating Their Mistakes? HotNets ’25, November 17–18, 2025, College Park, MD, USA

[49] F. Pastore, L. Mariani, A. E. J. Hyvärinen, G. Fedyukovich, N. Shary-
gina, S. Sehestedt, and A. Muhammad. Verification-aided regression
testing. In Proceedings of the 2014 International Symposium on Soft-
ware Testing and Analysis, ISSTA 2014, page 37–48, San Jose, CA,
USA, 2014.

[50] C. Pei, Z. Wang, F. Liu, Z. Li, Y. Liu, X. He, R. Kang, T. Zhang, J. Chen,
J. Li, G. Xie, and D. Pei. Flow-of-action: Sop enhanced llm-based multi-
agent system for root cause analysis. In Companion Proceedings of
the ACM on Web Conference 2025, WWW ’25, page 422–431, Sydney
NSW, Australia, 2025.

[51] R. Potvin and J. Levenberg. Why google stores billions of lines of code
in a single repository. Commun. ACM, 59(7):78–87, June 2016.

[52] D. Roy, X. Zhang, R. Bhave, C. Bansal, P. Las-Casas, R. Fonseca, and
S. Rajmohan. Exploring llm-based agents for root cause analysis. In
Companion Proceedings of the 32nd ACM International Conference
on the Foundations of Software Engineering, FSE 2024, page 208–219,
Porto de Galinhas, Brazil, 2024.

[53] K. Sen. Concolic testing. In Proceedings of the 22nd IEEE/ACM
international conference on Automated software engineering, pages
571–572, 2007.

[54] Y. Su, C. Wan, U. Sethi, S. Lu, M. Musuvathi, and S. Nath. Hotgpt:
How to make software documentation more useful with a large lan-
guage model? In Proceedings of the 19th Workshop on Hot Topics in
Operating Systems, pages 87–93, 2023.

[55] X. Sun, W. Ma, J. T. Gu, Z. Ma, T. Chajed, J. Howell, A. Lattuada,
O. Padon, L. Suresh, A. Szekeres, and T. Xu. Anvil: Verifying liveness
of cluster management controllers. In 18th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 24), pages 649–
666. USENIX Association, July 2024.

[56] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan.
Soot - a java bytecode optimization framework. In Proceedings of the
1999 Conference of the Centre for Advanced Studies on Collaborative
Research, CASCON ’99, page 13, Mississauga, Ontario, Canada, 1999.

[57] Y. Wang and K. P. Birman. Diagnosing and resolving cloud platform in-
stability with multi-modal rag llms. In Proceedings of the 5th Workshop
on Machine Learning and Systems, EuroMLSys ’25, page 139–147,
World Trade Center, Rotterdam, Netherlands, 2025.

[58] Z. Wang, Z. Liu, Y. Zhang, A. Zhong, J. Wang, F. Yin, L. Fan, L. Wu,
and Q. Wen. Rcagent: Cloud root cause analysis by autonomous agents
with tool-augmented large language models. In Proceedings of the
33rd ACM International Conference on Information and Knowledge
Management, CIKM ’24, page 4966–4974, Boise, ID, USA, 2024.

[59] M. Wu, M. Lu, H. Cui, J. Chen, Y. Zhang, and L. Zhang. Jitfuzz:
Coverage-guided fuzzing for jvm just-in-time compilers. In Proceed-
ings of the 45th International Conference on Software Engineering,
ICSE ’23, page 56–68, Melbourne, Victoria, Australia, 2023.

[60] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan. Detecting
large-scale system problems by mining console logs. In Proceedings of
the ACM SIGOPS 22nd Symposium on Operating Systems Principles,
SOSP ’09, page 117–132, Big Sky, Montana, USA, 2009.

[61] X. Xu, Y. Yuan, Z. Kincaid, A. Krishnamurthy, R. Mahajan, D. Walker,
and E. Zhai. Relational network verification. In Proceedings of the ACM
SIGCOMM 2024 Conference, ACM SIGCOMM ’24, page 213–227,
Sydney, NSW, Australia, 2024.

[62] J. Yao, R. Tao, R. Gu, and J. Nieh. DuoAI: Fast, automated inference
of inductive invariants for verifying distributed protocols. In M. K.
Aguilera and H. Weatherspoon, editors, 16th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2022, Carlsbad,
CA, USA, July 11-13, 2022, pages 485–501. USENIX Association,
2022.

[63] J. Yao, R. Tao, R. Gu, J. Nieh, S. Jana, and G. Ryan. DistAI: Data-
driven automated invariant learning for distributed protocols. In A. D.

Brown and J. R. Lorch, editors, 15th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2021, July 14-16, 2021,
pages 405–421. USENIX Association, 2021.

[64] T. N. Zhang, K. Singh, T. Chajed, M. Kapritsos, and B. Parno. Basilisk:
Using Provenance Invariants to Automate Proofs of Undecidable Proto-
cols. pages 1–17.

[65] N. Zheng, M. Liu, Y. Xiang, L. Song, D. Li, F. Han, N. Wang, Y. Ma,
Z. Liang, D. Cai, E. Zhai, X. Liu, and X. Jin. Automated verification of
an in-production dns authoritative engine. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP ’23, page 80–95,
Koblenz, Germany, 2023.

[66] L. Zhong, C. Xiang, H. Huang, B. Shen, E. Mugnier, and Y. Zhou.
Effective bug detection with unused definitions. In Proceedings of the
Nineteenth European Conference on Computer Systems, EuroSys ’24,
page 720–735, Athens, Greece, 2024.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Why Regression Failures Happen?
	2.2 What Can Be Done Differently?

	3 System Design
	3.1 Inferring and Translating Low-Level Semantics
	3.2 Asserting Semantic Rules with Concolic Execution

	4 Preliminary Results
	5 Open Questions
	6 Related Work
	7 Conclusion
	References

