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Abstract
Emerging chiplet-based server platforms and the resulting
server chiplet networking present a fundamental shift in
the (intra-)host network. Unlike conventional monolithic
servers, compute chiplets, I/O chiplets, off-chip memory,
and peripheral devices communicate through a collection of
heterogeneous interconnects and links, formalizing a new
server chiplet network substrate that has not been explored
before. This paper makes an initial step by characterizing two
generations of AMD EPYC chiplet servers, identifying four
communication idiosyncrasies, and summarizing the design
implications. We outline some future directions under server
chiplet networking and discuss how to build next-generation
server systems and applications.

CCS Concepts
• Computer systems organization → Interconnection
architectures; • Hardware → Network on chip; • Net-
works→ Network performance analysis.
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1 Introduction
Chiplet [33, 37, 64, 89, 90, 96] is an emerging semiconductor
technology and has garnered significant attention in indus-
try and academia. By dividing monolithic large chips into
domain-specific, small, modular dies and composing them
via silicon interposers, chiplets drastically improve the wafer
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yield rate, reduce manufacturing costs, expedite time-to-
market, facilitate flexible and scalable hardware innovations,
and enable energy- and cost-efficient application specializa-
tion. The past few years have seen a number of chiplet-based
processors [10, 11, 17, 57, 61, 85, 86], domain-specific hard-
ware accelerators [15, 28, 87], and I/O devices [34, 68, 69].

Commodity servers are increasingly built using chiplets. A
server SoC (system-on-chip) consists of several compute and
I/O chiplets, connected via specialized on-chip load-store in-
terconnects. A compute chiplet encompasses a few to dozens
of cores, sometimes organized as sub-chiplets, sharing per-
chiplet last-level cache slices. An I/O chiplet, enclosing a
network-on-chip (NoC), provides high-bandwidth and low-
latency network connectivity for the memory subsystem and
I/O devices. As such, a new type of host network–where we
term it Server Chiplet Networking–emerges, which serves
as the communication subsystem underlying the server SoC.

Server chiplet networking is essentially a network of het-
erogeneous networks, usually organized into three layers.
The physical layer encompasses several different links, such
as on-chip cache-coherent interconnects (like AMD Infinity
Fabric [3] and UCIe [18]), off-chip memory interconnects,
and peripheral I/O buses. The data link layer is a reliable
and hierarchical packet-switched network whose topology
hinges on the NoC of an I/O chiplet. The transaction layer
provides communication semantics and deterministically
routes data FLITs from the source to the destination. Server
chiplet networking entails communication characteristics that
are drastically different from those of a traditional monolithic
SoC, an area that has not been previously explored.

This paper makes the first step by systematically character-
izing two generations of AMD EPYC chiplet servers (§3). We
identify four unique aspects of server chiplet networking, i.e.,
extended data paths with more latency hops, heterogeneous
bandwidth domains, inconsistent bandwidth-delay products,
and sender-driven aggressive bandwidth partitioning, and
discuss the design implications. We believe a networking
stack and corresponding ecosystem centered around chiplet
networking are strongly needed, and will offer several bene-
fits, including improved communication, greater efficiency,
maximized computing usage, and enhanced development
capabilities. We conclude the paper by outlining future re-
search directions with some proposals (§4).
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2 Background and Motivation
This section provides some necessary background on chiplets,
describes the chiplet-based server SoC (system-on-chip) ar-
chitecture, and introduces server chiplet networking.

2.1 Chiplet and Why
Chiplet [33, 37, 64, 89, 90, 96], an emerging semiconductor
technology, has become a predominant approach to building
chips. A chiplet is a discrete and unpackaged modular die
that implements specific functionalities, such as processors,
memory controllers, I/O subsystems, and acceleration ker-
nels. It provides standardized operating interfaces and is inte-
grated into a compatible 2.5D/3D silicon interposer [99, 100].
The interposer, acting as a bridge, facilitates low-latency and
high-speed die-to-die data transfers via specialized chiplet in-
terconnects, such as UCIe [18], BoW [74], and OpenHBI [73].
Today, we have seen several chiplet-based computing prod-
ucts designed, manufactured, and deployed, such as AMD
EPYC [10, 11, 57, 58, 85, 86], Intel Xeon Scalable Proces-
sor [56, 59, 91], AWSGraviton [61], Ampere AmpereOne [17],
NVIDIA H100/H200 [15, 28], and AMD MI300 [87].
Chiplets impose several benefits. First, they improve the

yield rate by breaking a large chip into smaller dies, as the
defect probability increases with the die size. Considering
a standard 360𝑚𝑚2 sized wafer and a typical die-yielding
model [58, 98], a 4-chiplet (99𝑚𝑚2) design can achieve a
yield rate of 37%, doubling that of a monolithic approach
(15%). Such improvements become more significant under
small process nodes (like 3/5nm). Second, chiplets can be
fabricated with different process nodes and foundries, and
reused across different hardware substrates, drastically min-
imizing the time-to-market and reducing the manufacturing
cost. Third, they make building flexible and scalable hetero-
geneous SoCs possible, enabling fast innovation and agility
based on the application demands. For example, the recent
Intel SDV (software-defined vehicle) SoC [34] employs a
multi-node chiplet solution that allows automakers to tai-
lor compute, graphics, and AI capabilities flexibly. Fourth,
designers can explore application specialization, apply a
Lego-style strategy to design complex SoCs, and freely up-
grade/add/drop new functionalities, maximizing the power
density and energy efficiency. The Cadence Allegro X plat-
form [12] leverages this for advanced IC packaging design.

2.2 Chiplet-based Server SoC
Most recent server processors are developed using chiplets.
Take the AMD EPYC 7302 processor as an example (oth-
ers are similar). As shown in Figure 1, the server SoC has
(a) four compute chiplets or Core Complex Die (CCD) in
the AMD terminology and (b) one I/O chiplet. A compute
chiplet contains several sub-chiplets (2 in our example) or

GMI

I/O Die

Core
Shared L3

Compute Die (CCD) 1

CC
X Core Core

Shared L3CC
X Core Core

Shared L3

Compute Die (CCD) 3

CC
X Core Core

Shared L3CC
X Core

GMI Port 1 DIMMs
P Link

Core
Shared L3

Compute Die (CCD) 2

CC
X Core Core

Shared L3CC
X Core Core

Shared L3

Compute Die (CCD) 4

CC
X Core Core

Shared L3CC
X Core

GMI Port 2

GMI

GMI
GMI Port 4

GMII/O Lane

IF Link

GMI 

DIMMsGMI 

DIMMs GMI 

DIMMs GMI 

IF Link

IF Link

IF Link

IF Link

IF Link

I/O HUB 1

PCIe/CXL 

I/O HUB 2

SATA, etc.

DIMMsUMC 3

UMC 4 DIMMs

UMC 1

UMC 2

DIMMs

DIMMs

GMI Port 3

Figure 1: An architecture overview of a chiplet-based server
SoC. We take the AMD EPYC processor as an example. CCD
= Core Complex Die. GMI=Global Memory Interconnect.
IF=Infinity Fabric. UMC=Unified Memory Controller.

Parameters EPYC 7302 EPYC 9634
Microarchitecture Zen 2 Zen 4

L1 (per core) 32KB 64KB
L2 (per core) 512KB 1MB
L3 (per CPU) 128MB 384MB

Core#/CCX#/CCD# (per CPU) 16/8/4 84/12/12
Compute Chiplets # (per CPU) 4 12

Process technology (Compute Die) 7nm 5nm
I/O Chiplets # (per CPU) 1 1

Process technology (I/O Die) 12nm 6nm
PCIe Gen/Lane # Gen4/128 Gen5/128

Base/Turbo Frequency 3/3.3 GHz 2.25/3.7 GHz

Table 1: HW specifications of our two evaluated processors.

Core Complex (CCX) that share the last-level cache slices. A
CCX consists of one to dozens of cores, each of which has
its own L1 and L2 caches. An I/O chiplet encompasses (a)
UMCs (unified memory controllers) that connect to off-chip
DIMMs; (b) I/O hubs that provide peripheral links for de-
vices, such as P Links to fast PCIe/CXL slots and I/O lanes to
slow SATA-like buses; (c) GMI (global memory interconnect)
ports for compute chiplets to access memory; and (d) a mesh
network that interconnects different components through
some proprietary routing protocols. Compute-Compute and
Compute-I/O chiplets talk to each other via the AMD Infin-
ity Fabric or other specialized interconnects like UCIe [18].
Off-chip DIMMs also attach to UMCs through GMI links.
Table 1 presents two AMD EPYC chiplet processors we

studied in this paper. Note that the 7302 CPU contains two
CCXs per CCD, while the 9634 processor only has one.

2.3 Server Chiplet Networking
Server chiplet networking is the communication subsystem
underlying the server SoC that connects different microar-
chitectural modules and devices. Its physical (L1) layer is an
agglomeration of on-chip interconnects, off-chip memory
links, and peripheral I/O buses, providing connectivity for
data flows traversing compute chiplets, I/O chiplets, and de-
vices. Next, the link (L2) layer is a reliable and hierarchical
packet-switched network. As shown in Figure 2, the first
level is the network-on-chip (NoC) in an I/O chiplet, employ-
ing a Mesh [31], Torus [55], Cube [25], or Dragonfly [38]
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Figure 2: A topological view of server chiplet networking.

topology. The following levels are organized in different com-
pute chiplets or device domains, usually presenting a tree
topology. The network contains different switches or routers
that use either bufferless or buffered routing protocols. Last,
the transaction (L3) layer describes data flows from source
to destination entities at the cacheline or FLIT granularity,
depending on the underlying link. For example, a cacheline-
sized LLC snooping request mostly traverses the Infinity
Fabric, while a CXL.mem transaction, encoded as the FLIT
size (68/256B), goes from a compute chiplet and I/O chiplet
to a CXL DIMM through an IF, a P Link, and a CXL lane.

Server chiplet networking has become crucial given (a) the
proliferation of dense and heterogeneous hardware-accelerated
computing boxes [23, 24, 62, 63], (b) increasing interconnect
speeds for fast cross-device (domain) data movements [3, 18],
and (c) skyrocketing application demands [50]. A new net-
working stack and corresponding ecosystem (including li-
braries, utilities, and runtime) are strongly needed, offer-
ing several benefits. First, it provides the opportunity to
maximize the communication performance under today’s
sub-microsecond and terabit regime, which is notoriously
challenging [4, 40]. Second, it can improve the overall system
energy efficiency by accelerating data transfer and stream-
lining computation-communication overlapping close to the
underlying hardware tiers. Third, it facilitates the system’s
compute, memory, and I/O scalability, avoids superfluous
scaling bottlenecks (due to contention and head-of-line block-
ing), and ameliorates the multi-tenancy support under mas-
sive intra-server data flows. Fourth, it enables microscopic
per-request and per-flow observability for system diagnos-
tics, anomaly detection, performance profiling, and upper-
layer development. However, our community lacks such
a system layer and the capabilities it would provide.

3 Understanding Server Chiplet
Networking

We systematically characterize server chiplet networking,
report our findings, and discuss the design implications.

EPYC 7302 EPYC 9634

Compute Chiplet

L1 1.24 ns 1.19 ns
L2 5.66 ns 7.51 ns
L3 34.3 ns 40.8 ns

Max CCX Q 30 ns 20 ns
Max CCD Q 20 ns N/A

I/O Chiplet Switching Hop ∼8 ns ∼4 ns
I/O Hub ∼15 ns ∼15 ns

Memory/Device

Near 124 ns 141 ns
Vertical 131 ns 145 ns

Horizontal 141 ns 150 ns
Diagonal 145 ns 149 ns

CXL DIMM N/A 243 ns

Table 2: The data path latency breakdown. We measured
the latency by configuring the pointer-chasing mode of our
utility and gradually increasing the working set. We changed
the NPS (Node per Socket) configurations and issuedmemory
requests to DIMMs at different positions.

3.1 Experimental Methodology
We use two types of commodity servers for the characteriza-
tion experiments. The Dell 7525 2U box contains two EPYC
7302 processors and 256GB DDR4. The Supermicro 1U server
has one EPYC 9634 processor, 1TB DDR5, and four Micron
CZ120 CXL modules (256GB each). Both servers run Ubuntu
22.04. We developed a micro benchmark utility (like oth-
ers [6]) that can flexibly generate different data flows (such
as one or multiple concurrent cachelines, random/sequential
read/write access patterns, and temporal or non-temporal
writes) over a size-configurable working set, originating from
and destined to compute chiplets, memory domains, and de-
vice domains across the chiplet networking subsystem. We
mostly use latency and bandwidth as performance metrics.

3.2 Extended Data Path with More Latency
Hops

Server chiplets add more intermediate hops compared with
monolithic ones, increasing the data communication path
and incurring some latency overhead. Within a compute
(sub)-chiplet, there is a traffic control module that limits
the number of outstanding requests. It employs a queueless
structure (like PhantomQueue [1]) and uses tokens and back-
pressure for overload control.We observe up to 50ns and 20ns
queueing delay in an EPYC 7302 and EPYC 9634 processor
(Table 2). Inside an I/O chiplet, requests traverse through a
sequence of micro-architectural modules before reaching the
target DIMM/device (Figure 2), including a cache-coherent
master (CCM), several I/O chiplet switching hops (SHops), an
I/O hub, a coherent station (CS), and a unified memory con-
troller (UMC). The switching hop and I/O hub take roughly
8ns and 15ns on the EPYC 7302 (4ns and 15ns in the EPYC
9634). Thus, accessing a DIMM at a near, vertical, horizontal,
and diagonal position (relative to the compute chiplet) yields
different latencies, i.e., 124ns (141ns), 131ns (145ns), 141ns
(150ns), and 145ns (149ns) on an EPYC 7302 (9634), because
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To DIMM Read/Write (GB/s) To CXL Read/Write (GB/s)
EPYC 7302 EPYC 9634 EPYC 7302 EPYC 9634

From Core 14.9/3.6 14.6/3.3

N/A

5.4/2.8
From CCX 25.1/7.1 35.2/23.8 23.6/15.8From CCD 32.5/14.3
From CPU 106.7/55.1 366.2/270.6 88.1/87.7

Table 3: Maximum achieved bandwidth from a
core/CCX/CCD/CPU when accessing the DIMMs and
CXL device. We measured the bandwidth using AVX512
memory read and non-temporal write operations.

the number of traversed hops varies. Accessing a PCIe device
not only goes through the I/O hub, but also passes through
a PCIe root complex, an I/O moderator (like an I/O north-
bridge), and P Links. Hence, a cacheline-sized CXL memory
access on the EPYC 9634 takes 243ns.

Implication #1: Chiplet servers generally extend the data
access path among cores, DIMMs, and devices because of
intra/inter-chiplet routing, imposing higher memory and
I/O stall cycles. It will affect traditional memory-sensitive
primitives, such as memory fences, synchronization locks,
and MMIOs. We would also see more granular non-uniform
memory access, such as the Sub-NUMA Clustering feature.
Asynchronous threading/coroutines, wait-free/lock-free data
structures, and locality-aware data placement are becoming
much more favorable to elude superfluous memory stalls and
maximize core utilization. Recent work on memory-bound
stall cycle harvesting [49] is also promising.

3.3 Heterogeneous Bandwidth Domains
Server chiplet networking is an agglomeration of heteroge-
neous networks that feature different bandwidth domains.
The achieved bandwidth is determined by the number of con-
current transactions issued end-to-end over the underlying
links, including Infinity Fabric (IF), Global Memory Inter-
connect (GMI), I/O chiplet internal interconnect, P link, and
PCIe/CXL. As shown in Table 3, a core sustains a read/write
bandwidth of 14.9/3.6 GB/s and 14.6/3.3 GB/s to DIMMs on
an EPYC 7302 and 9634 CPU, respectively, limited by the
per-core memory-level parallelism. When using all cores on
a compute chiplet, memory read/write bandwidths reach
up to 32.5/14.3 GB/s and 35.2/23.8 GB/s, respectively, con-
strained by the compute chiplet’s GMI link capacity. Given
that a unified memory controller (UMC) can deliver at most
21.1/19.0 GB/s and 34.9/28.3 GB/s of read/write bandwidth, a
compute chiplet must access multiple memory controllers to
attain higher aggregated bandwidth. We then activate all 4
and 12 compute chiplets in the two CPUs and issue as many
memory accesses as possible to all DIMMs. An EPYC 7302
achieves a peak read/write throughput of 106.7/55.1 GB/s,
and an EPYC 9634 attains up to 366.2/270.6 GB/s, both limited
by the NoC routing capacity in the I/O chiplet.
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Figure 3: We report the average and tail (P999) latency when
varying the bandwidth of the Infinity Fabric (IF), GlobalMem-
ory Interconnect (GMI), and P Link/CXL on the EPYC 7302
and 9634 processors. We vary the traffic load by issuing se-
quential read and non-temporal write operations and use
NOP instructions to control the rate. CC=Compute Chiplet.

Further, when accessing a peripheral device, the I/O path
segment (like the I/O hub, P link, and PCIe lanes) can become
a bottleneck. For example, on an EPYC 9634, a single core,
a single compute chiplet, and all 12 chiplets reach 5.4/2.8
GB/s, 23.6/15.8 GB/s, and 88.1/87.7 GB/s of CXL memory
read/write bandwidth, respectively, which is 63.0%/22.2%,
33.0%/33.6%, and 78.1%/69.3% lower than the local DIMM
performance due to the high access latency and PCIe/CXL
bandwidth limit.
Implication #2: Memory wall [65, 66] is a well-known

problem that denotes the bandwidth gap between computing
engines and memory subsystems. In chiplet server systems,
an emerging hidden "interconnect wall" would happen ei-
ther within or across chiplets, limiting the data movement
speed even before saturating the memory bandwidth. The is-
sue would become common in high-bandwidth servers with
terabit I/Os. Thus, being aware of end-to-end bandwidth do-
mains, identifying the bandwidth throttling path segment at
runtime, and developing an intra-server trafficmatrix [51, 92]
are essential for maximizing the data transmission perfor-
mance. Besides, we expect that more new computational
devices that support near-data computing [79, 82, 94] and
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distributed and collaborative computing [7, 22, 46] will be
designed and implemented.

3.4 Inconsistent Bandwidth-Delay Product
(BDP)

Memory and I/O requests in chiplet servers traverse sev-
eral different interconnects with incongruent BDPs. When
the number of in-flight transactions exceeds the underlying
link bandwidth capacity, one sees queuing or back-pressure
overheads, yielding head-of-line blocking. Figure 3 presents
our characterizations of different interconnects. Regarding
Infinity Fabric, the EPYC 7302 CPU provisions enough band-
width for intra- and inter-compute chiplet scenarios (Figures-
3-a/c). Thus, the average/tail read and write latencies are
144.5ns/490.0ns and 142.5ns/500.0ns, regardless of the load.
However, the EPYC 9634 is less-provisioned, where one com-
pute chiplet contains 7 cores, and we see a 2× latency in-
crease when approaching the max bandwidth (Figure 3-b).
In terms of GMI, since it connects on-chip memory con-
trollers to off-chip DIMMs through an I/O chiplet, the per-
GMI channel bandwidth is less than the on-chip intercon-
nect, causing significant request buffering. As shown in Fig-
ures 3-d/e, the memory read average/tail latencies of an
EPYC 7302 (9634) rise to 172.5ns/800.0ns (249.5ns/810.2ns)
from 123.7ns/470.0ns (143.7ns/380.0ns), respectively. And the
write ones increase from 123.9ns/480.0ns (144.1ns/350.2ns)
to 153.5ns/630.0ns (695.8ns/1749.8ns). The problem also hap-
pens with the P Link/CXL. Since the I/O chiplet on an EPYC
9634 is capable of driving 366.2/270.6 GB/s read/write traffic
(Table 3), we observe 1.7/1.4× and 2.1/1.6× average/tail read
and write latency increases (Figure 3-f), respectively.

Implication #3: Compared with conventional monolithic
servers, chiplet servers generally embody a much larger BDP
for data transmission among CPUs, DIMMs, and devices,
and can handle more outstanding transactions. However,
inconsistent BDP of different links would then incur queuing
and head-of-line blocking, jeopardizing bandwidth usage and
wasting computing cycles. Dynamic monitoring end-to-end
runtime BDP and using it for traffic control becomes vital in
server chiplet networking. Akin to rate limiters and traffic
policers in today’s OS networking and I/O stacks [32, 39,
77, 80], we expect such designs will also be developed and
applied to inter-/intra- chiplet communications.

3.5 Sender-driven Aggressive Bandwidth
Partitioning

Next, we examine how bandwidth is partitioned in server
chiplet networking. We launch two competing flows at dif-
ferent links, use NOP instructions to control their requested
bandwidth, and see howmuch bandwidth each flow achieves.
When the link is under-subscribed, as expected, both flows
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Figure 4: Bandwidth (BW) partitioning of two competing data
flows at a shared link on the EPYC 7302 and 9634 processors.
We examine four cases. The first targets when the aggregated
requested bandwidth is less than the link capacity, while the
other three consider the over-subscription scenario. Case 2
has one flow whose requested bandwidth is less than the
equal share. In cases 3 and 4, two flows request the same
and different amounts of bandwidth (more than their equal
share), respectively. CC=Compute Chiplet.

can receive the requested bandwidth, regardless of the link
type (case 1 in Figure 4). When the link is over-subscribed,
i.e., the aggregated requested bandwidth exceeds the band-
width capacity, we find that the bandwidth partition follows
a sender-driven aggressive manner (cases 2 and 4). In partic-
ular, the flow with a higher demand takes more bandwidth
than its equal share. This is because each communication
intermediate point at a compute or I/O chiplet is unaware
of (a) what a flow is and (b) what the demand of a flow is.
As a result, such traffic-oblivious routing always benefits an
aggressive sender that pushes more requests in-flight. Two
flows with the same demand receive the equilibrium band-
width (case 3). Further, we evaluate the link bandwidth usage
when its housed flows have unsteady demands. Specifically,
as shown in Figure 5, we reduce the traffic rate of flow 0 by
2.0GB/s at the 2–3s and 4–5s periods, and observe that flow 1
can reliably take the unused bandwidth at the IF and P Link
on an EPYC 9634 processor. However, the EPYC 7302 sees
drastic variation at the IF link (we suspect this is due to the
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Figure 5: Bandwidth utilization of two competing flows with
fluctuating demands.We throttle flow 0 and see whether flow
1 (unthrottled) can reap the unused bandwidth.

intra-CC queuing module). Bandwidth harvesting does not
happen instantly. It takes roughly 100ms and 500ms for the
EPYC 9634 to reap unused bandwidth on the IF and P Link,
respectively. When flow 0 finishes throttling, the two flows
would again take an equal bandwidth share.

When read/write data streams mix, we observe that inter-
ference occurs only when a particular link in one direction
is saturated. As shown in Figure 6, within a compute chiplet
over IF, writes and reads are affected when the background
read stream approaches 32.8GB/s and 27.7GB/s. The back-
ground write stream induces little interference. Across the
compute chiplets, we observe that data stream performance
is affected at much higher bandwidth, because the I/O chiplet
provisions more than one routing path. For example, the
write flow is rarely affected regardless of the background
traffic, while reads are degraded when the aggregated band-
width exceeds 55.7GB/s. At the GMI and P Link/CXL, inter-
ference occurs when the aggregated read(write) bandwidth
reaches 31.8(29.1) GB/s and 62.8(44.0) GB/s.
Implication #4: Traffic-oblivious bandwidth allocation

and routing are the de facto traffic control scheme. This
works well for traditional monolithic servers whose NoC
bandwidth is over-provisioned. However, this is no longer
the case for server chiplet networking, where compute and
I/O chiplets might contend for one or several links. Thus, it
will be valuable to introduce the communication flow abstrac-
tion, materialize it in a global software-based traffic manager,
and expose it to the chiplet network. In this way, one could
develop application-specialized traffic control instead of re-
lying on the sender side naively. Read and write interference
would also occur when an interconnect link in one direction
is over-subscribed. Recent studies on host networking [95]
offer a promising approach to build upon.

4 Looking Forward
Server chiplet networking changes how processors, memory,
and I/O devices communicate across a server platform, en-
tailing unique performance characteristics. We outline new
research directions on grappling with its ramifications.
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Figure 6: Read/write interference at the IF, GMI, and P
Link/CXL on the EPYC 9634 processor. We run a frontend
stream X at max rate, vary the traffic load of the background
one Y, and report how much bandwidth X achieves (X-Y).

#1: Hardware-abstracted Chiplet Networking Layer.
Device tree [21] is a data structure that describes the hard-
ware components and their organizational structure of an
embedded/PC/server platform, exposed to the operating sys-
tem for system management and maintenance. We believe
that a similar hardware abstraction for chiplet networks
(like /sys/firmware/chiplet-net) is essential. It not only
presents an architectural overview (as Figure 1), but also
provides runtime performance telemetry statistics for each
link and intermediate hop through /proc/chiplet-net, fa-
cilitating low-level system development.
#2: Rethinking Scalable Operating SystemDesign.With
hardware modularity, chiplet servers drastically increase
the number of cores (e.g., a four-socket AmpereOne server
featuring 1024 cores), motivating us to revisit the design
principles of many-core operating systems [5, 8, 9, 16]. For
example, the multikernel [5] OS structure is motivated by the
costly interconnect (i.e., AMD HyperTransport) when han-
dling cache coherence on a shared memory system. It makes
inter-core communication explicit and uses asynchronous
messages to synchronize replicated states. However, such
a design might not be suitable in chiplet networking due
to the extended communication path (§3.2), heterogeneous
bandwidth domains (§3.3), and inconsistent BDP (§3.4). It
is pivotal to explore, refine, or perhaps redefine what the
scalable commutative rule [16] is.
#3: Fused Intra-/Inter-Host Networking and I/O Stack.
Recent trends indicate that inter-fabric bandwidth has gradu-
ally approached or even outpaced intra-host bandwidth, like
in disaggregated storage [27, 32, 35, 36, 45, 52–54, 105]. For
example, a 400+GbE terabit Ethernet port and 8+ NVMe SSDs
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can sometimes drive more bandwidth than a compute chiplet.
The problem becomes even worse if considering the incon-
sistent BDP (§3.4) and unregulated bandwidth partitioning
(§3.5). Researchers have partly tackled this issue [13, 32].
For example, NetChannel [13] introduces a disaggregated
networking stack and uses a flexible channel abstraction
for streaming data in and out. blk-switch [32] proposes a
switching architecture for the block layer for efficient multi-
tenancy. In chiplet networking, the network and I/O stack
should consider both the internal and external link character-
istics and judiciously orchestrate data flows across compute
chiplets, I/O chiplets, memory domains, and devices.
#4: Intra-host Switching for Accelerators. Dense GPU
and domain-specific accelerator servers have become preva-
lent in the era of AI. Although massive data communications
use dedicated external fabrics (like NVLink), server chiplet
networking is an important component for the signal plane
and host-accelerator interaction. Specifically, the accelera-
tor execution is activated via submission commands and
completed through acknowledgment responses, which are
latency-sensitive. Bandwidth-intensive input/output data is
copied to/from the accelerator memory explicitly through
DMA or data movement engines, managed by the host CPU.
In chiplet networking, all such communications traverse the
device bus, I/O hub, and I/O chiplet, which embody perfor-
mance idiosyncrasies (§3.2–§3.5). To fully utilize the accel-
erator and eliminate movement-induced stalls, one should
develop an intra-host switching module that proactively
monitors the traffic matrix [51], conceives an optimal com-
munication path and schedule, and provisions just enough
bandwidth. Researchers have explored such a design in pro-
grammable networks [7, 14, 22, 42, 75, 76, 83, 84, 104, 106]
and in-network computing [29, 44, 46–48, 67, 81].
#5: Chiplet-Centric System Modeling, Benchmarking,
and Profiling. Chiplet networking significantly complicates
server operational observability, making resource provision-
ing, performance diagnostics, and debugging challenging.
Besides the sub-microsecond granularity, difficulties arise
from much more intertwined micro-architectural compo-
nents, with very limited hardware monitoring counters. We
propose to take an interconnect transaction view and de-
velop a chiplet-centric architectural performance model, as
many others [2, 19, 26, 43, 101, 102], to capture both data
and computing flows. Next, it would be useful to develop
a benchmarking framework [30, 60] for cross-platform sys-
tematic characterization and to produce practical guidelines.
Last, we advocate for a system-level perf-like [20, 41] pro-
filing utility, entrenched with the server SoC, that collabo-
ratively combines the hardware architectural PMU (Perfor-
mance Monitoring Unit) with time-series-based probabilistic
and compact data structures (like Sketches [88, 97, 103]) to
distill application-specific execution telemetry.

#6: From Server Chiplet Networking to Accelerator
Chiplet Networking. As accelerators are increasingly built
using chiplets, we believe that accelerator chiplet network-
ing will also be an interesting exploration area. In addition
to the idiosyncrasies uncovered in §3, taking existing AI
accelerators [70–72, 78, 93, 107] as an example, we expect
that (a) the tighter coupling between communication and
computation (such as tensor tiles, activation gradient, and at-
tention maps), (b) mixed dataflows (like control-plane kernel
dispatching and data-plane tensor streaming), and (c) multi-
tier communication hierarchy (e.g., inter-chiplet, on-package
NOC, and inter-packet) will impose more challenging issues,
requiring us to rethink traffic control, kernel scheduling, and
communication collective.

5 Conclusion
This paper introduces a new type of host network–server
chiplet networking. We perform a systematic characteriza-
tion of AMD chiplet-based EPYC server platforms and sum-
marize several key design implications. We outline future
research directions, and believe that server chiplet network-
ing will fundamentally shape the design and implementation
of future performant, efficient, and scalable server systems.
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