
Server Chiplet Networking
Seunghyun An

University of Wisconsin-Madison
Madison, WI, USA

Joontaek Oh
University of Wisconsin-Madison

Madison, WI, USA

Ming Liu
University of Wisconsin-Madison

Madison, WI, USA

Abstract
Emerging chiplet-based server platforms and the resulting
server chiplet networking present a fundamental shift in
the (intra-)host network. Unlike conventional monolithic
servers, compute chiplets, I/O chiplets, off-chip memory,
and peripheral devices communicate through a collection of
heterogeneous interconnects and links, formalizing a new
server chiplet network substrate that has not been explored
before. This paper makes an initial step by characterizing two
generations of AMD EPYC chiplet servers, identifying four
communication idiosyncrasies, and summarizing the design
implications. We outline some future directions under server
chiplet networking and discuss how to build next-generation
server systems and applications.

CCS Concepts
• Computer systems organization → Interconnection
architectures; • Hardware → Network on chip; • Net-
works→ Network performance analysis.

Keywords
Chiplet, Network on chip, Performance analysis, Host net-
work

ACM Reference Format:
Seunghyun An, Joontaek Oh, and Ming Liu. 2025. Server Chiplet
Networking. In The 24th ACM Workshop on Hot Topics in Networks
(HotNets ’25), November 17–18, 2025, College Park, MD, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3772356.
3772389

1 Introduction
Chiplet [33, 37, 64, 89, 90, 96] is an emerging semiconductor
technology and has garnered significant attention in indus-
try and academia. By dividing monolithic large chips into
domain-specific, small, modular dies and composing them
via silicon interposers, chiplets drastically improve the wafer

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
HotNets ’25, College Park, MD, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2280-6/25/11
https://doi.org/10.1145/3772356.3772389

yield rate, reduce manufacturing costs, expedite time-to-
market, facilitate flexible and scalable hardware innovations,
and enable energy- and cost-efficient application specializa-
tion. The past few years have seen a number of chiplet-based
processors [10, 11, 17, 57, 61, 85, 86], domain-specific hard-
ware accelerators [15, 28, 87], and I/O devices [34, 68, 69].

Commodity servers are increasingly built using chiplets. A
server SoC (system-on-chip) consists of several compute and
I/O chiplets, connected via specialized on-chip load-store in-
terconnects. A compute chiplet encompasses a few to dozens
of cores, sometimes organized as sub-chiplets, sharing per-
chiplet last-level cache slices. An I/O chiplet, enclosing a
network-on-chip (NoC), provides high-bandwidth and low-
latency network connectivity for the memory subsystem and
I/O devices. As such, a new type of host network–where we
term it Server Chiplet Networking–emerges, which serves
as the communication subsystem underlying the server SoC.

Server chiplet networking is essentially a network of het-
erogeneous networks, usually organized into three layers.
The physical layer encompasses several different links, such
as on-chip cache-coherent interconnects (like AMD Infinity
Fabric [3] and UCIe [18]), off-chip memory interconnects,
and peripheral I/O buses. The data link layer is a reliable
and hierarchical packet-switched network whose topology
hinges on the NoC of an I/O chiplet. The transaction layer
provides communication semantics and deterministically
routes data FLITs from the source to the destination. Server
chiplet networking entails communication characteristics that
are drastically different from those of a traditional monolithic
SoC, an area that has not been previously explored.

This paper makes the first step by systematically character-
izing two generations of AMD EPYC chiplet servers (§3). We
identify four unique aspects of server chiplet networking, i.e.,
extended data paths with more latency hops, heterogeneous
bandwidth domains, inconsistent bandwidth-delay products,
and sender-driven aggressive bandwidth partitioning, and
discuss the design implications. We believe a networking
stack and corresponding ecosystem centered around chiplet
networking are strongly needed, and will offer several bene-
fits, including improved communication, greater efficiency,
maximized computing usage, and enhanced development
capabilities. We conclude the paper by outlining future re-
search directions with some proposals (§4).

https://doi.org/10.1145/3772356.3772389
https://doi.org/10.1145/3772356.3772389
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3772356.3772389


HotNets ’25, November 17–18, 2025, College Park, MD, USA Seunghyun An, Joontaek Oh, and Ming Liu

2 Background and Motivation
This section provides some necessary background on chiplets,
describes the chiplet-based server SoC (system-on-chip) ar-
chitecture, and introduces server chiplet networking.

2.1 Chiplet and Why
Chiplet [33, 37, 64, 89, 90, 96], an emerging semiconductor
technology, has become a predominant approach to building
chips. A chiplet is a discrete and unpackaged modular die
that implements specific functionalities, such as processors,
memory controllers, I/O subsystems, and acceleration ker-
nels. It provides standardized operating interfaces and is inte-
grated into a compatible 2.5D/3D silicon interposer [99, 100].
The interposer, acting as a bridge, facilitates low-latency and
high-speed die-to-die data transfers via specialized chiplet in-
terconnects, such as UCIe [18], BoW [74], and OpenHBI [73].
Today, we have seen several chiplet-based computing prod-
ucts designed, manufactured, and deployed, such as AMD
EPYC [10, 11, 57, 58, 85, 86], Intel Xeon Scalable Proces-
sor [56, 59, 91], AWSGraviton [61], Ampere AmpereOne [17],
NVIDIA H100/H200 [15, 28], and AMD MI300 [87].
Chiplets impose several benefits. First, they improve the

yield rate by breaking a large chip into smaller dies, as the
defect probability increases with the die size. Considering
a standard 360𝑚𝑚2 sized wafer and a typical die-yielding
model [58, 98], a 4-chiplet (99𝑚𝑚2) design can achieve a
yield rate of 37%, doubling that of a monolithic approach
(15%). Such improvements become more significant under
small process nodes (like 3/5nm). Second, chiplets can be
fabricated with different process nodes and foundries, and
reused across different hardware substrates, drastically min-
imizing the time-to-market and reducing the manufacturing
cost. Third, they make building flexible and scalable hetero-
geneous SoCs possible, enabling fast innovation and agility
based on the application demands. For example, the recent
Intel SDV (software-defined vehicle) SoC [34] employs a
multi-node chiplet solution that allows automakers to tai-
lor compute, graphics, and AI capabilities flexibly. Fourth,
designers can explore application specialization, apply a
Lego-style strategy to design complex SoCs, and freely up-
grade/add/drop new functionalities, maximizing the power
density and energy efficiency. The Cadence Allegro X plat-
form [12] leverages this for advanced IC packaging design.

2.2 Chiplet-based Server SoC
Most recent server processors are developed using chiplets.
Take the AMD EPYC 7302 processor as an example (oth-
ers are similar). As shown in Figure 1, the server SoC has
(a) four compute chiplets or Core Complex Die (CCD) in
the AMD terminology and (b) one I/O chiplet. A compute
chiplet contains several sub-chiplets (2 in our example) or

GMI

I/O Die

Core
Shared L3

Compute Die (CCD) 1

CC
X Core Core

Shared L3CC
X Core Core

Shared L3

Compute Die (CCD) 3

CC
X Core Core

Shared L3CC
X Core

GMI Port 1 DIMMs
P Link

Core
Shared L3

Compute Die (CCD) 2

CC
X Core Core

Shared L3CC
X Core Core

Shared L3

Compute Die (CCD) 4

CC
X Core Core

Shared L3CC
X Core

GMI Port 2

GMI

GMI
GMI Port 4

GMII/O Lane

IF Link

GMI 

DIMMsGMI 

DIMMs GMI 

DIMMs GMI 

IF Link

IF Link

IF Link

IF Link

IF Link

I/O HUB 1

PCIe/CXL 

I/O HUB 2

SATA, etc.

DIMMsUMC 3

UMC 4 DIMMs

UMC 1

UMC 2

DIMMs

DIMMs

GMI Port 3

Figure 1: An architecture overview of a chiplet-based server
SoC. We take the AMD EPYC processor as an example. CCD
= Core Complex Die. GMI=Global Memory Interconnect.
IF=Infinity Fabric. UMC=Unified Memory Controller.

Parameters EPYC 7302 EPYC 9634
Microarchitecture Zen 2 Zen 4

L1 (per core) 32KB 64KB
L2 (per core) 512KB 1MB
L3 (per CPU) 128MB 384MB

Core#/CCX#/CCD# (per CPU) 16/8/4 84/12/12
Compute Chiplets # (per CPU) 4 12

Process technology (Compute Die) 7nm 5nm
I/O Chiplets # (per CPU) 1 1

Process technology (I/O Die) 12nm 6nm
PCIe Gen/Lane # Gen4/128 Gen5/128

Base/Turbo Frequency 3/3.3 GHz 2.25/3.7 GHz

Table 1: HW specifications of our two evaluated processors.

Core Complex (CCX) that share the last-level cache slices. A
CCX consists of one to dozens of cores, each of which has
its own L1 and L2 caches. An I/O chiplet encompasses (a)
UMCs (unified memory controllers) that connect to off-chip
DIMMs; (b) I/O hubs that provide peripheral links for de-
vices, such as P Links to fast PCIe/CXL slots and I/O lanes to
slow SATA-like buses; (c) GMI (global memory interconnect)
ports for compute chiplets to access memory; and (d) a mesh
network that interconnects different components through
some proprietary routing protocols. Compute-Compute and
Compute-I/O chiplets talk to each other via the AMD Infin-
ity Fabric or other specialized interconnects like UCIe [18].
Off-chip DIMMs also attach to UMCs through GMI links.
Table 1 presents two AMD EPYC chiplet processors we

studied in this paper. Note that the 7302 CPU contains two
CCXs per CCD, while the 9634 processor only has one.

2.3 Server Chiplet Networking
Server chiplet networking is the communication subsystem
underlying the server SoC that connects different microar-
chitectural modules and devices. Its physical (L1) layer is an
agglomeration of on-chip interconnects, off-chip memory
links, and peripheral I/O buses, providing connectivity for
data flows traversing compute chiplets, I/O chiplets, and de-
vices. Next, the link (L2) layer is a reliable and hierarchical
packet-switched network. As shown in Figure 2, the first
level is the network-on-chip (NoC) in an I/O chiplet, employ-
ing a Mesh [31], Torus [55], Cube [25], or Dragonfly [38]



Server Chiplet Networking HotNets ’25, November 17–18, 2025, College Park, MD, USA
Le

ve
l 1

PCIe RC

Le
ve

l 2
+

LLC
L2
L1

Core

PCIe Switch
PCIe Endpoint

CC Agent

L2
L1

Core
Compute Chiplet

PCIe Switch

PCIe Endpoint
PCIe Endpoint

Device Domain

I/O Hub
I/O Bridge

SATA

Others

SAS

MC

DIMM

Ne
tw

or
k-

on
-

Ch
ip

 (N
oC

)

Device Domain

DIMM

Memory Domain

DIMM

DIMMDIMMDIMM

Figure 2: A topological view of server chiplet networking.

topology. The following levels are organized in different com-
pute chiplets or device domains, usually presenting a tree
topology. The network contains different switches or routers
that use either bufferless or buffered routing protocols. Last,
the transaction (L3) layer describes data flows from source
to destination entities at the cacheline or FLIT granularity,
depending on the underlying link. For example, a cacheline-
sized LLC snooping request mostly traverses the Infinity
Fabric, while a CXL.mem transaction, encoded as the FLIT
size (68/256B), goes from a compute chiplet and I/O chiplet
to a CXL DIMM through an IF, a P Link, and a CXL lane.

Server chiplet networking has become crucial given (a) the
proliferation of dense and heterogeneous hardware-accelerated
computing boxes [23, 24, 62, 63], (b) increasing interconnect
speeds for fast cross-device (domain) data movements [3, 18],
and (c) skyrocketing application demands [50]. A new net-
working stack and corresponding ecosystem (including li-
braries, utilities, and runtime) are strongly needed, offer-
ing several benefits. First, it provides the opportunity to
maximize the communication performance under today’s
sub-microsecond and terabit regime, which is notoriously
challenging [4, 40]. Second, it can improve the overall system
energy efficiency by accelerating data transfer and stream-
lining computation-communication overlapping close to the
underlying hardware tiers. Third, it facilitates the system’s
compute, memory, and I/O scalability, avoids superfluous
scaling bottlenecks (due to contention and head-of-line block-
ing), and ameliorates the multi-tenancy support under mas-
sive intra-server data flows. Fourth, it enables microscopic
per-request and per-flow observability for system diagnos-
tics, anomaly detection, performance profiling, and upper-
layer development. However, our community lacks such
a system layer and the capabilities it would provide.

3 Understanding Server Chiplet
Networking

We systematically characterize server chiplet networking,
report our findings, and discuss the design implications.

EPYC 7302 EPYC 9634

Compute Chiplet

L1 1.24 ns 1.19 ns
L2 5.66 ns 7.51 ns
L3 34.3 ns 40.8 ns

Max CCX Q 30 ns 20 ns
Max CCD Q 20 ns N/A

I/O Chiplet Switching Hop ∼8 ns ∼4 ns
I/O Hub ∼15 ns ∼15 ns

Memory/Device

Near 124 ns 141 ns
Vertical 131 ns 145 ns

Horizontal 141 ns 150 ns
Diagonal 145 ns 149 ns

CXL DIMM N/A 243 ns

Table 2: The data path latency breakdown. We measured
the latency by configuring the pointer-chasing mode of our
utility and gradually increasing the working set. We changed
the NPS (Node per Socket) configurations and issuedmemory
requests to DIMMs at different positions.

3.1 Experimental Methodology
We use two types of commodity servers for the characteriza-
tion experiments. The Dell 7525 2U box contains two EPYC
7302 processors and 256GB DDR4. The Supermicro 1U server
has one EPYC 9634 processor, 1TB DDR5, and four Micron
CZ120 CXL modules (256GB each). Both servers run Ubuntu
22.04. We developed a micro benchmark utility (like oth-
ers [6]) that can flexibly generate different data flows (such
as one or multiple concurrent cachelines, random/sequential
read/write access patterns, and temporal or non-temporal
writes) over a size-configurable working set, originating from
and destined to compute chiplets, memory domains, and de-
vice domains across the chiplet networking subsystem. We
mostly use latency and bandwidth as performance metrics.

3.2 Extended Data Path with More Latency
Hops

Server chiplets add more intermediate hops compared with
monolithic ones, increasing the data communication path
and incurring some latency overhead. Within a compute
(sub)-chiplet, there is a traffic control module that limits
the number of outstanding requests. It employs a queueless
structure (like PhantomQueue [1]) and uses tokens and back-
pressure for overload control.We observe up to 50ns and 20ns
queueing delay in an EPYC 7302 and EPYC 9634 processor
(Table 2). Inside an I/O chiplet, requests traverse through a
sequence of micro-architectural modules before reaching the
target DIMM/device (Figure 2), including a cache-coherent
master (CCM), several I/O chiplet switching hops (SHops), an
I/O hub, a coherent station (CS), and a unified memory con-
troller (UMC). The switching hop and I/O hub take roughly
8ns and 15ns on the EPYC 7302 (4ns and 15ns in the EPYC
9634). Thus, accessing a DIMM at a near, vertical, horizontal,
and diagonal position (relative to the compute chiplet) yields
different latencies, i.e., 124ns (141ns), 131ns (145ns), 141ns
(150ns), and 145ns (149ns) on an EPYC 7302 (9634), because



HotNets ’25, November 17–18, 2025, College Park, MD, USA Seunghyun An, Joontaek Oh, and Ming Liu

To DIMM Read/Write (GB/s) To CXL Read/Write (GB/s)
EPYC 7302 EPYC 9634 EPYC 7302 EPYC 9634

From Core 14.9/3.6 14.6/3.3

N/A

5.4/2.8
From CCX 25.1/7.1 35.2/23.8 23.6/15.8From CCD 32.5/14.3
From CPU 106.7/55.1 366.2/270.6 88.1/87.7

Table 3: Maximum achieved bandwidth from a
core/CCX/CCD/CPU when accessing the DIMMs and
CXL device. We measured the bandwidth using AVX512
memory read and non-temporal write operations.

the number of traversed hops varies. Accessing a PCIe device
not only goes through the I/O hub, but also passes through
a PCIe root complex, an I/O moderator (like an I/O north-
bridge), and P Links. Hence, a cacheline-sized CXL memory
access on the EPYC 9634 takes 243ns.

Implication #1: Chiplet servers generally extend the data
access path among cores, DIMMs, and devices because of
intra/inter-chiplet routing, imposing higher memory and
I/O stall cycles. It will affect traditional memory-sensitive
primitives, such as memory fences, synchronization locks,
and MMIOs. We would also see more granular non-uniform
memory access, such as the Sub-NUMA Clustering feature.
Asynchronous threading/coroutines, wait-free/lock-free data
structures, and locality-aware data placement are becoming
much more favorable to elude superfluous memory stalls and
maximize core utilization. Recent work on memory-bound
stall cycle harvesting [49] is also promising.

3.3 Heterogeneous Bandwidth Domains
Server chiplet networking is an agglomeration of heteroge-
neous networks that feature different bandwidth domains.
The achieved bandwidth is determined by the number of con-
current transactions issued end-to-end over the underlying
links, including Infinity Fabric (IF), Global Memory Inter-
connect (GMI), I/O chiplet internal interconnect, P link, and
PCIe/CXL. As shown in Table 3, a core sustains a read/write
bandwidth of 14.9/3.6 GB/s and 14.6/3.3 GB/s to DIMMs on
an EPYC 7302 and 9634 CPU, respectively, limited by the
per-core memory-level parallelism. When using all cores on
a compute chiplet, memory read/write bandwidths reach
up to 32.5/14.3 GB/s and 35.2/23.8 GB/s, respectively, con-
strained by the compute chiplet’s GMI link capacity. Given
that a unified memory controller (UMC) can deliver at most
21.1/19.0 GB/s and 34.9/28.3 GB/s of read/write bandwidth, a
compute chiplet must access multiple memory controllers to
attain higher aggregated bandwidth. We then activate all 4
and 12 compute chiplets in the two CPUs and issue as many
memory accesses as possible to all DIMMs. An EPYC 7302
achieves a peak read/write throughput of 106.7/55.1 GB/s,
and an EPYC 9634 attains up to 366.2/270.6 GB/s, both limited
by the NoC routing capacity in the I/O chiplet.

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0  5  10  15  20

L
a
te

n
cy

 (
n
s)

Bandwidth (GB/s)

Rd Avg
Rd Tail

Wr Avg
Wr Tail

(a) Intra-CC IF @EPYC 7302

 0

 100

 200

 300

 400

 500

 600

 0  10  20  30  40  50  60  70

L
a
te

n
cy

 (
n
s)

Bandwidth (GB/s)

Rd Avg
Rd Tail

Wr Avg
Wr Tail

(b) Inter-CC IF @EPYC 9634

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0  5  10  15  20  25  30

L
a
te

n
cy

 (
n
s)

Bandwidth (GB/s)

Rd Avg
Rd Tail

Wr Avg
Wr Tail

(c) Inter-CC IF @EPYC 7302

 0
 300
 600
 900

 1200
 1500
 1800
 2100
 2400

 0  5  10  15  20  25  30  35

L
a
te

n
cy

 (
n
s)

Bandwidth (GB/s)

Rd Avg
Rd Tail

Wr Avg
Wr Tail

(d) GMI @EPYC 9634

 0

 200

 400

 600

 800

 1000

 1200

 0  5  10  15  20
L
a
te

n
cy

 (
n
s)

Bandwidth (GB/s)

Rd Avg
Rd Tail

Wr Avg
Wr Tail

(e) GMI @EPYC 7302

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0  20  40  60  80

L
a
te

n
cy

 (
n
s)

Bandwidth (GB/s)

Rd Avg
Rd Tail

Wr Avg
Wr Tail

(f) P Link/CXL @EPYC 9634

Figure 3: We report the average and tail (P999) latency when
varying the bandwidth of the Infinity Fabric (IF), GlobalMem-
ory Interconnect (GMI), and P Link/CXL on the EPYC 7302
and 9634 processors. We vary the traffic load by issuing se-
quential read and non-temporal write operations and use
NOP instructions to control the rate. CC=Compute Chiplet.

Further, when accessing a peripheral device, the I/O path
segment (like the I/O hub, P link, and PCIe lanes) can become
a bottleneck. For example, on an EPYC 9634, a single core,
a single compute chiplet, and all 12 chiplets reach 5.4/2.8
GB/s, 23.6/15.8 GB/s, and 88.1/87.7 GB/s of CXL memory
read/write bandwidth, respectively, which is 63.0%/22.2%,
33.0%/33.6%, and 78.1%/69.3% lower than the local DIMM
performance due to the high access latency and PCIe/CXL
bandwidth limit.
Implication #2: Memory wall [65, 66] is a well-known

problem that denotes the bandwidth gap between computing
engines and memory subsystems. In chiplet server systems,
an emerging hidden "interconnect wall" would happen ei-
ther within or across chiplets, limiting the data movement
speed even before saturating the memory bandwidth. The is-
sue would become common in high-bandwidth servers with
terabit I/Os. Thus, being aware of end-to-end bandwidth do-
mains, identifying the bandwidth throttling path segment at
runtime, and developing an intra-server trafficmatrix [51, 92]
are essential for maximizing the data transmission perfor-
mance. Besides, we expect that more new computational
devices that support near-data computing [79, 82, 94] and



Server Chiplet Networking HotNets ’25, November 17–18, 2025, College Park, MD, USA

distributed and collaborative computing [7, 22, 46] will be
designed and implemented.

3.4 Inconsistent Bandwidth-Delay Product
(BDP)

Memory and I/O requests in chiplet servers traverse sev-
eral different interconnects with incongruent BDPs. When
the number of in-flight transactions exceeds the underlying
link bandwidth capacity, one sees queuing or back-pressure
overheads, yielding head-of-line blocking. Figure 3 presents
our characterizations of different interconnects. Regarding
Infinity Fabric, the EPYC 7302 CPU provisions enough band-
width for intra- and inter-compute chiplet scenarios (Figures-
3-a/c). Thus, the average/tail read and write latencies are
144.5ns/490.0ns and 142.5ns/500.0ns, regardless of the load.
However, the EPYC 9634 is less-provisioned, where one com-
pute chiplet contains 7 cores, and we see a 2× latency in-
crease when approaching the max bandwidth (Figure 3-b).
In terms of GMI, since it connects on-chip memory con-
trollers to off-chip DIMMs through an I/O chiplet, the per-
GMI channel bandwidth is less than the on-chip intercon-
nect, causing significant request buffering. As shown in Fig-
ures 3-d/e, the memory read average/tail latencies of an
EPYC 7302 (9634) rise to 172.5ns/800.0ns (249.5ns/810.2ns)
from 123.7ns/470.0ns (143.7ns/380.0ns), respectively. And the
write ones increase from 123.9ns/480.0ns (144.1ns/350.2ns)
to 153.5ns/630.0ns (695.8ns/1749.8ns). The problem also hap-
pens with the P Link/CXL. Since the I/O chiplet on an EPYC
9634 is capable of driving 366.2/270.6 GB/s read/write traffic
(Table 3), we observe 1.7/1.4× and 2.1/1.6× average/tail read
and write latency increases (Figure 3-f), respectively.

Implication #3: Compared with conventional monolithic
servers, chiplet servers generally embody a much larger BDP
for data transmission among CPUs, DIMMs, and devices,
and can handle more outstanding transactions. However,
inconsistent BDP of different links would then incur queuing
and head-of-line blocking, jeopardizing bandwidth usage and
wasting computing cycles. Dynamic monitoring end-to-end
runtime BDP and using it for traffic control becomes vital in
server chiplet networking. Akin to rate limiters and traffic
policers in today’s OS networking and I/O stacks [32, 39,
77, 80], we expect such designs will also be developed and
applied to inter-/intra- chiplet communications.

3.5 Sender-driven Aggressive Bandwidth
Partitioning

Next, we examine how bandwidth is partitioned in server
chiplet networking. We launch two competing flows at dif-
ferent links, use NOP instructions to control their requested
bandwidth, and see howmuch bandwidth each flow achieves.
When the link is under-subscribed, as expected, both flows

 0

 5

 10

 15

 20

 25

 30

3:2
case 1

15:9
case 2

15:15
case 3

15:12
case 4

equal bw share

B
a
n
d

w
id

th
 (

G
B

/s
)

Req. BW
Ach. BW @Flow0
Ach. BW @Flow1

(a) Intra-CC IF @EPYC 7302

 0
 10
 20
 30
 40
 50
 60
 70

16:6
case 1

31:9
case 2

31:31
case 3

31:21
case 4

equal bw share

B
a
n
d

w
id

th
 (

G
B

/s
)

Req. BW
Ach. BW @Flow0
Ach. BW @Flow1

(b) Inter-CC IF @EPYC 9634

 0
 5

 10
 15
 20
 25
 30
 35
 40

7:3
case 1

15:6
case 2

18:18
case 3

18:9
case 4

equal bw share

B
a
n
d

w
id

th
 (

G
B

/s
)

Req. BW
Ach. BW @Flow0
Ach. BW @Flow1

(c) Inter-CC IF @EPYC 7302

 0
 10
 20
 30
 40
 50
 60
 70

16:6
case 1

31:9
case 2

31:31
case 3

31:27
case 4

equal bw share

B
a
n
d

w
id

th
 (

G
B

/s
)

Req. BW
Ach. BW @Flow0
Ach. BW @Flow1

(d) GMI @EPYC 9634

 0

 10

 20

 30

 40

 50

7:3
case 1

15:6
case 2

18:18
case 3

29:18
case 4

equal bw share

B
a
n
d

w
id

th
 (

G
B

/s
)

Req. BW
Ach. BW @Flow0
Ach. BW @Flow1

(e) GMI @EPYC 7302

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

42:16
case 1

83:24
case 2

83:83
case 3

83:56
case 4

equal bw share

B
a
n
d

w
id

th
 (

G
B

/s
)

Req. BW
Ach. BW @Flow0
Ach. BW @Flow1

(f) P Link/CXL @EPYC 9634

Figure 4: Bandwidth (BW) partitioning of two competing data
flows at a shared link on the EPYC 7302 and 9634 processors.
We examine four cases. The first targets when the aggregated
requested bandwidth is less than the link capacity, while the
other three consider the over-subscription scenario. Case 2
has one flow whose requested bandwidth is less than the
equal share. In cases 3 and 4, two flows request the same
and different amounts of bandwidth (more than their equal
share), respectively. CC=Compute Chiplet.

can receive the requested bandwidth, regardless of the link
type (case 1 in Figure 4). When the link is over-subscribed,
i.e., the aggregated requested bandwidth exceeds the band-
width capacity, we find that the bandwidth partition follows
a sender-driven aggressive manner (cases 2 and 4). In partic-
ular, the flow with a higher demand takes more bandwidth
than its equal share. This is because each communication
intermediate point at a compute or I/O chiplet is unaware
of (a) what a flow is and (b) what the demand of a flow is.
As a result, such traffic-oblivious routing always benefits an
aggressive sender that pushes more requests in-flight. Two
flows with the same demand receive the equilibrium band-
width (case 3). Further, we evaluate the link bandwidth usage
when its housed flows have unsteady demands. Specifically,
as shown in Figure 5, we reduce the traffic rate of flow 0 by
2.0GB/s at the 2–3s and 4–5s periods, and observe that flow 1
can reliably take the unused bandwidth at the IF and P Link
on an EPYC 9634 processor. However, the EPYC 7302 sees
drastic variation at the IF link (we suspect this is due to the



HotNets ’25, November 17–18, 2025, College Park, MD, USA Seunghyun An, Joontaek Oh, and Ming Liu

 0

 2

 4

 6

 8

 10

 12

 0  1  2  3  4  5  6

Flow
start

Start throttling Flow FinB
a
n
d

w
id

th
 (

G
B

/s
)

time(s)

Flow 0 @IF
Flow 1 @IF

(a) EPYC 7302

 0

 2

 4

 6

 8

 10

 12

 0  1  2  3  4  5  6

Flow start

Start throttling Flow FinB
a
n
d

w
id

th
 (

G
B

/s
)

time(s)

Flow 0 @IF
Flow 1 @IF

Flow 0 @P Link
Flow 1 @P Link

(b) EPYC 9634

Figure 5: Bandwidth utilization of two competing flows with
fluctuating demands.We throttle flow 0 and see whether flow
1 (unthrottled) can reap the unused bandwidth.

intra-CC queuing module). Bandwidth harvesting does not
happen instantly. It takes roughly 100ms and 500ms for the
EPYC 9634 to reap unused bandwidth on the IF and P Link,
respectively. When flow 0 finishes throttling, the two flows
would again take an equal bandwidth share.

When read/write data streams mix, we observe that inter-
ference occurs only when a particular link in one direction
is saturated. As shown in Figure 6, within a compute chiplet
over IF, writes and reads are affected when the background
read stream approaches 32.8GB/s and 27.7GB/s. The back-
ground write stream induces little interference. Across the
compute chiplets, we observe that data stream performance
is affected at much higher bandwidth, because the I/O chiplet
provisions more than one routing path. For example, the
write flow is rarely affected regardless of the background
traffic, while reads are degraded when the aggregated band-
width exceeds 55.7GB/s. At the GMI and P Link/CXL, inter-
ference occurs when the aggregated read(write) bandwidth
reaches 31.8(29.1) GB/s and 62.8(44.0) GB/s.
Implication #4: Traffic-oblivious bandwidth allocation

and routing are the de facto traffic control scheme. This
works well for traditional monolithic servers whose NoC
bandwidth is over-provisioned. However, this is no longer
the case for server chiplet networking, where compute and
I/O chiplets might contend for one or several links. Thus, it
will be valuable to introduce the communication flow abstrac-
tion, materialize it in a global software-based traffic manager,
and expose it to the chiplet network. In this way, one could
develop application-specialized traffic control instead of re-
lying on the sender side naively. Read and write interference
would also occur when an interconnect link in one direction
is over-subscribed. Recent studies on host networking [95]
offer a promising approach to build upon.

4 Looking Forward
Server chiplet networking changes how processors, memory,
and I/O devices communicate across a server platform, en-
tailing unique performance characteristics. We outline new
research directions on grappling with its ramifications.

 0
 2
 4
 6
 8

 10
 12
 14

 0  20  40  60  80  100

B
a
n
d

w
id

th
 (

G
B

/s
)

Traffic Load (%)

Wr-Rd
Rd-Wr

Wr-Wr
Rd-Rd

(a) Intra-CC IF

 0
 2
 4
 6
 8

 10
 12
 14

 0  20  40  60  80  100

B
a
n
d

w
id

th
 (

G
B

/s
)

Traffic Load (%)

Wr-Rd
Rd-Wr

Wr-Wr
Rd-Rd

(b) Inter-CC IF

 0

 2

 4

 6

 8

 10

 12

 0  20  40  60  80  100

B
a
n
d

w
id

th
 (

G
B

/s
)

Traffic Load (%)

Wr-Rd
Rd-Wr

Wr-Wr
Rd-Rd

(c) GMI

 0

 2

 4

 6

 8

 0  20  40  60  80  100

B
a
n
d

w
id

th
 (

G
B

/s
)

Traffic Load (%)

Wr-Rd
Rd-Wr

Wr-Wr
Rd-Rd

(d) P Link/CXL

Figure 6: Read/write interference at the IF, GMI, and P
Link/CXL on the EPYC 9634 processor. We run a frontend
stream X at max rate, vary the traffic load of the background
one Y, and report how much bandwidth X achieves (X-Y).

#1: Hardware-abstracted Chiplet Networking Layer.
Device tree [21] is a data structure that describes the hard-
ware components and their organizational structure of an
embedded/PC/server platform, exposed to the operating sys-
tem for system management and maintenance. We believe
that a similar hardware abstraction for chiplet networks
(like /sys/firmware/chiplet-net) is essential. It not only
presents an architectural overview (as Figure 1), but also
provides runtime performance telemetry statistics for each
link and intermediate hop through /proc/chiplet-net, fa-
cilitating low-level system development.
#2: Rethinking Scalable Operating SystemDesign.With
hardware modularity, chiplet servers drastically increase
the number of cores (e.g., a four-socket AmpereOne server
featuring 1024 cores), motivating us to revisit the design
principles of many-core operating systems [5, 8, 9, 16]. For
example, the multikernel [5] OS structure is motivated by the
costly interconnect (i.e., AMD HyperTransport) when han-
dling cache coherence on a shared memory system. It makes
inter-core communication explicit and uses asynchronous
messages to synchronize replicated states. However, such
a design might not be suitable in chiplet networking due
to the extended communication path (§3.2), heterogeneous
bandwidth domains (§3.3), and inconsistent BDP (§3.4). It
is pivotal to explore, refine, or perhaps redefine what the
scalable commutative rule [16] is.
#3: Fused Intra-/Inter-Host Networking and I/O Stack.
Recent trends indicate that inter-fabric bandwidth has gradu-
ally approached or even outpaced intra-host bandwidth, like
in disaggregated storage [27, 32, 35, 36, 45, 52–54, 105]. For
example, a 400+GbE terabit Ethernet port and 8+ NVMe SSDs



Server Chiplet Networking HotNets ’25, November 17–18, 2025, College Park, MD, USA

can sometimes drive more bandwidth than a compute chiplet.
The problem becomes even worse if considering the incon-
sistent BDP (§3.4) and unregulated bandwidth partitioning
(§3.5). Researchers have partly tackled this issue [13, 32].
For example, NetChannel [13] introduces a disaggregated
networking stack and uses a flexible channel abstraction
for streaming data in and out. blk-switch [32] proposes a
switching architecture for the block layer for efficient multi-
tenancy. In chiplet networking, the network and I/O stack
should consider both the internal and external link character-
istics and judiciously orchestrate data flows across compute
chiplets, I/O chiplets, memory domains, and devices.
#4: Intra-host Switching for Accelerators. Dense GPU
and domain-specific accelerator servers have become preva-
lent in the era of AI. Although massive data communications
use dedicated external fabrics (like NVLink), server chiplet
networking is an important component for the signal plane
and host-accelerator interaction. Specifically, the accelera-
tor execution is activated via submission commands and
completed through acknowledgment responses, which are
latency-sensitive. Bandwidth-intensive input/output data is
copied to/from the accelerator memory explicitly through
DMA or data movement engines, managed by the host CPU.
In chiplet networking, all such communications traverse the
device bus, I/O hub, and I/O chiplet, which embody perfor-
mance idiosyncrasies (§3.2–§3.5). To fully utilize the accel-
erator and eliminate movement-induced stalls, one should
develop an intra-host switching module that proactively
monitors the traffic matrix [51], conceives an optimal com-
munication path and schedule, and provisions just enough
bandwidth. Researchers have explored such a design in pro-
grammable networks [7, 14, 22, 42, 75, 76, 83, 84, 104, 106]
and in-network computing [29, 44, 46–48, 67, 81].
#5: Chiplet-Centric System Modeling, Benchmarking,
and Profiling. Chiplet networking significantly complicates
server operational observability, making resource provision-
ing, performance diagnostics, and debugging challenging.
Besides the sub-microsecond granularity, difficulties arise
from much more intertwined micro-architectural compo-
nents, with very limited hardware monitoring counters. We
propose to take an interconnect transaction view and de-
velop a chiplet-centric architectural performance model, as
many others [2, 19, 26, 43, 101, 102], to capture both data
and computing flows. Next, it would be useful to develop
a benchmarking framework [30, 60] for cross-platform sys-
tematic characterization and to produce practical guidelines.
Last, we advocate for a system-level perf-like [20, 41] pro-
filing utility, entrenched with the server SoC, that collabo-
ratively combines the hardware architectural PMU (Perfor-
mance Monitoring Unit) with time-series-based probabilistic
and compact data structures (like Sketches [88, 97, 103]) to
distill application-specific execution telemetry.

#6: From Server Chiplet Networking to Accelerator
Chiplet Networking. As accelerators are increasingly built
using chiplets, we believe that accelerator chiplet network-
ing will also be an interesting exploration area. In addition
to the idiosyncrasies uncovered in §3, taking existing AI
accelerators [70–72, 78, 93, 107] as an example, we expect
that (a) the tighter coupling between communication and
computation (such as tensor tiles, activation gradient, and at-
tention maps), (b) mixed dataflows (like control-plane kernel
dispatching and data-plane tensor streaming), and (c) multi-
tier communication hierarchy (e.g., inter-chiplet, on-package
NOC, and inter-packet) will impose more challenging issues,
requiring us to rethink traffic control, kernel scheduling, and
communication collective.

5 Conclusion
This paper introduces a new type of host network–server
chiplet networking. We perform a systematic characteriza-
tion of AMD chiplet-based EPYC server platforms and sum-
marize several key design implications. We outline future
research directions, and believe that server chiplet network-
ing will fundamentally shape the design and implementation
of future performant, efficient, and scalable server systems.

Acknowledgement
We would like to thank the anonymous reviewers and our
shepherd, Jana Iyengar, for their comments and feedback.
This work is supported in part by NSF grants CNS-2106199,
CNS-2212192, and CAREER-2339755.

References
[1] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar,

Amin Vahdat, and Masato Yasuda. 2012. Less is more: trading a
little bandwidth for ultra-low latency in the data center. In Proceed-
ings of the 9th USENIX Conference on Networked Systems Design and
Implementation (NSDI’12).

[2] Muhammad Shoaib Bin Altaf and David A. Wood. 2017. LogCA: A
High-Level Performance Model for Hardware Accelerators. In Pro-
ceedings of the 44th Annual International Symposium on Computer
Architecture.

[3] AMD. 2025. AMD Infinity Fabric. https://www.amd.com/content/da
m/amd/en/documents/instinct-tech-docs/other/56978.pdf.

[4] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ran-
ganathan. 2017. Attack of the killer microseconds. Commun. ACM
60, 4 (2017), 48–54.

[5] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and
Akhilesh Singhania. 2009. The multikernel: a new OS architecture for
scalable multicore systems. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles (SOSP’09). 29–44.

[6] Timo Bingmann. 2013. PMBW. http://panthema.net/2013/pmbw/.
[7] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-

eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013.
Forwarding metamorphosis: fast programmable match-action pro-
cessing in hardware for SDN. In Proceedings of the ACM SIGCOMM

https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/other/56978.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/other/56978.pdf
http://panthema.net/2013/pmbw/


HotNets ’25, November 17–18, 2025, College Park, MD, USA Seunghyun An, Joontaek Oh, and Ming Liu

2013 Conference on SIGCOMM (SIGCOMM’13). 99–110.
[8] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, Frans

Kaashoek, Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu,
Yuehua Dai, Yang Zhang, and Zheng Zhang. 2008. Corey: an operating
system for many cores. In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation (OSDI’08). 43–57.

[9] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey
Pesterev, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich.
2010. An analysis of Linux scalability to many cores. In Proceed-
ings of the 9th USENIX Conference on Operating Systems Design and
Implementation (OSDI’10). 1–16.

[10] Thomas Burd, Wilson Li, James Pistole, Srividhya Venkataraman,
Michael McCabe, Timothy Johnson, James Vinh, Thomas Yiu, Mark
Wasio, Hon-Hin Wong, Daryl Lieu, Jonathan White, Benjamin
Munger, Joshua Lindner, Javin Olson, Steven Bakke, Jeshuah Sni-
derman, Carson Henrion, Russell Schreiber, Eric Busta, Brett Johnson,
Tim Jackson, Aron Miller, Ryan Miller, Matthew Pickett, Aaron Hori-
uchi, Josef Dvorak, Sabeesh Balagangadharan, Sajeesh Ammikkallin-
gal, and Pankaj Kumar. 2022. Zen3: The AMD 2nd-Generation 7nm
x86-64 Microprocessor Core. In 2022 IEEE International Solid-State
Circuits Conference (ISSCC), Vol. 65. 1–3.

[11] Thomas Burd, Srividhya Venkataraman, Wilson Li, Timothy Johnson,
Jerry Lee, Srikirti Velaga, Mark Wasio, Thomas Yiu, Franklin Bod-
ine, Michael McCabe, Udin Salim, Santosh Kumar Thouta, Michael
Golden, Sowmya Ramachandran, Gokul Subramani Lakshmi Devi,
John Wuu, Yarek Kuszczak, Gaurav Singla, Carson Henrion, Andy
Robison, Sabeesh Balagangadharan, Umesh Nair, Naveen Srivas-
tava, Hari Prasad, Mohini Polimetla, Phaneendra Chennupati, Es-
hwar Gupta, Mahesh Vykuntam, Sumantra Sarkar, Praveen Kumar
Duvvuru, Theja Mardi, and G Swetha. 2024. 2.2 “Zen 4c”: The AMD
5nm Area-Optimized ×86-64 Microprocessor Core. In 2024 IEEE In-
ternational Solid-State Circuits Conference (ISSCC), Vol. 67. 38–40.

[12] Cadence. 2025. The Cadence Allegro X Design Platform.
https://www.cadence.com/en_US/home/tools/pcb-design-and-anal
ysis/allegro-x-design-platform.html.

[13] Qizhe Cai, Midhul Vuppalapati, Jaehyun Hwang, Christos Kozyrakis,
and Rachit Agarwal. 2022. Towards us tail latency and terabit ethernet:
disaggregating the host network stack. In Proceedings of the ACM
SIGCOMM 2022 Conference (SIGCOMM’22). 767–779.

[14] Xuzheng Chen, Jie Zhang, Ting Fu, Yifan Shen, Shu Ma, Kun Qian,
Lingjun Zhu, Chao Shi, Yin Zhang, Ming Liu, et al. 2024. Demystifying
datapath accelerator enhanced off-path smartnic. In 2024 IEEE 32nd
International Conference on Network Protocols (ICNP’24). 1–12.

[15] Jack Choquette. 2022. Nvidia hopper gpu: Scaling performance. In Pro-
ceedings of 2022 IEEE Hot Chips 34 Symposium (HCS). IEEE Computer
Society, 1–46.

[16] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert T.
Morris, and Eddie Kohler. 2013. The scalable commutativity rule:
designing scalable software for multicore processors. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems Principles
(SOSP’13). 1–17.

[17] Ampere Computing. 2024. Breaking Boundaries: AmpereOne’s Dis-
aggregation Strategy for the Next-Gen Cloud. https://amperecomp
uting.com/blogs/next-gen-cloud.

[18] The UCIe Consortium. 2025. Universal Chiplet Interconnect Express
(UCIe). https://www.uciexpress.org.

[19] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik
Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten
Von Eicken. 1993. LogP: Towards a realistic model of parallel com-
putation. In Proceedings of the fourth ACM SIGPLAN symposium on
Principles and practice of parallel programming.

[20] Arnaldo Carvalho De Melo. 2010. The new linux’perf’tools. In Slides
from Linux Kongress, Vol. 18. 1–42.

[21] The devicetree.org community. 2025. The Devicetree Specification.
https://www.devicetree.org.

[22] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek
Chiou, Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek
Bhanu, Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa,
Somesh Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam,
Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar
Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,
Nisheeth Srivastava, AnshumanVerma, Qasim Zuhair, Deepak Bansal,
Doug Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg.
2018. Azure accelerated networking: SmartNICs in the public cloud.
In 15th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI’18). 51–66.

[23] GigaIO. 2025. GigaIO SuperNode. https://gigaio.com/supernode/.
[24] Groq. 2025. GroqRack Compute Cluster. https://groq.com/groqrack/.
[25] Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu. 2009.

Express Cube Topologies for on-Chip Interconnects. In 2009 IEEE 15th
International Symposium on High Performance Computer Architecture.
163–174.

[26] Zerui Guo, Jiaxin Lin, Yuebin Bai, Daehyeok Kim, Michael Swift,
Aditya Akella, and Ming Liu. 2023. LogNIC: A High-Level Per-
formance Model for SmartNICs. In Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’23).
916–929.

[27] Zerui Guo, Hua Zhang, Chenxingyu Zhao, Yuebin Bai, Michael Swift,
and Ming Liu. 2023. LEED: A Low-Power, Fast Persistent Key-Value
Store on SmartNIC JBOFs. In Proceedings of the ACM SIGCOMM 2023
Conference (SIGCOMM’23). 1012–1027.

[28] NVIDIA H100. 2024. NVIDIA H100 Tensor Core GPU. https://www.
nvidia.com/en-us/data-center/h100/.

[29] Yongchao He, Wenfei Wu, Yanfang Le, Ming Liu, and ChonLam Lao.
2023. A Generic Service to Provide In-Network Aggregation for Key-
Value Streams. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’23), Volume 2. 33–47.

[30] Wentao Hou, Jie Zhang, Zeke Wang, and Ming Liu. 2024. Understand-
ing Routable PCIe Performance for Composable Infrastructures. In
21st USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI’24). 297–312.

[31] Jingcao Hu and Radu Marculescu. 2003. Energy-aware mapping
for tile-based NoC architectures under performance constraints. In
Proceedings of the 2003 Asia and South Pacific Design Automation
Conference. 233–239.

[32] Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and Rachit Agar-
wal. 2021. Rearchitecting linux storage stack for 𝜇s latency and high
throughput. In 15th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’21). 113–128.

[33] IDTechEx. 2025. Chiplet Technology 2025-2035: Technology, Op-
portunities, Applications. https://www.idtechex.com/en/research-
report/chiplet-technology-2025-2035-technology-opportunities-
applications/1041.

[34] Intel. 2024. Software-Defined Vehicle Transformation Starts with
Intel. https://download.intel.com/newsroom/2024/automotive/Intel-
SDV-Demo-Fact-Sheet.pdf.

[35] Sheng Jiang and Ming Liu. 2025. Building an Elastic Block Storage
over EBOFs Using Shadow Views. In 22nd USENIX Symposium on
Networked Systems Design and Implementation (NSDI’25). 1137–1153.

[36] Yuyuan Kang andMing Liu. 2025. Understanding and Profiling NVMe-
over-TCP Using ntprof. In 22nd USENIX Symposium on Networked
Systems Design and Implementation (NSDI’25). 1117–1136.

https://www.cadence.com/en_US/home/tools/pcb-design-and-analysis/allegro-x-design-platform.html
https://www.cadence.com/en_US/home/tools/pcb-design-and-analysis/allegro-x-design-platform.html
https://amperecomputing.com/blogs/next-gen-cloud
https://amperecomputing.com/blogs/next-gen-cloud
https://www.uciexpress.org
https://www.devicetree.org
https://www.devicetree.org
https://gigaio.com/supernode/
https://groq.com/groqrack/
https://www.nvidia.com/en-us/data-center/h100/
https://www.nvidia.com/en-us/data-center/h100/
https://www.idtechex.com/en/research-report/chiplet-technology-2025-2035-technology-opportunities-applications/1041
https://www.idtechex.com/en/research-report/chiplet-technology-2025-2035-technology-opportunities-applications/1041
https://www.idtechex.com/en/research-report/chiplet-technology-2025-2035-technology-opportunities-applications/1041
https://download.intel.com/newsroom/2024/automotive/Intel-SDV-Demo-Fact-Sheet.pdf
https://download.intel.com/newsroom/2024/automotive/Intel-SDV-Demo-Fact-Sheet.pdf


Server Chiplet Networking HotNets ’25, November 17–18, 2025, College Park, MD, USA

[37] Keysight. 2024. What is a Chiplet, and Why Should You Care?
https://www.keysight.com/blogs/en/tech/sim-des/2024/2/8/what-is-
a-chiplet-and-why-should-you-care.

[38] John Kim, Wiliam J. Dally, Steve Scott, and Dennis Abts. 2008.
Technology-Driven, Highly-Scalable Dragonfly Topology. In Proceed-
ings of the 35th Annual International Symposium on Computer Archi-
tecture. 77–88.

[39] Praveen Kumar, Nandita Dukkipati, Nathan Lewis, Yi Cui, Yaogong
Wang, Chonggang Li, Valas Valancius, Jake Adriaens, Steve Gribble,
Nate Foster, and Amin Vahdat. 2019. Picnic: predictable virtualized
nic. In Proceedings of the ACM Special Interest Group on Data Commu-
nication (SIGCOMM’19). 351–366.

[40] Collin Lee and John Ousterhout. 2019. Granular computing. In Pro-
ceedings of the Workshop on Hot Topics in Operating Systems. 149–154.

[41] Xiao Li, Zerui Guo, Yuebin Bai, Mehash Ketkar, Hugh Willkinson,
and Ming Liu. 2025. Understanding and Profiling CXL.mem Using
PathFinder. In Proceedings of the ACM SIGCOMM 2025 Conference
(SIGCOMM’25).

[42] Ming Liu. 2020. Building Distributed Systems Using Programmable
Networks. University of Washington.

[43] Ming Liu. 2023. Fabric-Centric Computing. In Proceedings of the 19th
Workshop on Hot Topics in Operating Systems (HotOS’23). 118–126.

[44] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon
Peter, and Karan Gupta. 2019. Offloading distributed applications
onto smartNICs using iPipe. In Proceedings of the ACM Special Interest
Group on Data Communication (SIGCOMM’19). 318–333.

[45] Ming Liu, Arvind Krishnamurthy, Harsha V.Madhyastha, Rishi Bhard-
waj, Karan Gupta, Chinmay Kamat, Huapeng Yuan, Aditya Jaltade,
Roger Liao, Pavan Konka, and Anoop Jawahar. 2020. Fine-Grained
Replicated State Machines for a Cluster Storage System . In 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI’20). 305–323.

[46] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind Krishnamurthy,
and Kishore Atreya. 2017. IncBricks: Toward In-Network Computa-
tion with an In-Network Cache. In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’17). 795–809.

[47] Ming Liu, Simon Peter, Arvind Krishnamurthy, and
Phitchaya Mangpo Phothilimthana. 2019. E3: Energy-Efficient
Microservices on SmartNIC-Accelerated Servers. In 2019 USENIX
Annual Technical Conference (USENIX ATC’19). 363–378.

[48] Liang Luo, Ming Liu, Jacob Nelson, Luis Ceze, Amar Phanishayee,
and Arvind Krishnamurthy. 2017. Motivating in-network aggrega-
tion for distributed deep neural network training. In Workshop on
Approximate Computing Across the Stack.

[49] Zhihong Luo, Sam Son, Sylvia Ratnasamy, and Scott Shenker. 2024.
Harvesting Memory-bound CPU Stall Cycles in Software with MSH.
In Proceedings of 18th USENIX Symposium onOperating Systems Design
and Implementation (OSDI’24). 57–75.

[50] Nestor Maslej, Loredana Fattorini, Raymond Perrault, Yolanda Gil,
Vanessa Parli, Njenga Kariuki, Emily Capstick, Anka Reuel, Erik
Brynjolfsson, John Etchemendy, Katrina Ligett, Terah Lyons, James
Manyika, Juan Carlos Niebles, Yoav Shoham, Russell Wald, Tobi
Walsh, Armin Hamrah, Lapo Santarlasci, Julia Betts Lotufo, Alexan-
dra Rome, Andrew Shi, and Sukrut Oak. 2025. Artificial Intelligence
Index Report 2025. arXiv:2504.07139 [cs.AI] https://arxiv.org/abs/
2504.07139

[51] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot. 2002.
Traffic matrix estimation: existing techniques and new directions. In
Proceedings of the 2002 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications (SIGCOMM’02).
161–174.

[52] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu Zhao, Andrew
Wei, In Hwan Doh, and Arvind Krishnamurthy. 2021. Gimbal:
enabling multi-tenant storage disaggregation on SmartNIC JBOFs.
In Proceedings of the 2021 ACM SIGCOMM 2021 Conference (SIG-
COMM’21). 106–122.

[53] Jaehong Min, Chenxingyu Zhao, Ming Liu, and Arvind Krishna-
murthy. 2023. eZNS: An Elastic Zoned Namespace for Commodity
ZNS SSDs. In 17th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’23). 461–477.

[54] Jaehong Min, Chenxingyu Zhao, Ming Liu, and Arvind Krishna-
murthy. 2024. eZNS: Elastic Zoned Namespace for Enhanced Perfor-
mance Isolation and Device Utilization. ACM Trans. Storage 20, 3,
Article 16 (June 2024), 41 pages.

[55] Moscibroda, Thomas and Mutlu, Onur. 2009. A case for bufferless
routing in on-chip networks. In Proceedings of the 36th Annual Inter-
national Symposium on Computer Architecture. 196–207.

[56] Ashley O. Munch, Nevine Nassif, Carleton L. Molnar, Jason Crop,
Rich Gammack, Chinmay P. Joshi, Goran Zelic, Kambiz Munshi, Min
Huang, Charles R. Morganti, Sireesha Kandula, and Arijit Biswas.
2024. 2.3 Emerald Rapids: 5th-Generation Intel® Xeon® Scalable
Processors. In 2024 IEEE International Solid-State Circuits Conference
(ISSCC), Vol. 67. 40–42.

[57] Benjamin Munger, Kathy Wilcox, Jeshuah Sniderman, Chuck Tung,
Brett Johnson, Russell Schreiber, Carson Henrion, Kevin Gillespie,
Tom Burd, Harry Fair, David Johnson, Jonathan White, Scott McLel-
land, Steven Bakke, Javin Olson, Ryan McCracken, Matthew Pickett,
Aaron Horiuchi, Hien Nguyen, and Tim H Jackson. 2023. “Zen 4”:
The AMD 5nm 5.7GHz x86-64 Microprocessor Core. In 2023 IEEE
International Solid-State Circuits Conference (ISSCC). 38–39.

[58] Samuel Naffziger, Noah Beck, Thomas Burd, Kevin Lepak, Gabriel H.
Loh, Mahesh Subramony, and Sean White. 2021. Pioneering Chiplet
Technology and Design for the AMD EPYC™ and Ryzen™ Processor
Families : Industrial Product. In 2021 ACM/IEEE 48th Annual Interna-
tional Symposium on Computer Architecture (ISCA). 57–70.

[59] Nevine Nassif, Ashley O. Munch, Carleton L. Molnar, Gerald Pasdast,
Sitaraman V. Lyer, Zibing Yang, Oscar Mendoza, Mark Huddart, Srikr-
ishnan Venkataraman, Sireesha Kandula, Rafi Marom, Alexandra M.
Kern, Bill Bowhill, David R. Mulvihill, Srikanth Nimmagadda, Varma
Kalidindi, Jonathan Krause, Mohammad M. Haq, Roopali Sharma,
and Kevin Duda. 2022. Sapphire Rapids: The Next-Generation Intel
Xeon Scalable Processor. In Proceedings of 2022 IEEE International
Solid-State Circuits Conference (ISSCC), Vol. 65. 44–46.

[60] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audze-
vich, Sergio López-Buedo, and Andrew W. Moore. 2018. Understand-
ing PCIe performance for end host networking. In Proceedings of the
2018 Conference of the ACM Special Interest Group on Data Communi-
cation (SIGCOMM’18). 327–341.

[61] The NextPlatform. 2023. AWS ADOPTS ARM V2 CORES
FOR EXPANSIVE GRAVITON4 SERVER CPU. https:
//www.nextplatform.com/2023/11/28/aws-adopts-arm-v2-cores-
for-expansive-graviton4-server-cpu/.

[62] NVIDIA. 2025. NVIDIA GB200 NVL72. https://www.nvidia.com/en-
us/data-center/gb200-nvl72/.

[63] NVIDIA. 2025. NVIDIA HGX Platform. https://www.nvidia.com/en-
us/data-center/hgx/.

[64] D.A. Patterson. 2006. RAMP: research accelerator for multiple proces-
sors - a community vision for a shared experimental parallel HW/SW
platform. In Proceedings of 2006 IEEE International Symposium on
Performance Analysis of Systems and Software.

[65] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm,
Kimberley Keeton, Christoforos Kozyrakis, Randi Thomas, and
Katherine Yelick. 1997. Intelligent RAM (IRAM): Chips that remember

https://www.keysight.com/blogs/en/tech/sim-des/2024/2/8/what-is-a-chiplet-and-why-should-you-care
https://www.keysight.com/blogs/en/tech/sim-des/2024/2/8/what-is-a-chiplet-and-why-should-you-care
https://arxiv.org/abs/2504.07139
https://arxiv.org/abs/2504.07139
https://arxiv.org/abs/2504.07139
https://www.nextplatform.com/2023/11/28/aws-adopts-arm-v2-cores-for-expansive-graviton4-server-cpu/
https://www.nextplatform.com/2023/11/28/aws-adopts-arm-v2-cores-for-expansive-graviton4-server-cpu/
https://www.nextplatform.com/2023/11/28/aws-adopts-arm-v2-cores-for-expansive-graviton4-server-cpu/
https://www.nvidia.com/en-us/data-center/gb200-nvl72/
https://www.nvidia.com/en-us/data-center/gb200-nvl72/
https://www.nvidia.com/en-us/data-center/hgx/
https://www.nvidia.com/en-us/data-center/hgx/


HotNets ’25, November 17–18, 2025, College Park, MD, USA Seunghyun An, Joontaek Oh, and Ming Liu

and compute. In Proceedings of 1997 IEEE International Solids-State
Circuits Conference. Digest of Technical Papers. 224–225.

[66] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm,
Kimberly Keeton, Christoforos Kozyrakis, Randi Thomas, and Kather-
ine Yelick. 2002. A case for intelligent RAM. IEEE micro 17, 2 (2002),
34–44.

[67] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann,
Simon Peter, Rastislav Bodik, and Thomas Anderson. 2018. Floem: A
Programming System for NIC-Accelerated Network Applications. In
13th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI’18). 663–679.

[68] The Next Platform. 2025. SILICON ONE G200 FI-
NALLY DRIVES CISCO’S AI NETWORKING BUSINESS.
https://www.nextplatform.com/2025/05/21/silicon-one-g200-
finally-drives-ciscos-ai-networking-business/.

[69] The Next Platform. 2025. THE AI DATACENTER IS
RAVENOUS FOR 102.4 TB/SEC ETHERNET SWITCH ASICS.
https://www.nextplatform.com/2025/06/03/the-ai-datacenter-is-

ravenous-for-102-4-tb-sec-ethernet/.
[70] Raghu Prabhakar and Sumti Jairath. 2021. SambaNova SN10 RDU:

Accelerating software 2.0 with dataflow. In 2021 IEEE Hot Chips 33
Symposium (HCS). 1–37.

[71] Raghu Prabhakar, Sumti Jairath, and Jinuk Luke Shin. 2022. Sam-
banova sn10 rdu: A 7nm dataflow architecture to accelerate software
2.0. In 2022 IEEE International Solid-State Circuits Conference (ISSCC),
Vol. 65. 350–352.

[72] Raghu Prabhakar, Ram Sivaramakrishnan, Darshan Gandhi, Yun Du,
Mingran Wang, Xiangyu Song, Kejie Zhang, Tianren Gao, Angela
Wang, Xiaoyan Li, et al. 2024. Sambanova sn40l: Scaling the ai mem-
ory wall with dataflow and composition of experts. In 2024 57th
IEEE/ACM International Symposium on Microarchitecture (MICRO).
1353–1366.

[73] The Open Compute Project. 2021. OpenHBI Specification Version 1.0.
https://www.opencompute.org/documents/odsa-openhbi-v1-0-spec-
rc-final-1-pdf.

[74] The Open Compute Project. 2022. Bunch of Wires PHY Specification.
https://www.opencompute.org/documents/bunch-of-wires-phy-sp
ecification-pdf.

[75] Yiming Qiu, Qiao Kang, Ming Liu, and Ang Chen. 2020. Clara: Per-
formance Clarity for SmartNIC Offloading. In Proceedings of the 19th
ACM Workshop on Hot Topics in Networks (HotNets’20). 16–22.

[76] Yiming Qiu, Jiarong Xing, Kuo-Feng Hsu, Qiao Kang, Ming Liu, Srini-
vas Narayana, and Ang Chen. 2021. Automated SmartNIC Offloading
Insights for Network Functions. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles (SOSP’21). 772–787.

[77] Sivasankar Radhakrishnan, Yilong Geng, Vimalkumar Jeyakumar, Ab-
dul Kabbani, George Porter, and Amin Vahdat. 2014. SENIC: Scalable
NIC for End-Host rate limiting. In Proceedings of 11th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI’14).
475–488.

[78] Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally,
Siddharth Samsi, and Jeremy Kepner. 2022. AI and ML accelerator
survey and trends. In 2022 IEEE High Performance Extreme Computing
Conference (HPEC). 1–10.

[79] Zhenyuan Ruan, Tong He, and Jason Cong. 2019. INSIDER: Designing
In-Storage computing system for emerging High-Performance drive.
In Proceedings of 2019 USENIX Annual Technical Conference (USENIX
ATC’19). 379–394.

[80] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam,
Carlo Contavalli, and Amin Vahdat. 2017. Carousel: Scalable traffic
shaping at end hosts. In Proceedings of the Conference of the ACM

Special Interest Group on Data Communication (SIGCOMM’17). 404–
417.

[81] Henry N. Schuh, Weihao Liang, Ming Liu, Jacob Nelson, and Arvind
Krishnamurthy. 2021. Xenic: SmartNIC-Accelerated Distributed
Transactions. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles (SOSP’21). 740–755.

[82] Abu Sebastian, Manuel Le Gallo, Riduan Khaddam-Aljameh, and
Evangelos Eleftheriou. 2020. Memory devices and applications for
in-memory computing. Nature nanotechnology 15, 7 (2020), 529–544.

[83] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and Arvind Krish-
namurthy. 2018. Approximating Fair Queueing on Reconfigurable
Switches. In 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’18). 1–16.

[84] Naveen Kr. Sharma, Chenxingyu Zhao, Ming Liu, Pravein G Kannan,
Changhoon Kim, Arvind Krishnamurthy, and Anirudh Sivaraman.
2020. Programmable Calendar Queues for High-speed Packet Sched-
uling . In 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’20). 685–699.

[85] Teja Singh, Spence Oliver, Sundar Rangarajan, Shane Southard, Car-
son Henrion, Alex Schaefer, Brett Johnson, Sarah Bartaszewicz Tower,
Kathy Hoover, Deepesh John, Ted Antoniadis, Shravan Lakshman,
Vibhor Mittal, Brian Kasprzyk, Ross McCoy, Kurt Mohlman, Anitha
Mohan, Hon-Hin Wong, Daryl Lieu, Russell Schreiber, Sahilpreet
Singh, Nick Lance, Darryl Prudich, Justin Coppin, Tim Jackson,
Anita Karegar, Ryan Miller, Sabeesh Balagangadharan, James Pistole,
Wilson Li, and Michael McCabe. 2025. “Zen 5”: The AMD High-
Performance 4nm x86-64 Microprocessor Core. In Proceedings of 2025
IEEE International Solid-State Circuits Conference (ISSCC), Vol. 68. 1–3.

[86] Teja Singh, Sundar Rangarajan, Deepesh John, Russell Schreiber,
Spence Oliver, Rajit Seahra, and Alex Schaefer. 2020. 2.1 Zen 2: The
AMD 7nm Energy-Efficient High-Performance x86-64 Microproces-
sor Core. In 2020 IEEE International Solid-State Circuits Conference -
(ISSCC). 42–44.

[87] Alan Smith, Eric Chapman, Chintan Patel, Raja Swaminathan, John
Wuu, Tyrone Huang, Wonjun Jung, Alexander Kaganov, Hugh McIn-
tyre, and Ramon Mangaser. 2024. 11.1 AMD InstinctTM MI300 Series
Modular Chiplet Package – HPC and AI Accelerator for Exa-Class
Systems. In Proceedings of 2024 IEEE International Solid-State Circuits
Conference (ISSCC), Vol. 67. 490–492.

[88] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik.
2008. Sketching concurrent data structures. In Proceedings of the 29th
ACM SIGPLAN Conference on Programming Language Design and
Implementation. 136–148.

[89] Synopsys. 2025. What are Chiplets. https://www.synopsys.com/glo
ssary/what-are-chiplets.html.

[90] Microchip USA. 2023. What is a Chiplet? https://www.microchipu
sa.com/industry-news/what-is-a-chiplet.

[91] Raj R. Varada, Rohini Krishnan, Ajith Subramonia, Rathish Chandran,
Kalyana Chakravarthy, Uttpal D. Desai, Sumedha Limaye, Puneesh
Puri, David R. Mulvihill, Mike Bichan, Martin Koolhaas, Vijayalak-
shmi Ramachandran, and Srinivasu Kendle. 2025. 2.3 Granite Rapids-
D: Intel Xeon 6 SoC for vRAN, Edge, Networking, and Storage. In
Proceedings of 2025 IEEE International Solid-State Circuits Conference
(ISSCC), Vol. 68. 48–50.

[92] Yehuda Vardi. 1996. Network tomography: Estimating source-
destination traffic intensities from link data. J. Amer. Statist. Assoc.
91, 433 (1996), 365–377.

[93] Jasmina Vasiljevic and Davor Capalija. 2024. Blackhole & tt-metalium:
The standalone ai computer and its programming model. In 2024 IEEE
Hot Chips 36 Symposium (HCS). 1–30.

https://www.nextplatform.com/2025/05/21/silicon-one-g200-finally-drives-ciscos-ai-networking-business/
https://www.nextplatform.com/2025/05/21/silicon-one-g200-finally-drives-ciscos-ai-networking-business/
https://www.nextplatform.com/2025/05/21/silicon-one-g200-finally-drives-ciscos-ai-networking-business/
https://www.nextplatform.com/2025/06/03/the-ai-datacenter-is-ravenous-for-102-4-tb-sec-ethernet/
https://www.nextplatform.com/2025/06/03/the-ai-datacenter-is-ravenous-for-102-4-tb-sec-ethernet/
https://www.opencompute.org/documents/odsa-openhbi-v1-0-spec-rc-final-1-pdf
https://www.opencompute.org/documents/odsa-openhbi-v1-0-spec-rc-final-1-pdf
https://www.opencompute.org/documents/bunch-of-wires-phy-specification-pdf
https://www.opencompute.org/documents/bunch-of-wires-phy-specification-pdf
https://www.synopsys.com/glossary/what-are-chiplets.html
https://www.synopsys.com/glossary/what-are-chiplets.html
https://www.microchipusa.com/industry-news/what-is-a-chiplet
https://www.microchipusa.com/industry-news/what-is-a-chiplet


Server Chiplet Networking HotNets ’25, November 17–18, 2025, College Park, MD, USA

[94] Naveen Verma, Hongyang Jia, Hossein Valavi, Yinqi Tang, Murat
Ozatay, Lung-Yen Chen, Bonan Zhang, and Peter Deaville. 2019. In-
memory computing: Advances and prospects. IEEE solid-state circuits
magazine 11, 3 (2019), 43–55.

[95] Midhul Vuppalapati, Saksham Agarwal, Henry Schuh, Baris Kasikci,
Arvind Krishnamurthy, and Rachit Agarwal. 2024. Understanding the
Host Network. In Proceedings of the ACM SIGCOMM 2024 Conference.
581–594.

[96] John Wawrzynek. 2015. Accelerating Science Driven System Design
With RAMP. Technical Report. Univ. of California, Berkeley, CA
(United States).

[97] Zhewei Wei, Ge Luo, Ke Yi, Xiaoyong Du, and Ji-Rong Wen. 2015.
Persistent data sketching. In Proceedings of the 2015 ACM SIGMOD
international conference on Management of Data. 795–810.

[98] WikiChip. 2025. Chiplet. https://en.wikichip.org/wiki/chiplet.
[99] Wikipedia. 2025. 2.5D integrated circuit. https://en.wikipedia.org/w

iki/2.5D_integrated_circuit.
[100] Wikipedia. 2025. Advanced packaging (semiconductors). https:

//en.wikipedia.org/wiki/Advanced_packaging_(semiconductors).
[101] Samuel Williams, Andrew Waterman, and David Patterson. 2009.

Roofline: an insightful visual performance model for multicore archi-
tectures. Commun. ACM 52, 4 (2009), 65–76.

[102] Xincheng Xie, Wentao Hou, Zerui Guo, and Ming Liu. 2025. Building
Massive MIMO Baseband Processing on a Single-Node Supercom-
puter. In 22nd USENIX Symposium on Networked Systems Design and

Implementation (NSDI’25). 1221–1242.
[103] Tong Yang, Lingtong Liu, Yibo Yan, Muhammad Shahzad, Yulong

Shen, Xiaoming Li, Bin Cui, and Gaogang Xie. 2017. Sf-sketch: A fast,
accurate, and memory efficient data structure to store frequencies
of data items. In 2017 IEEE 33rd International Conference on Data
Engineering (ICDE). 103–106.

[104] Jie Zhang, Hongjing Huang, Xuzheng Chen, Xiang Li, Jieru Zhao,
Ming Liu, and Zeke Wang. 2025. RpcNIC: Enabling Efficient Dat-
acenter RPC Offloading on PCIe-attached SmartNICs. In 2025 IEEE
International Symposium on High Performance Computer Architecture
(HPCA’25). 1379–1394.

[105] Chenxingyu Zhao, Tapan Chugh, Jaehong Min, Ming Liu, and Arvind
Krishnamurthy. 2022. Dremel: Adaptive Configuration Tuning of
RocksDB KV-Store. Proc. ACM Meas. Anal. Comput. Syst. 6, 2, Article
37 (June 2022), 30 pages.

[106] Chenxingyu Zhao, Jaehong Min, Ming Liu, and Arvind Krishna-
murthy. 2025. White-Boxing RDMA with Packet-Granular Software
Control. In 22nd USENIX Symposium on Networked Systems Design
and Implementation (NSDI’25). 427–449.

[107] Pengfei Zuo, Huimin Lin, Junbo Deng, Nan Zou, Xingkun Yang,
Yingyu Diao, Weifeng Gao, Ke Xu, Zhangyu Chen, Shirui Lu, et al.
2025. Serving Large Language Models on Huawei CloudMatrix384.
arXiv preprint arXiv:2506.12708 (2025).

https://en.wikichip.org/wiki/chiplet
https://en.wikipedia.org/wiki/2.5D_integrated_circuit
https://en.wikipedia.org/wiki/2.5D_integrated_circuit
https://en.wikipedia.org/wiki/Advanced_packaging_(semiconductors)
https://en.wikipedia.org/wiki/Advanced_packaging_(semiconductors)

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Chiplet and Why
	2.2 Chiplet-based Server SoC
	2.3 Server Chiplet Networking

	3 Understanding Server Chiplet Networking
	3.1 Experimental Methodology
	3.2 Extended Data Path with More Latency Hops
	3.3 Heterogeneous Bandwidth Domains
	3.4 Inconsistent Bandwidth-Delay Product (BDP)
	3.5 Sender-driven Aggressive Bandwidth Partitioning

	4 Looking Forward
	5 Conclusion
	References

