
Rethinking the Role of Network Stacks for Website
Fingerprinting Defenses

Elisaveta Lavrentieva, Marc Juarez★, and Michio Honda★
University of Edinburgh

Abstract
While encryption has become ubiquitous across the Internet,
there is growing concern that website fingerprinting and
other traffic analysis attacks could undermine the confiden-
tiality guarantees encryption is meant to provide. Over the
past decade, these attacks have become increasingly effective,
highlighting the urgent need to deploy traffic obfuscation
countermeasures. Although defenses have already been pro-
posed in the literature, they remain inefficient partly because
they are implemented at the application-level, which limits
their control over packet sequences. This paper advocates
for integrating packet sequence obfuscation support directly
into host network stacks, where the fine-grained packet op-
erations that defenses require can be effectively enforced.

CCS Concepts
• Networks→ Network security; • Software and its en-
gineering → Operating systems.

Keywords
Website fingerprinting, Network stacks
ACM Reference Format:
Elisaveta Lavrentieva, Marc Juarez★, and Michio Honda★, . 2025.
Rethinking the Role of Network Stacks for Website Fingerprinting
Defenses. In The 24th ACMWorkshop on Hot Topics in Networks (Hot-
Nets ’25), November 17–18, 2025, College Park, MD, USA. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3772356.3772428

1 Introduction
The layered architecture of the host network stack plays a
critical role in enabling robust and scalable Internet commu-
nications. In addition to housing individual network proto-
cols, the stack implements various subsystems that support
system-wide and application-level policy enforcement (e.g.,
★Equal supervision role.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
HotNets ’25, College Park, MD, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2280-6/2025/11
https://doi.org/10.1145/3772356.3772428

packet scheduling), hardware offload management in the
network interface card (NIC), efficient data movement, and
cross-layer event notification.

Today, the primary goals in data transmission, which con-
sist of sending the application data to the network in packets,
are: efficiency of CPU cycles and network bandwidth usage,
mitigation of network congestion, and fairness guarantees
between network flows. When the application posts data to
the stack, before it reaches the network layer, the transport
layer decides when to send the data, over how many packets,
and how to interleave those packets over time. The decision
is based on end-to-end path characteristics observed in the
flow, such as MTU, RTT, and congestion level. It also takes
into account the policies specified by the applications, such
as priorities for low delay or high throughput.
This paper advocates for adding another objective in the

data transmission process of the host network stack: traffic
obfuscation. This objective has become critical due to the
increased effectiveness and relevance of traffic analysis at-
tacks, most notably through website fingerprinting (WF).
WF is a class of traffic analysis techniques potentially used
by passive eavesdroppers, such as censorship devices. By
applying ML techniques on traffic metadata, which includes
packet sizes and timing, WF techniques extract patterns that
are unique to the webpage. These distinctive patterns reveal
the website identity, even when the conntection has been
encrypted or anonymized.
As WF can undermine encryption’s confidentiality guar-

antees, it has become increasingly relevant in the era of
default-encrypted Internet communication, attracting grow-
ing attention from the privacy and security community. In
particular, the application of Deep Learning (DL) techniques
to the design of WF attacks has led to breakthroughs that
significantly boost their practical effectiveness [41, 48, 5],
further heightening concerns about the threat WF poses to
Internet users.
Several WF defenses that obfuscate the traffic features

exploited by the attacks have been proposed in the literature.
However, while most of these defenses are designed to oper-
ate on the traffic sequences observed by the attacker, they
are instead implemented in the application layer and thus
operate on application-level data that is yet to pass through

https://doi.org/10.1145/3772356.3772428
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3772356.3772428


HotNets ’25, November 17–18, 2025, College Park, MD, USA
Elisaveta Lavrentieva, Marc Juarez★, and Michio Honda★

the network stack [13, 7, 30]. As a result, the intended mod-
ifications to packet-level features may not be reflected in
the actual network traffic and may overlook the prohibitive
performance penalties of a practical implementation. Only
defenses operating at the network stack level can reliably
and efficiently enforce these defensive transformations.

To address this limitation, we propose a traffic obfuscation
framework implemented within the network stack, enabling
existing and new WF defenses to operate directly on the
final packet sequences, thus truly enforcing their obfuscation
policies. To determine the feasibility of this approach, this
paper addresses the following questions:
• Do WF attacks pose a significant threat? In particular, is
the high accuracy of these attacks a cause for concern?
And how likely are they to be applied in the wild? (§ 2)

• Is data transmission the right place to enable traffic ob-
fuscation, and would it be effective in protecting against
website fingerprinting? (§ 3)

• What could abstractions for enforcing obfuscation policies
between the application and network stack look like? (§ 4)
In addition, we also discuss implications in the Internet

architecture, transport protocol design, and service deploy-
ment model (§ 5).

2 Website Fingerprinting
This section discusses the growing relevance of WF for pas-
sive network eavesdroppers, given both the widespread de-
ployment of end-to-end encryption on the Internet and the
increasing viability of state-of-the-art WF techniques.

2.1 Momentum
Passive network adversaries are widespresad across the In-
ternet. They monitor network traffic for a variety of pur-
poses, including censorship, content filtering, and targeted
advertising. Their common objective is to identify the spe-
cific website that a client is visiting. When the Internet was
mostly unencrypted [6], this could be achieved by simply
inspecting the plaintext HTTP requests and DNS queries.
However, with the growing adoption of TLS for both HTTP
and DNS, these adversaries must resort to alternative meth-
ods. One key piece of metadata that remains exposed is the
Server Name Indication (SNI) [28, 35], but this is starting to
change. Since late 2024, Cloudflare, which hosts a significant
portion of the web through its CDN infrastructure, has rolled
out support for Encrypted Client Hello (ECH). ECH encrypts
most of the TLS handshake, including the SNI, using a public
key retrieved via DNS.

As the ability to read plaintext SNI declines, and other des-
tination metadata remains encrypted, adversaries are likely
to turn to traffic analysis techniques to infer web browsing
activity. WF, one such a technique, has been shown effective

System Target Strategy Traffic Manipulation
ALPaCA [12]

Tor

Regul.

Padding

BuFLO [13, 7, 8]
Padding, and timing
modification

RegulaTor [23]
Surakav [17]
Palette [44]

WTF-PAD [26]

Obfus.

Padding, and timing
modificationFRONT [16]

BLANKET [34]

Morphing [55]

TLS
Timing & packet size
modification

HTTPOS [30]
Burst Defe. [32]
Cactus [56]

Ad. FRONT [21] Padding, and timing modifi-
cation

QCSD [49] QUIC Padding, and timing &
packet size modificationpadresour. [46]

NetShaper [42] TLS & QUIC

Table 1: WF defense summary. Defenses for TLS/QUIC
obfuscate traffic with padding, and timing or packet size
modifications. For simplicity, padding encompasses coun-
termeasure operations that aim to change web object sizes,
regardless of which layer implements them. This differs from
packet size modification which is packet-level padding with
the sole objective to change the sizes of individual packets.

in identifying the websites that a client visits from analyzing
the timing, direction, and size of encrypted packets, thereby
circumventing the protection encryption is meant to provide.
Recent advancements in the field of ML, particularly DL,

have significantly improved the practical feasibility of these
attacks on HTTPS and Tor traffic. Although some studies
show that analysis of encrypted DNS traffic can aid the
attacks [47], the vast majority of WF attacks are carried
out on the connection path between the client and the web
server, where more information to exploit is available [14,
50, 46]. Therefore, for the remainder of this paper, we focus
exclusively on WF techniques applied to client-server traffic,
rather than those targeting DNS traffic.
Given these trends, it is highly likely that passive eaves-

droppers will increasingly adopt WF techniques. However,
note that confirming this in practice is hard, as WF attacks
are inherently passive and leave no traces. Detecting WF in
the wild would require indirect evidence, such as side-effects
or public disclosure of the practices.

2.2 Status Quo
The ongoing interest in WF is justified by the potentially
severe consequences of a successful WF attack, the relatively
low cost of deploying such attacks, and the high success
rates reported in the academic literature. The study of WF
techniques began in the context of the Tor overlay network,
which was specifically designed for anonymous, encrypted



Rethinking the Role of Network Stacks for Website Fingerprinting Defenses HotNets ’25, November 17–18, 2025, College Park, MD, USA

communication [48, 41, 5], and has only become relevant to
the broader Internet with the recent widespread adoption
of encryption (e.g., Google started default-HTTPS in 2010).
Today, WF research increasingly considers direct Internet
communications over TLS [10, 9, 32] and QUIC [58, 49, 46],
where the adversary uses WF to identify a website within a
CDN or a specific page within a website. Although WF stud-
ies still make simplified assumptions on the evaluation [36,
25] and the practical feasibility of attacks remains contested,
there is increasing interest in defenses that protect users in
high-stakes applications [37], as well as in techniques devel-
oped for Tor that influence the design of defenses for direct
Internet communication.
Table 1 summarizes existing WF defenses based on their

strategy, target and methodology. WF defense strategies di-
vide into regularization, which attempts to make packet se-
quence across websites more similar, and obfuscation, which
adds noise to the features exploited by the attacks. Defenses
are also classified by the abstraction level in which they
are specified. For Tor, several defenses are implemented at
the browser or web server application for HTTP request/re-
sponse manipulation and file object padding [12]. However,
while there is incentive for Onion service operators to deploy
such defenses, this is not the case yet for the broader Internet.
Defenses for direct Internet communications are normally
specified on the wire packet sequences, as they would be
observed by the attacker. At that level of abstraction, de-
fenses often adopt obfuscation, as there is no information
for effective regularization.

Obfuscation-based defenses against WF typically rely on
three primitives: packet size modification, timing modifica-
tion, and padding. These primitives are typically combined
to design complex defensive strategies to obscure distinctive
web traffic patterns. Packet size modification involves chang-
ing packet boundaries of the transferring data (e.g., using
smaller packets than MSS), making packet sizes less distinc-
tive. Timing modification adds artificial delays to packet
transmissions. Finally, padding refers to constructing and
sending packets that do not carry real user data (also known
as dummy packets), used to obscure higher-level character-
istics such as total size of web objects and total volume of
the communications.

The application of DL techniques for the development of
WF has led to dramatic improvements in their accuracy. In
particular, some attacks have achieved over 95% accuracy
against Tor [48, 41, 4], which has been designed to protect
against some types of traffic analysis. Although these results
have been criticized for relying on simplified assumptions in
the evaluation setting, there is growing concern among Tor
developers and the broader privacy community regarding
the threat that WF attacks pose [25]. For this reason, the com-
munity is increasingly open to the deployment of lightweight

App

TLS
TCP

I/O

App
QUIC

UDP

I/O

App
TLS

TCP

I/O

User

Kernel

Figure 1: The stack model. The term “stack” refers to
the shaded parts. Zigzag-connected parts are executed asyn-
chronously.

defenses that can raise the bar for WF attackers—particularly
in deployment scenarios where the research assumptions
hold [26, 37]. We believe the same motivation emerges in
the open Internet.

2.3 Problems with Existing Defenses
Enforcing packet obfuscation algorithms on the actual packet
sequence of ordinary applications is challenging, because
network stacks lack abstractions for fine-grained control
over packet sequences. Although WF studies prototype their
proposed algorithms on top of the transport layer, the result-
ing packet sequence would match the expectation only if the
application limits the bandwidth below the congestion win-
dow size (and thus enforces application-limited flows) and
disables various batching or queuing mechanisms. Those as-
sumptions are impractical and prohibitive in terms of perfor-
mance penalty. However, without enforcing those conditions,
application data posted to the stack—scheduled by the obfus-
cation algorithm running in the application layer—could be
deferred for transmission or coalesced to the preceding data,
as detailed next.
Figure 1 illustrates where such asynchronous data trans-

mission occurs in common organizations of application and
stack: TLS over TCP, in-kernel TLS (kTLS [27, 38]) over TCP1
and QUIC over UDP. We use the term stack to refer to the
layers between transport protocol implementation and NIC
I/O, inclusive (colored blocks in the figure) hereafter.
The first asynchronous processing happens in the trans-

port layer. In the send() syscall, application data is copied
to the socket buffer, or the page pointer is linked to it if zero
copy is opted. This data is sent to the network layer directly
in the syscall context only when a sufficient receiver and
congestion window is available; otherwise the syscall returns
to the application and the data transmission is deferred until
the stack receives the ACK packets that advance the window.

The other asynchronous I/O happens at the bottom of the
stack. A packet pushed by the TCP or UDP implementation
to the lower layer could be processed by another thread that
dequeues the packet from the queuing discipline (e.g., for fair

1This model also applies to in-kernel encrypted transport protocols [15].



HotNets ’25, November 17–18, 2025, College Park, MD, USA
Elisaveta Lavrentieva, Marc Juarez★, and Michio Honda★

queueing between the flows) or enforces TCP small queue
(in-host buffer bloat mitigation [11]). Furthermore, modern
TCP implementations use TCP segmentation offload (TSO),
which splits a large TCP segment to MSS-sized packets at the
NIC to reduce the packetization overheads and the number
of network layer traversals. Since TSO sends the packets that
it generates at the line rate without interleaving them, the
application cannot control the timing of those packets.
Application-level timing control of data transmission is

not impossible, but it is extremely inefficient and impractical
because it must ensure no data exceeding the current window
is pushed to the stack and no other application is transmitting
the data to the shared NIC, also disabling TSO.

Application-level traffic obfuscation also lacks packet size
control unless the application ensures not to transmit data
larger than MSS or advertised window. Since TCP provides
the bytestream abstraction, packet size is determined by
the TCP implementation based on the measured path MTU
(PMTU) and advertised window if it is smaller than PMTU.
Therefore, controlling packet size at the application layer
is practical only for applications that send small messages,
such as an interactive shell.
Controlling the packet sizes for large application data is

hard with the abstraction currently available in commodity
OSes. Furthermore, TSO creates fixed-sized packets, except
for the last one. As a relevant inefficient example, HTTPOS [30]
attempts to control packet size by advertizing very small
window size and MSS. However, small MSS values apply
for the connection lifetime and thus damages transmission
efficiency; small advertised window prevents the server from
sending the full congestion window of data, sacrificing band-
width utilization and thus throughput.

This observation is based on TCP, but the same will apply
to QUIC. Although it runs on top of UDP, since QUIC also
provides stream abstractions, packet size is determined by
QUIC based on its PMTU discovery. Datagram transmission
to the UDP layer is also scheduled by QUIC based on its
congestion control, rather than the application. Moreover,
there exists a sign of hardware offload for segmentation and
encryption for QUIC [19] as the latest Broadcom BCM57608
NICs, which is already available on the market. Such NICs
and their abstractions lead to similar segmentation behavior
to TLS/TCP.
Padding-based methods are harmful to the network, be-

cause it consumes extra network bandwidth. For example,
FRONT [16] introduces 80% of bandwidth overhead [44] and
QCSD introduces 309% of that [49]. Padding is worse than
timing control, because it wastes network bandwidth in a
non-work-conserving manner. Timing manipulation, such as
delaying packets, leaves the idle resource for other flows. Us-
ing smaller packet sizes is not as harmful as padding, because
although it decreases CPU efficiency, it does not consume

additional network bandwidth apart from the overhead of
TCP/IP headers. We do not argue that the padding-based
methods must be avoided, but the current systems tend to
rely on those methods excessively due to the lack of robust
control of packet timing and sizing.

3 Stack-Viable Defenses Against
WF-Enabled Censorship

In this section, we assess the potential of stack-level counter-
measures to mitigate WF in a censorship scenario. Because
censors must decide to block a website before the client
downloads it, the attack must be able to detect the web page
early in the connection. Censorship is a realistic WF attack,
because it does not need large storage space or packet pro-
cessing CPU cycles to record a large amount of traffic.

In this experiment, we have collected web traffic data and
emulated packet modifications that can be implemented in a
kernel-level defense. To evaluate the censorship setting, we
apply the attack on only the first few packets of a network
trace.

To collect data for this evaluation, we use tcpdump to cap-
ture traffic for 9 popular websites, selected from the Tranco
top 1M websites [39]. These were: bing.com, github.com,
instagram.com, netflix.com, office.com, spotify.com,
whatsapp.net, wikipedia.org, and youtube.com. For each
website, we collected 100 samples—all collected within 3
hours—and extracted packet timestamps and directions to
train k-FP, a WF attack that is still commonly used in bench-
marks in the literature [22].

After sanitizing the data by checking for connection errors
and removing outliers outside of the interquartile range of
total download size, we were left with 74 traces for each
site. We used the resulting data to train k-FP in a closed-
world setting, meaning that the test traces can only visit
the 9 selected sites instead of any other site available on the
internet, greatly limiting the scope for k-FP. This corresponds
to the most favorable conditions for the attacker, therefore
our results represent an upper bound on attack success.
With these unmodified traces, we emulate two potential

packet sequence modifications that can be implemented in
the kernel: packet splitting and delaying. We emulate split-
ting by dividing packets of size larger than 1200 bytes into
two individual packets of half the size of the original packet.
To implement packet delaying, we increment the inter-arrival
time between the original packet and the one before by 10–
30%, where the percentage is drawn uniformly at random.
These countermeasures are only applied on incoming traffic
from the server, emulating a deployment of the defense at
the server-side.
While packet splitting and delaying can be implemented

in the stack, we selected conservative parameters to avoid



Rethinking the Role of Network Stacks for Website Fingerprinting Defenses HotNets ’25, November 17–18, 2025, College Park, MD, USA

aggressive traffic modifications. For example, we set this
packet splitting threshold to prevent creating packets that
are smaller than the minimum TCP MSS of 536 bytes [53],
which would not occur in real-world connections. Similarly,
we use small random delays because larger delays could
trigger retransmission timeouts. Our choice of parameters
could thus provide a conservative estimate of the effect of
the countermeasures.

We apply these countermeasures individually and in com-
bination on the entire unmodified traffic, generating three
protected datasets. To evaluate the censorship scenario, where
blocking decisions occur early in the connection, we also
apply the countermeasures on the first 15, 30, and 45 packets
only, resulting in a total of 16 datasets.

Table 2: k-FP Random Forest accuracy rates. k-FP is
distinguishing between 9 sites in a closed-world setting. 𝑁
indicates the number of packets at the beginning of the trace
on which the attack is applied.

N Original Split Delayed Combined

15 0.798 ± 0.017 0.825 ± 0.024 0.825 ± 0.030 0.795 ± 0.031
30 0.884 ± 0.007 0.860 ± 0.013 0.855 ± 0.030 0.850 ± 0.062
45 0.938 ± 0.016 0.897 ± 0.030 0.913 ± 0.021 0.904 ± 0.004

All 0.963 ± 0.002 0.980 ± 0.008 0.980 ± 0.014 0.992 ± 0.009

Table 2 shows that k-FP achieves high accuracy in this
closed-world setting, with accuracy increasing as more pack-
ets are observed—an expected result. Remarkably, the coun-
termeasures actually increase attack accuracy on the ‘All’
dataset containing complete traffic traces. This counterintu-
itive result is possibly due to the added noise being insuffi-
cient to fool the classifier, while the randomness might have
introduced unique patterns that facilitate fingerprinting. On
the other hand, the rate at which k-FP’s accuracy increases
over 𝑁 is slower when either defense is applied compared to
no defense, indicating that countermeasures delay confident
detection in the censorship setting.
Although this preliminary result offers modest promise,

implementing these and more sophisticated countermea-
sures at the kernel level is likely to enable a broader range
of tunable parameters and thus a greater effectiveness. As a
next step, we will implement a traffic obfuscation framework
in the network stack that enables the development of more
advanced defensive strategies. In turn, this will allow a more
accurate assessment of the potential of these countermea-
sures in mitigating the attacks.

It is important to note that splitting packets also inherently
adds a delay to the connection, as more packets must be sent
out to complete the connection. It may be that a combination
of delay and packet size would have compound effects in the

CCA

Inter-burst time Burst size Packet size

Stob

Transport protocol

Obf. policyPMTUD

Queuing discipline TSO segment

Network stack

Figure 2: The Stob architecture.

features and the overheads. An evaluation of the effects of
combinations of these variables and more complex defensive
strategies is our ongoing work.

4 Stack Support for WF Defense
Based on the potential effect of stack-level packet sequence
control, we now design Stob, stack-level traffic obfuscation.

4.1 Architecture
The design goal of Stob is to enable fine-grained control over
the packet sequence sent by the host, so as to accommodate
a range of packet obfuscation algorithms and trade-offs be-
tween protection strength and cost. To this end, Stob directly
operates in the network stack, spanning across the transport
and packet I/O layers where the relevant decisions, including
packet size and departure time, are ultimately made. Figure 2
illustrates the Stob architecture.
The packet obfuscation policies are determined by the

application or system administrator. Since the packet depar-
ture time and size applied to data units can be represented
as relatively compact distribution functions like histograms
(§ 2.2) and their instances can be shared between flows in
some cases (e.g., same destination), those policies could be
maintained in the shared memory between the application
and stack.

4.2 Packet Sequence Control
Stob affects the decision beingmade by the transport protocol
about when to send the application data—over how many
packets or in what packet size—by how long interleaving them.

The first relevant decision is the TSO size—the size of the
transport-level segment that is passed to the NIC, which
splits it to MSS-sized or smaller packets (§ 2.3). TCP ideally
wishes to create a largest-possible (i.e., 65 KB) segment for
CPU efficiency, but it often does not, because TSO creates
a micro burst, a series of line-rate packets, which increase
the amount of data queued in the network router. Since the
packets in the same TSO segment cannot be interleaved,
the Linux TCP implementation chooses a small TSO size at



HotNets ’25, November 17–18, 2025, College Park, MD, USA
Elisaveta Lavrentieva, Marc Juarez★, and Michio Honda★

0 5 10 15 20 25
Packet sequence adjustment degree (α)

0

20

40

Th
ro

ug
hp

ut
 [G

bp
s]

Figure 3: Packet and TSO size adjustment. The horizontal
axis indicates the maximum reduction degree of packet size
and TSO size. Packet size reduces from 1500 (default) by
𝛼 up to 1500 − 𝛼 × 10 bytes (reset to the default then and
repeat) and TSO size does so from 44 (default) by 𝛼/4 up to
44 − 𝛼/4 × 8 or 1.

the expense of CPU efficiency when the remote endpoint is
distant (i.e., long RTT) to perform fine-grained pacing of data
and corresponding ACK packets. Another relevant feature is
pacing. The Linux stack provides a pacing queue primarily
for modern congestion control algorithms like BBR, which
allows the congestion control algorithm (CCA) to schedule
the departure of TSO segment in a nanosecond granularity.

Based on these observations, Stob interacts with TSO siz-
ing and pacing decisions usually controlled by congestion
control and packet sizing decision usually made by the adver-
tised MSS and PMTU. For example, even if the CCA decides
a large TSO size, the obfuscation action may apply smaller
one to apply for fine-grained pacing. However, Stob must
ensure that it does not generate more aggressive traffic to the
network (e.g., higher pacing rate than what CCA desired).
We leave padding policy decision to the application, al-

though its implementation could be done in TLS record
padding, because some application protocols have built-in
padding features. For example, Jain et. al. [24] proposes web
object specific padding scheme. Further, Siby et. al. [46]
shows that padding without application-specific knowledge
is not effective forWF defenses. Stob’s strategy is to allow the
application to apply arbitrary packet sequence obfuscation
methods using their own padding method and fine-grained
packet sequence control, which is impossible with existing
systems (§ 2.3).
To see the impact of packet sequence control on perfor-

mance, we implemented a simple strategy that incrementally
reduces TSO size and packet size (reset to the default value
once reaching the maximum reduction) over data transmis-
sions in the TCP connection. Figure 3 plots the throughput
of a single connection (thus a single CPU core is used in
the stack) with iperf3 over a 100Gb/s link2. As expected,

2Between two servers each equipped with two Intel Xeon Gold 5418N CPUs
and NVIDIA ConnectX-6 NIC.

throughput decreases when the packet size or TSO size
changes in a wider range (i.e., reduces more aggressively
from the default), but it still preserves 19.7 Gb/s or higher.
Those results imply relatively low overheads for connections
over the Internet access links that are typically at most a few
Gbps and shared by many connections.

5 Discussion
In addition to the stack design challenges that have been dis-
cussed, Stob has several implications for the wider Internet
architecture.

5.1 Obfuscation Algorithm Designs
Although packet sequence control without increasing the
sending rate that the CCA has decided ensures harmless
impact to the network, its decision still may conflict with
the CCA. For example, BBR uses pacing as a method of mea-
suring queue build up in the network based on resulting
ACK intervals. Therefore, packet sequence control may con-
fuse the estimation of the queuing status. Similarly, Copa [3]
paces out packets over the window.
To address this challenge, we believe we ultimately need

to co-design CCA and packet sequence control. It may be
enough to provide interfaces to packet sequence control not
to perform any action in certain phases (e.g., BBR’s slow start
where pacing plays a crucial role), or it may need radical
re-design of CCA. It should be noted that CCA specifications
usually do not specify exact packet sequence; for example,
[57] reports the difference of traffic characteristics between
stack implementations that adopt the same CCA. Therefore,
some degree of packet sequence adjustment for obfuscation
could be possible without violating the CCA specification.
Since existing WF defenses based on packet sequence obfus-
cation have never considered their interplay with congestion
control, designing an effective algorithm in this space re-
mains an open question.

5.2 Other Traffic Analysis
Packet sequences are used for other purposes than WF by
passive eavesdroppers, either maliciously or not. For exam-
ple, CCA identification of the flow is a popular network
measurement task. Although the previous systems relied on
the active probing of the server [33, 18], the state-of-the-art
method, CCAnalyzer [54], passively identifies the CCA by
classifying the flows based on the bottleneck queue occu-
pancy behavior. Some users may wish to prevent their CCA
from being identified, because it potentially reveals other
information, such as the OS kernel and application identity.

As other examples, FOAP [29] and AppScanner [52] iden-
tify the mobile application from the HTTP/TLS traffic based



Rethinking the Role of Network Stacks for Website Fingerprinting Defenses HotNets ’25, November 17–18, 2025, College Park, MD, USA

on packet sizes and burst behavior. Some monitoring tasks
also infer the flow characteristics and thus applications [2].

5.3 Architectural Implications
Schmitt et. al. [43] discusses the decoupling principles in the
Internet applications. Some of recent systems attempt to
generalize or makeWF protection deployable, but they create
a single locus of observation based on that principle. For
example, NetShaper [42] places a middlebox at both client-
and server-side to multiplex and demultiplex the obfuscated
traffic. In addition to the lack of robust obfuscation (§ 2.3), it
creates a single point of observation. In contrast, Stob follows
the decoupling principle in terms of not creating such a point
by natively supporting WF defense in the host stack.
Utilizing the application-level information in the trans-

port protocol is not a serious violation of the layered Internet
architecture principle. The host stack already adjusts packet
transmission behavior based on the application-informed
policies through setsockopt, including TCP_NODELAY, which
enables immediate transmission without creating a full-sized
packet, and TCP_CORK, which defers the transmission of data.

5.4 Deployment
Who is participating in defense is an important consideration
when designing a WF defense. Most WF defenses designed
for Tor assume the collaboration between the client and the
middle relay in the Tor circuits constructed by the client [26,
40, 37]. Some WF defenses are designed as client-only solu-
tions [12, 30, 49, 56], but at the expense of signifiant perfor-
mance penalty, because they need to proactively schedule
the sender (i.e., typically the server) using small MSS and
advertised window (§ 2).
On the other hand, at the server-side, the defender has

more access to the web objects whose features are identified;
a defense deployed here is able to perform operations that
are not available at the client-side and is thus better placed
to offer protection at low overheads. Further, given the wide-
spread use of CDNs, adoption of a server-side protection in
one CDN operator would have a significant coverage. Our
proposed stack-level support for WF defense is inspired by
this observation.

Today’s TLS deployment has been accelerated by the server-
side activation (e.g., default TLS connection by Google in
2020 and SEO prioritization for TLS-enabled websites), in-
cluding large operators and small ones with the help of ac-
cessible certificate authorities (e.g., Let’s Encrypt). Support
for WF defense as a part of the data transmission process of
the stack is aligned with facilitating such a deployment path.
Operators may be concerned about stack software over-

heads of having to use small packet sizes or batch sizes and

padding, because CDN operators have to serve a large num-
ber of clients in a limited space footprint [1]. In addition,
existing defenses must incur high bandwidth and latency
overheads to be effective, discouraging their widespread
adoption [31]. Efficient stack-level packet sequence enforce-
ment (Figure 3) and minimum application-specific padding
could address this concern. Furthermore, although the cur-
rent deployment of WF defense is limited with the exception
of Tor [37], we believe Stob-based defense is viable, because
the scientific community agrees that even modest defenses
can raise the bar for attackers and thus deter censors and
eavesdroppers from applying the attacks [31].

5.5 Hardware Offload
Stob relies on a custom packet queuing mechanism, which
may hinder its adoption in existing systems that already rely
on hardware-based scheduler in commodity NICs. However,
we believe emerging NICs are flexible enough to accommo-
date Stob’s need. For example, PIEO [45] implemented in
FPGA enables dequeuing an arbitrary packet based on the
policy. Other hardware-based packet scheduler designs (e.g.,
Loom [51]), also trivially implement support for Stob. Packet
scheduling in the SoC cores embedded in SmartNICs or DPUs
is also common today (e.g., FairNIC [20]).

Stob calls for slightly higher flexibility in TSO. Currently
all the packets split by TSO have the same length except for
the last one, and the software interface for TSO is designed
based on this assumption. If the NIC supports more flexible
policies and allows the software to specify arbitrary packet
length for each packet, efficiency of Stob would be improved.
Since TSO is used by many applications and available in a
range of NICs, including those for wireless networks, such
flexible TSO behavior could benefit a number of users.

6 Conclusion
Given the growing threat of WF particularly over the client-
server encrypted traffic caused by DNS and TLS encryp-
tion, we believe it is time to consider practical approaches
to protect users from WF. We experimentally demonstrated
feasibility of the stack-level WF protection and discussed
pathways of extending today’s commodity OS to enable it.

Acknowledgments
We are grateful to the anonymous reviewers and Francesco
Bronzino, our shepherd, for valuable comments.

References
[1] Joao Taveira Araujo, Lorenzo Saino, Lennert Buyten-

hek, and Raul Landa. 2018. Balancing on the edge:
transport affinitywithout network state.USENIXNSDI.



HotNets ’25, November 17–18, 2025, College Park, MD, USA
Elisaveta Lavrentieva, Marc Juarez★, and Michio Honda★

[2] João Taveira Araújo, Raúl Landa, Richard G Clegg,
George Pavlou, and Kensuke Fukuda. 2014. A lon-
gitudinal analysis of internet rate limitations. IEEE
Infocom.

[3] Venkat Arun and Hari Balakrishnan. 2018. Copa: prac-
tical Delay-Based congestion control for the internet.
USENIX NSDI.

[4] Sanjit Bhat, David Lu, Albert Kwon, and Srinivas De-
vadas. 2019. Var-cnn: a data-efficient website finger-
printing attack based on deep learning. PETS.

[5] Sanjit Bhat, David Lu, Albert Kwon, and Srinivas De-
vadas. 2018. Var-cnn: a data-efficient website finger-
printing attack based on deep learning.

[6] Andrea Bittau,Michael Hamburg,MarkHandley, David
Mazieres, and Dan Boneh. 2010. The case for ubiqui-
tous transport-level encryption. USENIX Security.

[7] Xiang Cai, Rishab Nithyanand, and Rob Johnson. 2014.
CS-BuFLO: A congestion sensitive website fingerprint-
ing defense.

[8] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob John-
son, and Ian Goldberg. 2014. A systematic approach
to developing and evaluating website fingerprinting
defenses. ACM CCS.

[9] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan
Zhang. 2010. Side-channel leaks in web applications:
a reality today, a challenge tomorrow. IEEE S&P.

[10] Heyning Cheng and Ron Avnur. 1998. Traffic Anal-
ysis of SSL Encrypted Web Browsing. Project paper,
University of Berkeley.

[11] Yuchung Cheng and Neal Cardwell. 2016. Making
linux tcp fast. Netdev conference.

[12] Giovanni Cherubin, Jamie Hayes, and Marc Juárez.
2017. Website fingerprinting defenses at the applica-
tion layer. PETS.

[13] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and
Thomas Shrimpton. 2012. Peek-a-Boo, I still see you:
Why efficient traffic analysis countermeasures fail.
IEEE S&P.

[14] Ellis Fenske and Aaron Johnson. 2024. Bytes to schlep?
use a fep: hiding protocol metadata with fully en-
crypted protocols. arXiv preprint arXiv:2405.13310.

[15] Tianyi Gao, Xinshu Ma, Suhas Narreddy, Eugenio
Luo, Steven W. D. Chien, and Michio Honda. 2026.
Designing transport-level encryption for datacenter
networks. IEEE S&P.

[16] Jiajun Gong and Tao Wang. 2020. Zero-delay light-
weight defenses against website fingerprinting.USENIX
Security.

[17] Jiajun Gong, Wuqi Zhang, Charles Zhang, and Tao
Wang. 2022. Surakav: generating realistic traces for a
strong website fingerprinting defense. IEEE S&P. IEEE.

[18] Sishuai Gong, Usama Naseer, and Theophilus A Ben-
son. 2020. Inspector gadget: a framework for inferring
tcp congestion control algorithms and protocol con-
figurations. Network Traffic Measurement and Analysis
Conference.

[19] Andy Gospodarek. 2023. Offloading quic encryption
to enabled nics. Linux Plumbers Conference, https:
//lpc.events/event/17/contributions/1592/. (2023).

[20] Stewart Grant, Anil Yelam, Maxwell Bland, and Alex C
Snoeren. 2020. Smartnic performance isolation with
fairnic: programmable networking for the cloud. ACM
SIGCOMM.

[21] David Hasselquist, Ethan Witwer, August Carlson,
Niklas Johansson, and Niklas Carlsson. 2024. Raising
the bar: improved fingerprinting attacks and defenses
for video streaming traffic. PETS.

[22] JamieHayes andGeorgeDanezis. [n. d.] K-fingerprinting:
A Robust Scalable Website Fingerprinting Technique.
en.

[23] James K Holland and Nicholas Hopper. 2022. Regula-
tor: a straightforward website fingerprinting defense.
PETS.

[24] Pranay Jain, Andrew C Reed, and Michael K Reiter.
2024. Near-optimal constrained padding for object
retrievals with dependencies. USENIX Security.

[25] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz,
and Rachel Greenstadt. 2014. A critical evaluation of
website fingerprinting attacks.

[26] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz,
and Matthew Wright. 2016. Toward an efficient web-
site fingerprinting defense.

[27] [n. d.] Kernel tls offload. https://www.kernel.org/doc/
html/latest/networking/tls-offload.html. ().

[28] Platon Kotzias, Abbas Razaghpanah, Johanna Amann,
Kenneth G Paterson, Narseo Vallina-Rodriguez, and
Juan Caballero. 2018. Coming of age: a longitudinal
study of tls deployment. ACM IMC.

[29] Jianfeng Li, Hao Zhou, Shuohan Wu, Xiapu Luo, Ting
Wang, Xian Zhan, and Xiaobo Ma. 2022. FOAP: Fine-
GrainedOpen-World android app fingerprinting.USENIX
Security.

[30] Xiapu Luo, Peng Zhou, Edmond WW Chan, Wenke
Lee, Rocky KC Chang, Roberto Perdisci, et al. 2011.
Httpos: sealing information leaks with browser-side
obfuscation of encrypted flows. NDSS.

[31] Nate Mathews, James K Holland, Se Eun Oh, Moham-
mad Saidur Rahman, Nicholas Hopper, and Matthew
Wright. 2023. Sok: a critical evaluation of efficient
website fingerprinting defenses. IEEE S&P.

[32] Brad Miller et al. 2014. I know why you went to the
clinic: risks and realization of https traffic analysis.
PETS.

https://lpc.events/event/17/contributions/1592/
https://lpc.events/event/17/contributions/1592/
https://www.kernel.org/doc/html/latest/networking/tls-offload.html
https://www.kernel.org/doc/html/latest/networking/tls-offload.html


Rethinking the Role of Network Stacks for Website Fingerprinting Defenses HotNets ’25, November 17–18, 2025, College Park, MD, USA

[33] Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer
Pande, Raj Joshi, and Ben Leong. 2019. The great in-
ternet tcp congestion control census. Proc. ACM Meas.
Anal. Comput. Syst.

[34] Milad Nasr, Alireza Bahramali, and Amir Houmansadr.
2021. Defeating DNN-Based traffic analysis systems in
Real-Timewith blind adversarial perturbations.USENIX
Security.

[35] Niklas Niere, Felix Lange, Robert Merget, and Juraj
Somorovsky. 2025. Transport layer obscurity: circum-
venting sni censorship on the tls-layer. IEEE S&P.

[36] Mike Perry. 2011. Experimental defense for website
traffic fingerprinting. Tor Project Blog. https://blog.
torproject.org/blog/experimental-defense-website-
traffic-fingerprinting. (2011).

[37] Mike Perry. 2015. Padding negotiation. Tor Protocol
Specification Proposal. https://github.com/torproject/
torspec/blob/main/proposals/254-padding-negotiation.
txt. (2015).

[38] Boris Pismenny, Haggai Eran, Aviad Yehezkel, Liran
Liss, AdamMorrison, andDan Tsafrir. 2021. Autonomous
nic offloads. ACM ASPLOS.

[39] Victor Le Pochat, Tom Van Goethem, Samaneh Tajal-
izadehkhoob, Maciej Korczyński, and Wouter Joosen.
2018. Tranco: a research-oriented top sites ranking
hardened against manipulation. arXiv preprint
arXiv:1806.01156.

[40] Tobias Pulls and Ethan Witwer. 2023. Maybenot: a
framework for traffic analysis defenses. Proceedings of
the 22nd Workshop on Privacy in the Electronic Society.

[41] Vera Rimmer, Davy Preuveners, Marc Juarez, et al.
2018. Automated website fingerprinting through deep
learning.

[42] Amir Sabzi, Rut Vora, Swati Goswami, Margo Seltzer,
Mathias Lécuyer, and Aastha Mehta. 2024. NetShaper:
a differentially private network Side-Channel mitiga-
tion system. USENIX Security.

[43] Paul Schmitt, Jana Iyengar, Christopher Wood, and
Barath Raghavan. 2022. The decoupling principle: a
practical privacy framework. ACM HotNets.

[44] Meng Shen, Kexin Ji, JinheWu, Qi Li, Xiangdong Kong,
Ke Xu, and Liehuang Zhu. 2024. Real-time website fin-
gerprinting defense via traffic cluster anonymization.
IEEE S&P.

[45] Vishal Shrivastav. 2019. Fast, scalable, and programmable
packet scheduler in hardware. ACM SIGCOMM.

[46] Sandra Siby, Ludovic Barman, ChristopherWood,Mar-
wan Fayed, Nick Sullivan, and Carmela Troncoso. 2023.
Evaluating practical quic website fingerprinting de-
fenses for the masses. PETS.

[47] Sandra Siby,Marc Juarez, Claudia Diaz, Narseo Vallina-
Rodriguez, and Carmela Troncoso. 2020. Encrypted
dns⇒ privacy? a traffic analysis perspective. NDSS.

[48] Payap Sirinam, Mohsen Imani, Marc Juarez, et al. 2018.
Deep fingerprinting: undermining website fingerprint-
ing defenses with deep learning.

[49] J Smith, P Mittal, and A Perrig. 2021. Website finger-
printing in the age of quic. PETS.

[50] Jean-Pierre Smith, LucaDolfi, PrateekMittal, andAdrian
Perrig. 2022. Qcsd: a quic client-sidewebsite-fingerprinting
defence framework. USENIX Security.

[51] Brent Stephens, Aditya Akella, and Michael Swift.
2019. Loom: flexible and efficient nic packet sched-
uling. USENIX NSDI.

[52] Vincent F Taylor, Riccardo Spolaor, Mauro Conti, and
Ivan Martinovic. 2016. Appscanner: automatic finger-
printing of smartphone apps from encrypted network
traffic. IEEE EuroSP.

[53] 1983. The TCP Maximum Segment Size and Related
Topics. Request for Comments RFC 879. Retrieved
10/22/2025 from.

[54] Ranysha Ware, Adithya Abraham Philip, Nicholas
Hungria, Yash Kothari, Justine Sherry, and Srinivasan
Seshan. 2024. Ccanalyzer: an efficient and nearly-passive
congestion control classifier. ACM SIGCOMM.

[55] Charles V Wright, Scott E Coull, and Fabian Monrose.
2009. Traffic morphing: an efficient defense against
statistical traffic analysis. NDSS.

[56] Renjie Xie et al. 2024. Cactus: obfuscating bidirectional
encrypted tcp traffic at client side. IEEE Transactions
on Information Forensics and Security.

[57] Gina Yuan, Thea Rossman, and Keith Winstein. 2025.
Internet connection splitting: what’s old is new again.
USENIX ATC.

[58] Pengwei Zhan, Liming Wang, and Yi Tang. 2021. Web-
site fingerprinting on early quic traffic. Computer Net-
works.

https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
https://github.com/torproject/torspec/blob/main/proposals/254-padding-negotiation.txt
https://github.com/torproject/torspec/blob/main/proposals/254-padding-negotiation.txt
https://github.com/torproject/torspec/blob/main/proposals/254-padding-negotiation.txt

	Abstract
	1 Introduction
	2 Website Fingerprinting
	2.1 Momentum
	2.2 Status Quo
	2.3 Problems with Existing Defenses

	3 Stack-Viable Defenses Against WF-Enabled Censorship
	4 Stack Support for WF Defense
	4.1 Architecture
	4.2 Packet Sequence Control

	5 Discussion
	5.1 Obfuscation Algorithm Designs
	5.2 Other Traffic Analysis
	5.3 Architectural Implications
	5.4 Deployment
	5.5 Hardware Offload

	6 Conclusion
	Acknowledgments
	References

