
JEEVES: The Valet Who Masters the Art of Cross-DC
Training Scheduling

Haotian Deng1, Xuebin Song2, Menghao Zhang2, Yuan Yang1, Mingwei Xu1
1Tsinghua University 2Beihang University

Abstract
As model sizes continue to grow and the capacity of a sin-
gle data center becomes insufficient, training models across
multiple data centers efficiently is becoming increasingly
important. In this paper, we first show that existing paral-
lelism strategies perform poorly under limited bandwidth
and high latency of cross-DC links. To address this, we pro-
pose JEEVES, a framework that extends the pipeline paral-
lelism across DCs to minimize iteration time under mem-
ory constraints. We identify that the key lies in a good
schedule of computation and communication, and propose
communication-aware schedule, memory-aware stage di-
vision and inter-replica coordinated schedule. Simulations
show that JEEVES improves iteration time by up to 43%when
training a 175B-parameter model.

CCS Concepts
• Networks→ Network algorithms.

Keywords
Large scale training, Pipeline parallelism, High performance
computing, Cross-DC training
ACM Reference Format:
Haotian Deng, Xuebin Song, Menghao Zhang, Yuan Yang, Mingwei
Xu. 2025. JEEVES: The Valet Who Masters the Art of Cross-DC
Training Scheduling. In The 24th ACM Workshop on Hot Topics in
Networks (HotNets ’25), November 17–18, 2025, College Park, MD,
USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3772356.3772387

1 Introduction
Large language models (LLMs) [2, 23] have achieved remark-
able success recently. Adhering to the scaling law [12], the
number of parameters and the size of training datasets are
continuously expanding. Consequently, tens of thousands
of GPUs are required to train an LLM within a reasonable

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
HotNets ’25, College Park, MD, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2280-6/25/11
https://doi.org/10.1145/3772356.3772387

time [11]. The ever-increasing scale of LLMs makes it infea-
sible for a single data center (DC) to sustain the training pro-
cess, due to limitations in power, space, and other factors [4].
Thus, it has become an inevitable trend to combine multiple
DCs for LLM training. However, unlike the intra-DC network
with abundant bandwidth and extremely low latency, the
cross-DC network suffers from relatively limited bandwidth
and significantly higher latency. This heterogeneity intro-
duces a new challenge: during the training, data transmission,
rather than computation, can become the new bottleneck.
The total training time can be substantially prolonged, and
computation resources may be wasted while waiting for data
transmission. Therefore, an effective parallelism solution for
cross-DC LLM training is critically needed.

In a DC, GPUs are coordinated under various parallelism
strategies, including data parallelism (DP), tensor parallelism
(TP), pipeline parallelism (PP), sequence parallelism (SP), ex-
pert parallelism (EP), etc., and these strategies are combined
to improve training efficiency and reduce training time. Each
parallelism strategy introduces different traffic patterns, so
when it comes to cross-DC scenarios, careful selection and
design of parallelism strategies is crucial to minimize cross-
DC traffic and avoid significant communication overhead
that could affect training time. We conduct comprehensive
simulations to evaluate typical parallelism strategies in a sim-
ple two-DC scenario (§2.2). We find that PP, which partitions
the model layers into stages and batches into microbatches
for pipelining, performs better among all parallelism strate-
gies. However, there still remains a significant performance
loss. Deep analysis reveals that the intrinsic reason for this
result is the ill-suited scheduling for PP.
Current PP scheduling methods focus solely on compu-

tation to determine the execution order of microbatches on
each stage [5, 8, 17] (referred to as computation operations
hereafter). These methods are designed for intra-DC scenar-
ios, so the communication overhead is largely ignored. How-
ever, in cross-DC scenarios, long transmission times cannot
be ignored and lead to delayed computation operations. Con-
sequently, computation-only scheduling approaches tend to
introduce pipeline bubbles and underutilized compute re-
sources. Furthermore, some studies propose increasing the
number of inter-stage communications [14–16, 18] to reduce
idle time for intra-DC training, but when directly applied to
cross-DC scenarios, these approaches introduce additional

https://doi.org/10.1145/3772356.3772387
https://doi.org/10.1145/3772356.3772387
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3772356.3772387

HotNets ’25, November 17–18, 2025, College Park, MD, USA Haotian Deng, Xuebin Song, Menghao Zhang, Yuan Yang, Mingwei Xu

TP comm.

Data Center

Replica

Replica
stage

DP comm.

PP comm.1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

layer

8

8

7

7

(a) Intra-DC.

Data Center

Replica

Replica

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
Cross-DC

link

Data Center

(b) Inter-DC.
Figure 1: LLM parallelism strategy.

cross-DC communications, which may negate the benefits
of finer-grained scheduling and even degrade performance.

To overcome these problems, we propose JEEVES, a frame-
work designed to optimize parallelism and scheduling for
cross-DC training. We extend the existing PP scheduling
model by defining communication operations across DCs
and introducing dependencies between computing opera-
tions and communication operations, where the transmis-
sion time of each microbatch is estimated based on data
size, cross-DC bandwidth, and propagation delay. With this
model, we propose an improved PP scheduling algorithm
that can adapt to various cross-DC network settings. When
executing this algorithm, two factors stand in the way of
reducing training time. The first factor is that GPU mem-
ory limitations impose a critical constraint on scheduling,
further exacerbating the expansion of training time. To ad-
dress this, we propose a memory-aware stage division to
partition model layers, mitigating the training time expan-
sion caused by imbalanced memory consumption under a
unified stage division. Another factor is contention for the
cross-DC bandwidth among model replicas that expands the
transfer time. We design a virtual dependency between com-
munication operations of different replicas and introduce
non-blocking sending to reduce the transmission time of
successive microbatches.
We implement an operation-level simulator to evaluate

JEEVES under varying inter-DC bandwidth, latency, and
memory constraints. We simulate a training iteration of a
GPT-3 model with 175B parameters using the same paral-
lelism strategy as MegaScale [11]. Evaluation results show
that JEEVES achieves iteration time with only a 2% increase
compared to intra-DC training, even under low-bandwidth
and high-latency inter-DC connections, without increasing
memory usage. Compared to the widely adopted 1F1B [5, 18]
schedule, JEEVES reduces iteration time by up to 43%.

2 Background and Motivation
2.1 Background
LLM parallelization. Data parallelism (DP) distributes in-
put data across multiple model replicas, with gradient syn-
chronization performed after each iteration. Model paral-
lelism includes inter-layer strategies such as pipeline paral-
lelism (PP), which partitions model layers into stages and

DP comm.

PP comm.

stage

layer

4

8

3

7

2

6

1

5
Replica

4

8

3

7

2

6

1

5
Replica

Data Center

(a) VP placement.

DP comm.

PP comm.

stage

layer

4 83 72 61 5

Data Center

5 16 27 38 4

4 83 72 61 5

Double Replica
5 16 27 38 4

Double Replica

(b) DualPipe placement.

Figure 2: VP & DualPipe.

cross-DC DP cross-DC PP
Sequential

cross-DC PP
VP

cross-DC PP
DualPipe

0

1000

2000

3000

4000

Ite
ra

tio
n

Ti
m

e
(m

s)

IntraDC
CrossDC (0.5Tbps, 1ms)

CrossDC (2Tbps, 10ms)
CrossDC (2Tbps, 1ms)

Figure 3: Iteration time when training GPT-3 (175B).

splits the input batch into microbatches for pipelined exe-
cution, and intra-layer strategies that divide computations
within a layer across devices. These include tensor paral-
lelism (TP) for splitting matrix multiplications, sequence
parallelism (SP) for dividing operations like LayerNorm and
Dropout, and expert parallelism (EP) for distributing MLP
computations across multiple experts. Each parallelism strat-
egy leads to distinct communication patterns. In practice,
these strategies are combined to scale training [11, 18]. Fig-
ure 1(a) shows an example of such combined parallelism and
the associated communication.
Cross-DC training. Due to geographical constraints, DCs
are often separated by long distances, resulting in inter-DC
links with limited bandwidth, typically several terabits per
second (Tbps) [1], and relatively high latency, ranging from
0.1 ms to tens of milliseconds [21]. Given the high commu-
nication overhead on such links, it is widely accepted that
the large volume of traffic induced by intra-layer parallelism,
e.g., TP, SP and EP should be confined within the DC [4, 19].

2.2 Extending Parallelism Across DCs
A key challenge in LLM training across DCs is the opti-
mal placement of the multiple model replicas in different
DCs. NVIDIA and Google propose to extend DP, distributing
different model replicas across DCs, leveraging strategies
such as hierarchical all-reduce [19] and federated-style train-
ing [3, 4, 24] to reduce the cross-DC traffic introduced by
gradient synchronization. Federated-style training lowers
synchronization overhead by decreasing the frequency of
model updates, but this may adversely affect convergence.
Hierarchical all-reduce mitigates cross-DC traffic by aggre-
gating gradients within each DC before global synchroniza-
tion. However, substantial communication overhead persists,
as each iteration still requires transferring a full set of model
gradients.
Another approach is to extend PP, co-locating the same

layer across all replicas within the same DC, while assigning

JEEVES: The Valet Who Masters the Art of Cross-DC Training Scheduling HotNets ’25, November 17–18, 2025, College Park, MD, USA

different layers of a replica to different DCs, as shown in
Figure 1(b). In this way, gradient synchronization traffic is
entirely confined within each DC, and only the inter-layer
activations between adjacent layers need to be transferred
across DCs. This approach can reduce the total volume of
cross-DC traffic. For example, for a GPT-3 model with 175
billion parameters and a batch size of 3096, gradient synchro-
nization requires transferring at least 175 GB per iteration
(assuming 8 bits per gradient), while cross-DC activation
traffic amounts to only 75 GB per iteration [11].
We run simulations to compare these two approaches

(referred to as cross-DC DP and cross-DC PP), under vari-
ous inter-DC bandwidth and latency, with the same experi-
mental setup in §4. For cross-DC DP, we adopt hierarchical
all-reduce. While no specific strategy for cross-DC PP place-
ments currently exists, various intra-DC placement strategies
have been proposed to enhance performance apart from se-
quentially placing model layers onto multiple devices as in
Figure 1(a). These strategies can be broadly categorized into
two types: 1) VP placement [6, 16, 18], which forms a tighter
pipeline by assigning multiple non-contiguous layer subsets
to each stage (Figure 2(a)); 2) DualPipe placement [14, 15],
which introduces a bidirectional pipeline by storing a du-
plicate copy of model parameters in the opposite direction
(Figure 2(b)). We extend these strategies to cross-DC train-
ing. Figure 3 shows the results for a single iteration. VP and
DualPipe placements outperform sequential placement by
6.4% and 7.3% respectively in intra-DC training scenarios,
but their performance significantly degrades in cross-DC sce-
narios. This degradation stems from the additional cross-DC
communication they introduce: VP increases cross-DC traffic
by introducing more communication across stages, while Du-
alPipe places replicas of the same layer across DCs and incurs
extra synchronization overhead. On the other hand, cross-
DC PP with sequential placement outperforms cross-DC DP
in all bandwidth settings due to the lower cross-DC traffic it
generates. Prior work compares cross-DC PP with sequential
placement and cross-DC DP with ring all-reduce, and reports
similar observations [22]. Beyond iteration time, prior work
notes that higher cross-DC traffic can also increase costs, as
cloud providers often charge more for cross-DC traffic [22].
Therefore, the cross-DC PP with sequential placement holds
more potential for cross-DC training.
Furthermore, evaluation results show that the iteration

time of cross-DC PP with sequential placement increases by
up to 38.7% compared to intra-DC training. The key reason
behind this lies in scheduling operations within the model
pipeline. Figure 4(a) shows an example timeline of the model
pipeline during intra-DC training. We visualize the com-
putation operations on each stage, where communication
between stages is negligible due to high-bandwidth, low-
latency links within DCs, and thus is not visualized. Each

microbatch undergoes a forward pass through all stages,
followed by a backward pass in the reverse direction. The
operations on each stage are well scheduled, minimizing idle
time and iteration time. However, when extending to cross-
DC scenarios, the timeline can be significantly impacted as
cross-DC communication time can be comparable to or even
exceed computation time. For example, in GPT-3 training
with 64 replicas across a 2 Tbps, 1 ms cross-DC link, each
replica receives ∼30 Gbps, leading to a microbatch cross-
DC transfer (∼25MB) of 10 ms, roughly equal to the com-
putation time for forward and backward passes. However,
traditional scheduling strategies are designed for intra-DC
environments, where communication overhead is minimal.
They cannot adaptively change the operation order when
faced with such high communication overhead. Figure 4(b)
illustrates the resulting timeline when applying the same
schedule to cross-DC scenarios without modification. Be-
sides computation operations on each stage, we visualize
cross-DC communication in both directions. The idle time
on each stage increases, wasting computational resources
and extending the iteration time. To mitigate this, a sched-
uling strategy that adapts to high cross-DC communication
overhead is in urgent need.

3 Problem Analysis & JEEVES Design
We present JEEVES, an framework for optimizing the sched-
ule of PP for cross-DC training. We identify three limitations
of extending the intra-DC scheduling strategies across DCs
and propose corresponding solutions: (1) Unaware of com-
munication overhead: we propose a scheduling algorithm
that optimizes iteration time under varying cross-DC link
conditions (§3.1). (2) Uneven memory consumption: we in-
troduce an uneven stage division method to balance memory
overhead across stages, achieving a good trade-off between
iteration time and memory consumption (§3.2). (3) Replicas’
competition on inter-DC bandwidth: we propose an inter-
replica coordinated scheduling strategy (§3.3).

3.1 Comm-aware Schedule
Following the usual workflow, before executing the pipeline,
each stage is initialized with an ordered list of computation
operations and an ordered list of communication operations,
where one operation is executed at a time in sequence. Each
operation depends on one or more preceding operations
and becomes executable once all its dependencies are re-
solved. Dependencies are typically introduced to enforce the
data dependencies for a microbatch’s operations. Specifically,
computation operations depend on previous activations, and
output activations are sent after completion. During execu-
tion, after the forward computation of each microbatch on

HotNets ’25, November 17–18, 2025, College Park, MD, USA Haotian Deng, Xuebin Song, Menghao Zhang, Yuan Yang, Mingwei Xu

1 2 3 4 1 5 2 6 3 7 4 5 6 7
1 2 3 1 4 2 5 3 6 4 7 5 6 7

1 2 1 3 2 4 3 5 4 6 5 7 6 7
1 1 2 2 3 3 4 4 5 5 6 6 7 7

Forward BackwardTime

Stage 1

Stage 2
Stage 3
Stage 4

Stage 1
Stage 2

Stage 3
Stage 4

1 2 1 3 2 4 3 5 4 6 5 7 6 7

1 1 2 2 3 3 4 4 5 5 6 6 7 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

DC 1→ 2

DC 2→ 1

1 2 3 4 1 5 2 6 3 7 4 5 6 7
1 2 3 1 4 2 5 3 6 4 7 5 6 7DC 1

DC 2
Comm.

Comm.

Forward BackwardTime

Uniform stage
division

24 layers
24 layers

24 layers

24 layers
Memory
consumption：96
layers 'activations

24 layers
24 layers

24 layers

24 layersMemory consumption：
96 layers 'activations

(a) Baseline (Intra-DC).

1 2 3 4 1 5 2 6 3 7 4 5 6 7
1 2 3 1 4 2 5 3 6 4 7 5 6 7

1 2 1 3 2 4 3 5 4 6 5 7 6 7
1 1 2 2 3 3 4 4 5 5 6 6 7 7

Forward BackwardTime

Stage 1

Stage 2
Stage 3
Stage 4

Stage 1
Stage 2

Stage 3
Stage 4

1 2 1 3 2 4 3 5 4 6 5 7 6 7

1 1 2 2 3 3 4 4 5 5 6 6 7 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

DC 1→ 2

DC 2→ 1

1 2 3 4 1 5 2 6 3 7 4 5 6 7
1 2 3 1 4 2 5 3 6 4 7 5 6 7DC 1

DC 2
Comm.

Comm.

Forward BackwardTime

Uniform stage
division

24 layers
24 layers

24 layers

24 layers
Memory
consumption：96
layers 'activations

(b) Cross-DC Naive Extension.

1 2 3 4 5 1 6 2 7 3 4 5 6 7
1 2 3 4 1 5 2 6 3 7 4 5 6 7

1 2 1 3 2 4 3 5 4 6 5 7 6 7
1 1 2 2 3 3 4 4 5 5 6 6 7 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

Stage 1

Stage 2

Stage 3
Stage 4

DC 1→ 2

DC 2→ 1

DC 1

DC 2

Memory
consumption：120
layers 'activations

Forward BackwardTime

Uniform stage
division

24 layers
24 layers

24 layers

24 layers

(c) Comm-Aware Schedule.

1 2 3 4 5 6 7

1 2 3 4 5 6 7

Stage 1
Stage 2

Stage 3
Stage 4

DC 1→ 2

DC 2→ 1

DC 1

DC 2

Forward BackwardTime

24 layers
24 layers

24 layers

24 layers

1 2 3 4 5 1 5 2 6 3 7 4 8 9 5 9 6 7
1 2 3 4 1 2 5 3 6 4 7 5 6 7

1 2 3 4 1 2 3 4 5 6 5 7 6 7
1 1 2 2 3 3 4 4 5 5 6 6 7 7

Memory
consumption：96
layers 'activations

delay delay

Uniform stage
division

(d) Comm-Aware Schedule with Tight Memory Constraints.

Stage 1

Stage 2

Stage 3
Stage 4

DC 1→ 2

DC 2→ 1

DC 1

DC 2

7

7

1 71 2 2 3 3 4 4 5 5 6 6 7

1

1

1

1

7

771 3 2 4 3 5 4 6 5 7 62

1 5 2 6 3 4 5

1 2

6

3 4 5 6

1 2 3 4 5 66 72 3 4 5

2 3 4

2 3 4 5 6

7

7
Memory
consumption：104
layers 'activations

Forward BackwardTime

18 layers
26 layers

26 layers

26 layers

Memory-aware
stage division

Comp. dominant Path Comm. dominant Path

(e) Comm-Aware Schedule with Memory-Aware Division.
Figure 4: StepwiseOptimization for Cross-DCTraining.

each stage, the resulting activation must be retained for the
backward pass, consuming substantial memory [14].
Challenge. The goal of scheduling is to assign the order of
operations within each list to minimize iteration time. There
are two main challenges for the scheduling algorithm: (1) A
schedule may perform differently under various cross-DC
link bandwidth and latency, so the algorithm must be adapt-
able. (2) If memory consumption exceeds the limits during
execution, an out-of-memory error will occur. Therefore,
the algorithm must ensure that memory consumption stays
within the constraints for each stage.

1 2 1 2
1 2 1 2

S1
S2
S3
S4

Replica 1

DC 1→ 2
DC 2→ 1

Replica 1
1 2 1 2
1 1 2 2

1 2 1 2
1 2 1 2

S1
S2
S3
S4

Replica 2
1 2 1 2
1 1 2 2

1 2

1 2

1 2 1 2
1 2 1 2

S1
S2
S3
S4

DC 1→ 2
DC 2→ 1

1 2 1 2
1 1 2 2

1 2 1 2
1 2 1 2

S1
S2
S3
S4

1 2 1 2
1 1 2 2

1 1 2 2

1 1 2 2

Replica 2

Comm.

Competing comm.

Comm.

Non-competing comm.

1 2 3 4 5 6 7 8 9 1112131415161718101 2 3 4 5 6 7 8 9 11121314151617181910

(a) Replicas compete for
bandwidth.

1 2 1 2
1 2 1 2

S1
S2
S3
S4

Replica 1

DC 1→ 2
DC 2→ 1

Replica 1
1 2 1 2
1 1 2 2

1 2 1 2
1 2 1 2

S1
S2
S3
S4

Replica 2
1 2 1 2
1 1 2 2

1 2

1 2

1 2 1 2
1 2 1 2

S1
S2
S3
S4

DC 1→ 2
DC 2→ 1

1 2 1 2
1 1 2 2

1 2 1 2
1 2 1 2

S1
S2
S3
S4

1 2 1 2
1 1 2 2

1 1 2 2

1 1 2 2

Replica 2

Comm.

Competing comm.

Comm.

Non-competing comm.

1 2 3 4 5 6 7 8 9 1112131415161718101 2 3 4 5 6 7 8 9 11121314151617181910

(b) Inter-replica coordi-
nated communication.

Figure 5: Handling different replicas’ communication.

Strawman solution. For intra-DC training, rule-based ap-
proaches are commonly used but are ineffective in addressing
the challenges. There are two types of methods: one employs
the 1F1B strategy [5, 6, 8, 18], each stage begins with a fixed
number of forward computations followed by alternating
forward and backward operations. However, the appropriate
number of forward computations varies for each network
condition, making it hard to generate an effective schedule
in cross-DC scenarios. The other uses the Forward-first strat-
egy [10, 13], which executes all forward computations first
for each stage. While this method minimizes idle time, it
results in higher memory usage.
Our approach. For the first challenge, we identify that idle
time mainly arises from blocking caused by the predefined
operation order. Therefore, our solution is to initially avoid
specifying the operation list. Instead, we simulate execution
along a timeline without pre-assigned lists. An operation
can be executed as soon as its dependencies are satisfied and
the corresponding stage is idle. And we gather the order of
operations during the simulation as output schedule.

The greedy method can only reduce idle time but cannot
guarantee memory consumption constraints. To optimize
memory usage, we introduce two additional rules. First, to
prevent exceeding memory limits during execution, wemain-
tain a memory counter for each stage, which increases after
executing a forward computation and decreases after exe-
cuting a backward computation. If the counter exceeds the
memory limit, the forward operation is blocked and will not
be scheduled until the counter decreases. Second, since the
forward and backward passes go in opposite directions, there
are cases where forward and backward operations from dif-
ferent microbatches are ready simultaneously. The choice
of which to execute first affects memory usage. We define
a simple but effective rule: prioritize executing backward
operations. This ensures earlier release of memory on the
current stage and allows subsequent backward operations
to begin sooner, freeing up memory for future stages.
Figure 4(c) and Figure 4(d) show examples of generated

schedules with different memory constraints, where each
stage can accommodate a maximum of five and four micro-
batches’ activations, respectively. The schedule adapts to
different constraints and reduces iteration time compared to

JEEVES: The Valet Who Masters the Art of Cross-DC Training Scheduling HotNets ’25, November 17–18, 2025, College Park, MD, USA

Figure 4(b). Note that on stage 3 while the forward computa-
tions of microbatch 3 and 4 can be executed, the backward
computation of microbatch 1 is executed first, allowing its
backward computation at stage 1 to start earlier and release
memory, enabling the computation of microbatch 6 or mi-
crobatch 5 to begin as soon as possible.

3.2 Memory-aware Stage Division
Comparing Figure 4(a) and 4(c), we observe that cross-DC
training results in higher peak memory consumption than
intra-DC training. This is because long cross-DC commu-
nication delays backward computations, which in turn de-
lay memory release (e.g., microbatch 1’s backward on stage
1). When memory consumption exceeds the constraint, the
schedule must be adjusted to delay some forward compu-
tations. As shown in Figure 4(d), microbatch 5’s forward
computation is delayed until microbatch 1’s backward com-
putation completes, increasing iteration time. To mitigate
this, we reduce peak memory consumption by balancing
memory across stages. Since memory consumption is pro-
portional to the number of layers and earlier stages typi-
cally consume more, we can move layers from earlier to
later stages. Figure 4(e) shows an example where 18 layers
are placed in the first stage, and the remaining layers are
evenly distributed across the other stages. With exact the
same schedule, peak memory consumption is reduced from
storing activations of 120 layers (5 microbatches) in stage 1
to 104 layers (4 microbatches) in stage 2.
Challenge. Since microbatch computation time is also pro-
portional to the number of layers per stage, uneven stage
division improves memory balance at the cost of longer com-
putation time on the largest stage. Since pipeline iteration
time is largely determined by the slowest stage, this also
increases overall iteration time. Thus the challenge is how
to balance the trade-off between the extra iteration time in-
troduced by uneven stage division and memory constraints.
Our approach. We model the problem of finding the stage
division that minimizes iteration time as an optimization
problem, which takes each stage’s layer number as a variable.
The key lies in formulating the objective, i.e., the iteration
time of an ideal schedule under memory constraints, given
the stage division. We divide the objective into two parts, i.e.,
the ideal iteration time without memory constraints and the
extra time introduced by memory constraints, and sum these
two parts accordingly. The variables represent the number
of layers assigned to each stage, whose sum equals the total
number of layers in the model (on the order of 100). The
number of variables equals the PP dimension (on the order
of 10), making the problem small-scale and solvable for the
optimal solution within a short time. Currently, we solve
this problem with a commercial solver, i.e., gurobi [7], as

Prop.

Replica 1
1 2 3 4 5 6 1 7 2 3 4 5 6 7
1 2 3 4 5 1 6 2 7 3 4 5 6 7

S1
S2
S3
S4

DC 1→ 2

DC 2→ 1

1 2 1 3 2 4 3 5 4 6 5 7 6 7
1 1 2 2 3 3 4 4 5 5 6 6 7 7

1 2 3 4 5 6 1 7 2 3 4 5 6 7
1 2 3 4 5 1 6 2 7 3 4 5 6 7

S1
S2
S3
S4

1 2 1 3 2 4 3 5 4 6 5 7 6 7
1 1 2 2 3 3 4 4 5 5 6 6 7 7

1 1 2 2 3 3 4 4 5 5 6 6 7 7
1 1 2 2 3 3 4 4 5 5 6 6 7 7

1 1 2 2 3 3 4 4 5 5 6 6 7 7
1 1 2 2 3 3 4 4 5 5 6 6 7 7

Replica 2

Trans.
Prop.
Trans.
Prop.

Time

Comp. dominant Path Comm. dominant Path

Forward Backward

1 2 3 4 5 6 7 8 9 11121314151617181920212223242526272829303132333435363710

Figure 6: JEEVES’s schedule (uniform stage division).

the stage number is typically small and thus can be solved
timely. We leave exploring more efficient methods for future
work.

The ideal iteration time without memory constraint is
determined by the critical path, i.e., a sequence of opera-
tions that defines the lower bound of iteration time. In cross-
DC training, we observe two such paths. The first is the
computation-dominant path (red line in Figure 4(e)), driven
by the total computation time on the slowest stage. This
path includes the forward and communication operations
of the first microbatch on preceding stages, the forward and
backward computations of all microbatches on the slowest
stage, and the backward computation and communication of
the last microbatch on succeeding stages. The second is the
communication-dominant path (yellow line), determined by
the total time to transfer all microbatch’s activations across
DCs. This path includes the computation of the first micro-
batch in the first DC, the transmission of all microbatches’
activations, and the computation and communication of the
last microbatch. The ideal iteration time is the longer of
the two, assuming the ideal schedule without memory con-
straints avoids extra idle time.

As shown in Figure 4(d), the extra time introduced bymem-
ory constraints consists of two parts. First, the delay from
waiting for the earliest memory release (e.g., microbatch 5’s
delay), which can be calculated using the latest start time of
each microbatch on stage 1 without introducing idle time on
the last stage and the completion time of microbatch 1’s com-
putation. Second, the accumulated delay caused by delayed
backward computations, such as microbatch 9’s forward is
delayed due to waiting for microbatch 5’s backward to re-
lease memory. This delay accumulates periodically, with the
period depending on how many microbatches’ activations
can fit in stage 1 (in Figure 4(d), the period is 4 microbatches).

3.3 Inter-replica Coordinated Schedule
During intra-DC training, model replicas are typically placed
on different devices, and the DC ensures sufficient bandwidth
between any two points. As a result, there is no competition
for compute or communication resources between replicas.
In contrast, during cross-DC training, replicas must share
limited cross-DC link bandwidth resources.

HotNets ’25, November 17–18, 2025, College Park, MD, USA Haotian Deng, Xuebin Song, Menghao Zhang, Yuan Yang, Mingwei Xu

Strawman solution. Each replica typically schedules its
own computation and communication operations indepen-
dently for intra-DC training. When this is extended to cross-
DC, the communication between replicas competes for band-
width, leading to increased transfer time for each micro-
batch’s activation, as shown in Figure 5(a).
Our approach. To avoid contention, we propose a coordi-
nated scheduling of communication operations across repli-
cas. Instead of transferring different replicas’ microbatches
simultaneously, we use the full bandwidth to transfer one
microbatch at a time, thereby reducing transfer time and
enabling earlier start of subsequent computations for that
microbatch. We then alternate the transmission between
replicas, sending one microbatch from each replica at a time.
This approach ensures that, apart from the first microbatch
of each replica waiting for the previous replica’s transfer to
complete, the remaining communications start at different
time, thus avoiding waiting or competition. To implement
this strategy, we introduce a global communication list con-
taining all cross-DC communications to ensure sequential
execution of communication operations. As illustrated in
Figure 5(b), as replica 1’s microbatch 1 is sent from DC1 to
DC2 at full speed, the subsequent communication from DC2
to DC1 for this microbatch starts earlier than microbatch 1
of replica 2, thus both messages transmit at full speed.

Another issue is about transmission of adjacent messages.
Typically, adjacent messages are sent in a blocking manner
during training, with the next message only sent after re-
ceiving the previous message’s acknowledgment (ACK). This
has minimal overhead inside DCs with microsecond latency
but causes significant delays across DCs with millisecond
latency. To address this, we propose non-blocking transmis-
sion. Once the last packet of the previous message is sent, the
system immediately signals the next replica without waiting
for ACK1. The signal only needs to be transmitted within
the DC, resulting in minimal delay. The next replica starts
transmission upon receiving the signal.

3.4 Putting It All Together
Given the training settings, including the number of replicas,
number of model stages, computation time for each layer,
and cross-DC link bandwidth and latency, JEEVES first deter-
mines the stage division based on the memory-aware stage
division. Then, the inter-replica coordinated schedule gener-
ates the global communication operation list and the comm-
aware schedule generates the operation list for each stage.
Figure 6 shows an example. The computation-dominant path

1In this work, we assume a lossless network. However, due to potential
packet losses, retransmissions from previous messages may overlap with
the transmission of new ones. We leave the analysis of whether to prioritize
retransmissions or transmit both concurrently as future work.

is minimized as no extra idle time is introduced along this
path, while the communication-dominant path is minimized
as almost no propagation delay is introduced.

4 Evaluation
We evaluate JEEVES through simulations, modeling the du-
ration of computation operations based on the profiled re-
sults, and calculating the duration of communication oper-
ations using the message, bandwidth and latency via the
𝛼–𝛽 model [9]. We choose the GPT-3 model with 175B pa-
rameters, hidden size 12288, sequence length 2048, and 96
layers. We extend the practical parallelism strategies used in
Megascale for intra-DC training to cross-DC training [11].
We employ 64 model replicas, each consisting of 8 stages,
with each stage divided across 8 GPUs using TP. For pipeline
parallelism, we adopt the sequential placement to replace
Megascale’s VP placement. We set a batch size of 2072 and a
microbatch size of 1. For cross-DC links, we set the default
bandwidth as 1Tbps and latency as 1ms.

We compare JEEVES with the following baselines: 1) DAP-
PLE [5]: SOTA intra-DC schedule for sequential pipeline
placement, extended to cross-DC. 2) Intra-DC: Intra-DC train-
ing with the same GPU count and parallelism strategies. 3)
Comm-aware schedule: JEEVES’s variant with comm-aware
scheduling, excluding memory-aware stage division and
intra-replica coordination. 4) Mem-aware schedule: JEEVES’s
variant with comm-aware scheduling and memory-aware
stage division, excluding intra-replica coordination.

Figure 7 (a) shows results with various cross-DC link band-
width. As bandwidth increases, the iteration time for cross-
DC training decreases, with JEEVES consistently outper-
forming others at all levels. At 1 Tbps, JEEVES improves
performance by 17.6% compared to DAPPLE, and only takes
2% more time than intra-DC training. As the bandwidth
increases, the iteration time is mainly influenced by the
computation-dominant path, and is less affected by band-
width. When the bandwidth is lower, the iteration time is
mainly influenced by the communication-dominant path. In
this case, each of JEEVES’s components contributes signifi-
cantly to the overall performance improvements.
Figure 7 (b) shows that latency significantly affects itera-

tion time in cross-DC training, as each microbatch requires
two rounds of cross-DC communication, resulting in a high
number of messages. JEEVES benefits from the non-blocking
transmission, which prevents the cumulative latency from
differentmessages. Although latency’s impact cannot be fully
eliminated, JEEVES prevents iteration time from increasing
linearly with latency. With a latency of 20 ms, JEEVES re-
duces iteration time by 36.7% compared to DAPPLE, with
only an 11% increase compared to intra-DC training.

JEEVES: The Valet Who Masters the Art of Cross-DC Training Scheduling HotNets ’25, November 17–18, 2025, College Park, MD, USA

0.5 1.0 1.5 2.0 2.5 3.0

Bandwidth (Tbps)

1600
1800
2000
2200
2400
2600
2800
3000
3200
3400

Ti
m

e
(m

s)

JEEVES
Mem-aware Division
Comm-aware schedule
DAPPLE
Intra DC

(a) Cross-DC link bandwidth

0.0 2.5 5.0 7.5 10
.0

12
.5

15
.0

17
.5

20
.0

Latency (ms)

1600
1800
2000
2200
2400
2600
2800
3000

Ti
m

e
(m

s)

JEEVES
Mem-aware Division
Comm-aware schedule
DAPPLE
Intra DC

(b) Cross-DC link latency

68 71 74 77 79 82 85 88
Peak Memory constraint (GB)

1500
1600
1700
1800
1900
2000
2100
2200
2300

Ti
m

e
(m

s)

JEEVES
Mem-aware Division
Comm-aware schedule
DAPPLE
Intra DC

(c) Peak memory consumption
Figure 7: Simulations on an iteration of training a GPT-3 (175B) model with 4096 GPUs.

Figure 7 (c) shows the performance under different mem-
ory limits. The DAPPLE method does not adaptively adjust
the schedule as memory capacity increases, resulting in no
performance improvement. In contrast, JEEVES can fully
utilize the available memory within a certain range through
better scheduling. When memory exceeds a certain thresh-
old, computation speed becomes the primary bottleneck, and
performance no longer improves.

5 Conclusion and Future Work
In this paper, we identify the limitations of current cross-DC
training and introduce JEEVES, a framework for schedul-
ing pipeline parallelism across DCs. We present preliminary
evaluations under varying bandwidth, latency, and memory
constraints, demonstrating its promising performance. In
our ongoing work, we plan to enhance the design, build a
prototype based on the mainstream framework [18, 20], ex-
tend JEEVES to multiple DCs under network fluctuations,
and conduct extensive experiments. We hope JEEVES offers
valuable insights for cross-DC training.

Acknowledge
We thank our shepherd and the anonymous HotNets review-
ers for their valuable comments. This work is supported in
part by the National Natural Science Foundation of China
(No. 62402025), the Fundamental Research Funds for the
Central Universities, and the National Key Research and De-
velopment Program of China under Grant 2022YFB2901300.
Menghao Zhang, Yuan Yang and Mingwei Xu are the corre-
sponding authors.

References
[1] Dacoso GmbH. n.d.. Managed DCI — High Performance Connectivity

Between Data Centers. Accessed: 2025-06-22.
[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

2019. Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 conference of the North
American chapter of the association for computational linguistics: human
language technologies, volume 1 (long and short papers). 4171–4186.

[3] Arthur Douillard, Yanislav Donchev, Keith Rush, Satyen Kale, Zachary
Charles, Zachary Garrett, Gabriel Teston, Dave Lacey, Ross McIlroy,
Jiajun Shen, et al. 2025. Streaming diloco with overlapping communica-
tion: Towards a distributed free lunch. arXiv preprint arXiv:2501.18512

(2025).
[4] Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia,

Yani Donchev, Adhiguna Kuncoro, Marc’Aurelio Ranzato, Arthur
Szlam, and Jiajun Shen. 2023. Diloco: Distributed low-communication
training of language models. arXiv preprint arXiv:2311.08105 (2023).

[5] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen
Zheng, Chuan Wu, Guoping Long, Jun Yang, Lixue Xia, et al. 2021.
DAPPLE: A pipelined data parallel approach for training large models.
In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. 431–445.

[6] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav
Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil
Mathur, Alan Schelten, Alex Vaughan, et al. 2024. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783 (2024).

[7] Gurobi Optimization, LLC. 2024. Gurobi Optimizer Reference Manual.
https://www.gurobi.com

[8] Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri,
Nikhil Devanur, Greg Ganger, and Phil Gibbons. 2018. Pipedream:
Fast and efficient pipeline parallel dnn training. arXiv preprint
arXiv:1806.03377 (2018).

[9] Roger W Hockney. 1994. The communication challenge for MPP: Intel
Paragon and Meiko CS-2. Parallel computing 20, 3 (1994), 389–398.

[10] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao
Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui
Wu, et al. 2019. Gpipe: Efficient training of giant neural networks
using pipeline parallelism. Advances in neural information processing
systems 32 (2019).

[11] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen,
Zhi Zhang, Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, et al.
2024. {MegaScale}: Scaling large language model training to more
than 10,000 {GPUs}. In 21st USENIX Symposium on Networked Systems
Design and Implementation (NSDI 24). 745–760.

[12] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Ben-
jamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and
Dario Amodei. 2020. Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361 (2020).

[13] Joel Lamy-Poirier. 2023. Breadth-first pipeline parallelism. Proceedings
of Machine Learning and Systems 5 (2023), 48–67.

[14] Shigang Li and Torsten Hoefler. 2021. Chimera: efficiently training
large-scale neural networks with bidirectional pipelines. In Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–14.

[15] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda
Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, and 2024. DeepSeek-V3 Technical Report. arXiv
preprint arXiv:2412.19437 (Dec. 2024). Technical Report.

[16] Ziming Liu, Shenggan Cheng, Haotian Zhou, and Yang You. 2023.
Hanayo: Harnessing wave-like pipeline parallelism for enhanced large
model training efficiency. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.

https://www.gurobi.com

HotNets ’25, November 17–18, 2025, College Park, MD, USA Haotian Deng, Xuebin Song, Menghao Zhang, Yuan Yang, Mingwei Xu

1–13.
[17] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and

Matei Zaharia. 2021. Memory-efficient pipeline-parallel dnn training.
In International Conference on Machine Learning. PMLR, 7937–7947.

[18] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGres-
ley, Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al. 2021. Efficient
large-scale language model training on gpu clusters using megatron-
lm. In Proceedings of the international conference for high performance
computing, networking, storage and analysis. 1–15.

[19] NVIDIA. 2024. Turbocharge LLM Training across Long-Haul
Data Center Networks with the NVIDIA NeMo Framework.
https://developer.nvidia.com/blog/turbocharge-llm-training-across-
long-haul-data-center-networks-with-nvidia-nemo-framework/

[20] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He.
2020. Deepspeed: System optimizations enable training deep learning
models with over 100 billion parameters. In Proceedings of the 26th
ACM SIGKDD international conference on knowledge discovery & data
mining. 3505–3506.

[21] Ahmed Saeed, Varun Gupta, Prateesh Goyal, Milad Sharif, Rong Pan,
Mostafa Ammar, Ellen Zegura, Keon Jang, MohammadAlizadeh, Abdul
Kabbani, et al. 2020. Annulus: A dual congestion control loop for
datacenter and wan traffic aggregates. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data Communication on
the applications, technologies, architectures, and protocols for computer
communication. 735–749.

[22] Foteini Strati, Paul Elvinger, Tolga Kerimoglu, and Ana Klimovic. 2024.
ML training with Cloud GPU shortages: Is cross-region the answer?.
In Proceedings of the 4th Workshop on Machine Learning and Systems.
107–116.

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. Advances in neural information processing
systems 30 (2017).

[24] Ying Zhu, Yang Xu, Hongli Xu, Yunming Liao, Zhiwei Yao,
and Liusheng Huang. 2025. Cross-region Model Training with
Communication-Computation Overlapping and Delay Compensation.
arXiv preprint arXiv:2504.17672 (2025).

https://developer.nvidia.com/blog/turbocharge-llm-training-across-long-haul-data-center-networks-with-nvidia-nemo-framework/
https://developer.nvidia.com/blog/turbocharge-llm-training-across-long-haul-data-center-networks-with-nvidia-nemo-framework/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Extending Parallelism Across DCs

	3 Problem Analysis & JEEVES Design
	3.1 Comm-aware Schedule
	3.2 Memory-aware Stage Division
	3.3 Inter-replica Coordinated Schedule
	3.4 Putting It All Together

	4 Evaluation
	5 Conclusion and Future Work
	References

