
Chat with AI: The Surprising Turn of Real-time Video
Communication from Human to AI
Jiangkai Wu, Zhiyuan Ren, Liming Liu, Xinggong Zhang

Peking University

Abstract
AI Video Chat emerges as a new paradigm for Real-time
Communication (RTC), where one peer is not a human, but
a Multimodal Large Language Model (MLLM). This makes
interaction between humans and AI more intuitive, as if chat-
ting face-to-face with a real person. However, this poses sig-
nificant challenges to latency, because the MLLM inference
takes up most of the response time, leaving very little time
for video streaming. Due to network uncertainty, transmission
latency becomes a critical bottleneck preventing AI from being
like a real person. To address this, we call for AI-oriented
RTC research, exploring the network requirement shift from
"humans watching video" to "AI understanding video". We be-
gin by recognizing the main differences between AI Video
Chat and traditional RTC. Then, through prototype measure-
ments, we identify that ultra-low bitrate is a key factor for
low latency. To reduce bitrate dramaticallywhilemaintaining
MLLM accuracy, we propose Context-Aware Video Streaming
that recognizes the importance of each video region for chat
and allocates bitrate almost exclusively to chat-important
regions. To evaluate the impact of video streaming quality
on MLLM accuracy, we build the first benchmark, named
Degraded Video Understanding Benchmark (DeViBench).
Finally, we discuss some open questions and ongoing so-
lutions for AI Video Chat. DeViBench is open-sourced at:
https://github.com/pku-netvideo/DeViBench.

CCS Concepts
• Computing methodologies→ Artificial intelligence; •
Networks→Application layer protocols; • Information
systems→Multimedia streaming; • Human-centered
computing→ Human computer interaction (HCI).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HotNets ’25, College Park, MD, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-2280-6/2025/11
https://doi.org/10.1145/3772356.3772390

Keywords
Real-time Communication, Generative AI, Multimodal Large
Language Model, AI Video Chat, Latency, Benchmark
ACM Reference Format:
JiangkaiWu, Zhiyuan Ren, Liming Liu, Xinggong Zhang. 2025. Chat
with AI: The Surprising Turn of Real-time Video Communication
from Human to AI. In The 24th ACM Workshop on Hot Topics in
Networks (HotNets ’25), November 17–18, 2025, College Park, MD,
USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3772356.3772390

Figure 1: AI Video Chat is a new paradigm for real-time
communication. The user sends video and audio to the
AI for thinking. The AI feeds back to the user. Low
latency is crucial for making AI act like a real person.

1 Introduction
AI Video Chat is a new paradigm for Real-time Commu-
nication (RTC). Since OpenAI released GPT-4o [15], Multi-
modal Large Language Models (MLLMs) have been continu-
ously emerging, such as Qwen2.5-Omni [40], Gemini-1.5 [32],
VITA-1.5 [13], and OmniLive [46]. Compared to traditional
LLMs, MLLMs enable users to directly input video and audio
for interaction, rather than just text. This makes the inter-
action between humans and AI more intuitive as if chatting
face-to-face with a real person [7]. However, MLLMs require
high-performance computing devices to support real-time
inference (such as 8*A100 GPUs [27]). Mobile devices (like
phones or smart glasses) cannot meet the computing require-
ments, whichmakesMLLMs inevitably deployed in the cloud.
So in existing systems, the client sends user video and audio
to the cloud for MLLM inference, and the cloud then feeds
back responses to users, as shown in Figure 1.

AI Video Chat raises significant challenges to RTC trans-
mission latency. To ensure a fluent interactive experience,
the response latency of video chat needs to remain below
300 ms [18]. In traditional video chat, the human peer on the
other side can respond instantly. Therefore, response latency

https://github.com/pku-netvideo/DeViBench
https://doi.org/10.1145/3772356.3772390
https://doi.org/10.1145/3772356.3772390
https://doi.org/10.1145/3772356.3772390


HotNets ’25, November 17–18, 2025, College Park, MD, USA Jiangkai Wu et al.

largely stems from RTC’s end-to-end latency (including cap-
ture, transmission, decoding, and playback buffer latencies).
Among them, transmission latency is sensitive to network
conditions and continuously increases when the network
deteriorates. To reduce transmission latency, current state-
of-the-art RTC frameworks (such asWebRTC [6]) adopt tech-
nologies like Adaptive Bitrate (ABR) [3, 14, 16, 23, 41], Con-
gestion Control [5, 11, 12, 25], and Forward Error Correction
(FEC) [4, 10, 20, 24, 29] to satisfy user experience. However,
in AI Video Chat, responses are generated through MLLM in
an autoregressive manner, which is time-consuming. Even
when inputting only audio tokens, the computational latency
is at least 232 ms [15]. To constrain the response latency be-
low 300ms, even ignoring other latencies in the RTC pipeline,
the time left for transmission is at most 68 ms, which is diffi-
cult to guarantee. So the large latency makes users clearly
feel that the other side is not a real person.

Is it possible to reduce the latency ofAI VideoChat to
an extremely low level? This vision allows us to grasp
the "holy grail" [7] of AI research from the perspective
of network systems: making AI like real humans.
To realize this vision, we call for AI-oriented RTC re-

search, exploring the network requirement shift from "hu-
mans watching video" to "AI understanding video". We begin
by recognizing the main differences between AI Video Chat
and traditional RTC: First, QoE changes from human percep-
tual quality to MLLM response accuracy. Second, jitter has no
impact. Third, the receiver throughput is far lower than the
sender throughput. Fourth, uplink is more pressing than Down-
link. Then, through prototype measurements, we identify a
key factor for low latency: ultra-low bitrate. Based on two
insights, we make contributions:

• Video should be Context-Aware (§3.2). To reduce bi-
trate dramatically while maintaining MLLM accuracy, we
propose Context-Aware Video Streaming, allocating more
bitrate to chat-important video regions while allocating
as little bitrate as possible to chat-irrelevant regions.

• The First Benchmark (§3.1). Considering that there is no
benchmark that can evaluate the impact of video quality on
MLLM accuracy, we propose the first one, namedDegraded
Video Understanding Benchmark (DeViBench).

2 Motivation
2.1 Main differences between AI Video

Chat and traditional RTC
QoE changes from human perceptual quality to MLLM
response accuracy. In traditional RTC, QoE focuses on mea-
suring the perceptual quality of human eyes. For example,
using penalty terms like stalling time [10, 41] or quality vari-
ance [8] to measure temporal stability. Using SSIM [41] or
VMAF [2] to measure visual quality. But in AI Video Chat,

Figure 2: MLLM processes video at a very low frame
rate (green), so most frames are redundancy (red).

the viewer of the video changes from humans to MLLMs.
At this point, most perception-related metrics are no longer
needed, and the optimization objective of QoE becomes the
accuracy and latency of MLLM’s responses. So the RTC strat-
egy can undergo a significant turn. For example, to reduce
latency, temporal stability (such as frequent bitrate adjust-
ments) and visual quality (like lowering bitrate in Figure 4)
can be sacrificed, as long as accuracy is enough.
Jitter has no impact. Due to network uncertainties (conges-
tion, packet loss, etc.), evenwhen the sender transmits frames
at fixed time intervals, the time intervals of received frames
will experience jitter. Direct playback will result in uneven
video speed, causing stuttering. Therefore, traditional RTC
employs a jitter buffer [47], trading latency for smoothness.
For MLLMs, the difference is that their perception of time
does not rely on real physical time, but rather on positional
encoding computation [13, 40, 46]. Positional encoding is
only associated with the frame’s capture timestamp and un-
related to the actual receiving time; thus, jitter has no impact
on the MLLM’s perception of the video. It means that in AI
video chat, the buffer can be removed to reduce the latency.
The receiver throughput is far lower than the sender
throughput. In traditional RTC, the data throughput at the
receiver is comparable to that at the sender, for example, both
are 1920*1080 resolution at a 30 FPS frame rate. However,
in AI Video Chat, MLLM is limited by context length (finite
number of tokens) and real-time inference, and cannot fully
process the received video. Therefore, the received video
needs to be actively downsampled before being fed to the
MLLM. In terms of frame rate, existingAI Video Chat systems
support a maximum processing rate of only 2 FPS [13, 38, 40].
In terms of resolution, regardless of how high the original
resolution is, it will be downsampled to no more than 602,112
pixels [40]. So traditional RTC contains massive redundancy
that MLLMs cannot perceive, as shown in Figure 2.
Uplink is more pressing than Downlink. In traditional
RTC, each peer is both video sender and receiver. In contrast,
AI Video Chat is unidirectional video transmission, where
the user only acts as the video sender and MLLM only acts as



Chat with AI: The Surprising Turn of Real-time Video Communication from Human to AI HotNets ’25, November 17–18, 2025, College Park, MD, USA

Figure 3: How bitrate and packet loss affect latency
(with 10 Mbps bandwidth). To optimize video quality,
traditional RTC systems select bitrate from the gray
region. But in AI video chat, to maintain accuracy, we
only need to select bitrate from the yellow region (§2.2).

the video receiver. MLLM sends responses to the user in the
form of audio or text, and these representations have much
lower bitrates than video. Thus, uplink needs better network
conditions than downlink, for example, larger bandwidth.

2.2 What factors affect the transmission
latency of AI Video Chat?

To analyze the factors affecting transmission latency in AI
Video Chat, we built a prototype and conducted preliminary
measurements. Specifically, we implement a WebRTC-based
unidirectional video transmission system and a network em-
ulator. Under given bandwidth (10 Mbps) and one-way net-
work delay (30 ms), we run video transmission for a total
duration of 40,489 seconds, and collect statistics on transmis-
sion latency (the time from the frame being sent to being
completely received, excluding the jitter buffer §2.1) with
different packet loss rates and bitrates, as shown in Figure 3:
First, when the bitrate exceeds the bandwidth, transmis-

sion latency becomes enormous. This is because excessive
bitrate causes congestion, where packet accumulation causes
latency to increase rapidly. Therefore, existing RTC systems
employ ABR algorithms to set the bitrate as close as possi-
ble to (but below) the bandwidth, maximizing video qual-
ity while avoiding stalling, as shown in the grey region
of Figure 3. Second, when the bitrate does not exceed the
bandwidth, transmission latency also increases as the bi-
trate increases. This is due to the fact that each packet has
a limited size (around 1400 bytes). A higher bitrate means
each frame will be divided into more packets. Due to packet
loss, more packets mean the probability of each frame being
completely received in one attempt decreases. For packets
that are not received, retransmission may be required, poten-
tially leading to increased latency. Therefore, even when the
bitrate is below the bandwidth, AI Video Chat can further re-
duce the bitrate to achieve lower latency. This differs from

Figure 4: Why video should be context-aware in AI
Video Chat. In the first dialogue, even if the video bi-
trate decreases from 4000 Kbps to 200 Kbps, the MLLM
can still response accurately. But in the second dialogue
from StreamingBench [22], the blurry video leads to
incorrect responses. Thus, rather than reducing bitrate
in a context-agnostic manner, bitrate allocation should
be determined by the current chat context (§2.3).

traditional ABR and offers another space for bitrate
selection, as shown in the yellow region of Figure 3.

2.3 Key Insights and Potential Gains
Video should be Context-Aware. According to §2.2 re-
ducing video bitrate can decrease transmission latency. To
reduce bitrate, existing methods typically increase quantiza-
tion parameters [30], which inevitably degrades video quality.
Interestingly, the degradation in video quality does not neces-
sarily lead to a decrease in MLLM accuracy, which depends on
the current chat context. As illustrated in Figure 4, when the
user asks "Could you tell me the present score of the game?",
even if the video bitrate is reduced from 4000 Kbps to 200
Kbps, the MLLM can still answer accurately. However, when
the user asks "What logo is seen on the jersey of the player
covering his mouth?", the blurry video leads to incorrect
responses. This is because, in different chat contexts, the
MLLM needs to focus on different video regions. Meanwhile,
different video regions are affected differently by low bitrate.
Thus, rather than reducing bitrate in a context-agnostic man-
ner, the video should be context-aware. More bitrate should
be allocated to chat-important regions, while less bitrate
should be allocated to chat-irrelevant regions.

How to be aware of the chat context? Our idea is: the user
words can indicate which video regions are important for
the current chat. Therefore, we can take the user words as a
reference to compute the semantic correlation of different
video regions. For this, we adopt the Contrastive Language-
Image Pre-Training (CLIP) model [28], which maps images
and language to the same feature space. Hence, to derive



HotNets ’25, November 17–18, 2025, College Park, MD, USA Jiangkai Wu et al.

Figure 5: How to achieve context awareness? The user words can indicate which regions in the video are important
for the current chat context. Based on CLIP, we can even recognize important regions through high-level under-
standing. For example, in the third dialogue, the growth of grass implies the current season (§2.3).

semantic correlation, we only need to compute the similarity
of features between video regions and user words. We show
some examples in Figure 5, which demonstrates that user
words and CLIP can well point out the importance of differ-
ent video regions for chatting. For example, when the user
asks "Is the dog in the video erect-eared or floppy-eared?",
the dog’s head region exhibits the highest correlation. On
the other hand, even when the user words do not explicitly
indicate the object, CLIP can still estimate correlation based
on high-level understanding. For example, when the user
asks "Infer what season it might be in the video", grass has
the highest correlation. This is because the growth of grass
can imply the current season (CLIP even ignores the blurry
grass in the distance). Thus, this context-aware mechanism
allows us to optimally allocate the bitrate (§3.2).
The first benchmark evaluates how video streaming
quality affects MLLM accuracy. According to §2.1, QoE
metrics in AI Video Chat change from perception to accuracy.
This causes existing benchmarks in the video streaming field
to be inapplicable, as they focus on perceptual quality and do
not involve response accuracy. In the MLLM field, there are
some benchmarks targeting Streaming Video Understand-
ing tasks [38, 42], such as StreamingBench [22]. In these
benchmarks, each video includes several Question-Answer
(QA) samples for evaluating the response accuracy. However,
these benchmarks aim to test the MLLM’s intelligence, so all
the input videos are ideally high-bitrate (e.g., 4000 Kbps).

To evaluate how video streaming quality affects accuracy,
we transcode videos from StreamingBench to 200 Kbps. Then
we conduct testing on these low-bitrate videos with the origi-
nal QA samples. The results show that only 8% of QA samples
are answered incorrectly at low bitrate and correctly at high
bitrate. This is because the QA samples in StreamingBench
are too simple and high-level, requiring only coarse-grained
video content to answer correctly. For example, in Figure 4,
when the question is "What is the player doing?", even if the
video quality is particularly poor, the MLLM can still provide
the correct answer "He is covering his mouth." However, in
real-world scenarios, there are often many detail-rich ques-
tions that are very sensitive to video quality. For example, in

Figure 4, when the question is "How many spectators can be
seen?", even slight blurriness will prevent the MLLM from
providing the correct answer. So it is necessary to establish a
more challenging benchmark to reflect the real-world impact
of video degradation on MLLM accuracy (§3.1).

3 Towards RTC for AI: Case Study
We begin by constructing the first benchmark evaluating
how video quality affects MLLM accuracy, named Degraded
Video Understanding Benchmark (DeViBench). Then we
present a case study: Context-Aware Video Streaming.

3.1 DeViBench
In this section, we propose DeViBench. As described in §2.3,
we need to construct QA samples that are sensitive to video
quality. For this, the most straightforward way is to hire
volunteers to ask tricky questions about degraded videos.
However, this is too expensive and inefficient, hindering the
scale-up of the dataset. So we ask: Can QA samples be
constructed automatically and cheaply? Rethinking the
background of AI Video Chat, MLLMs are already capable
of understanding videos and giving responses. So we lever-
age MLLMs to replace human volunteers and develop an
automatic QA sample construction pipeline. As illustrated
in Figure 6, this pipeline consists of 5 steps:
Video Collection.We first collect videos to ask questions.
To align with the domain and scale of existing MLLM bench-
marks [22], we directly use their videos (discarding QA).
Video Preprocessing. To allow MLLMs to understand the
quality degradation caused by low bitrates, we transcode the
original videos to low-bitrate versions (200 Kbps) using x265
from ffmpeg version N-118035-gc1e3d55f99. The low bitrate
video and the original video are horizontally concatenated
into one video. Then this concatenated video will be input
to the MLLM for understanding and QA generation.
QA Generation. To enable MLLMs to generate QA samples
based on the concatenated video, we carefully designed a
prompt with guidance from persona, context, core task, ex-
ecution steps, constraints, and output format, as shown in



Chat with AI: The Surprising Turn of Real-time Video Communication from Human to AI HotNets ’25, November 17–18, 2025, College Park, MD, USA

Figure 6: DeViBench’s pipeline for automatic QA sam-
ple construction. Details can be found in §3.1.

Figure 7: Our prompt for QA Sample Generation.

Figure 7. This prompt ensures that MLLMs can recognize
quality differences and generate quality-sensitive QA sam-
ples. To facilitate judging whether the answer is correct, we
generate multiple-choice questions with four options (A, B,
C, D). Users can directly calculate accuracy by matching the
answer letters, without needing to measure semantic con-
sistency. We also encourage MLLMs to generate questions
that require at least multiple frames to answer, in order to
enhance the temporal dependency of the questions. Qwen3-
VL-plus thinking [1] is adopted as the generator.
QA Filtering. The generated QA pairs will be filtered. We
separately input the original video and the low bitrate video
into the MLLM and use the generated QA pairs for question-
ing. If the answer from the original video is correct and the
answer from the low bitrate video is wrong, we accept this

Table 1: Benchmark summary

Number of QA samples 1,074
QA sample types 6*2
Total duration (s) 180,000

Total money spent ($) 68.47
Total time cost (s) 99,471

Figure 8: Distribution of our generated QA samples.
Outer ring: QA categories. Inner ring: Whether the
question requires multiple frames to answer.

QA pair. In practice, Qwen2.5-Omni [40] is adopted as the
filter and 11.16% of the QA pairs can be accepted.
Cross Verification. Since the answer generated by MLLM
may also be incorrect, this cannot be filtered out through
the above testing. Hence, we utilize another MLLM for cross-
verification. We feed the above accepted question into an-
other MLLM, and if the new answer is consistent with the
above accepted answer, we finally approve this QA pair. In
our experiments, GLM-4.5V thinking [33] is adopted as the
verifier and 70.61% of the accepted QA pairs can pass cross-
verification. Considering all the above validations together,
finally 7.8% of the generated QA pairs are valid.
Finally, we produce 1,074 QA samples, with details sum-

marized in Table 1, including QA types, total duration, to-
tal money spent, and total time cost. We also analyze the
distribution of different QA types, as shown in Figure 8.
In terms of categories, there are text-rich understanding
(54.84%), action perception (17.03%), attribute perception
(14.43%), counting (6%), object perception (5.9%), and spa-
tial understanding (1.8%). In terms of temporal dependency,
34.45% of the questions necessitate multiple frames for an-
swering, whereas 65.55% are answerable with a single frame.
To confirm whether these MLLM-generated QA samples are
usable, we spot-check 100 QA samples for manual answering.
Among them, 95% of the generated questions are answerable
by humans, and 84% of the generated answers are correct.

3.2 Context-Aware Video Streaming
In this section, we describe how to achieve context-aware
streaming, significantly reducing bitrate while maintaining
MLLM accuracy. According to §2.3, we first leverage the



HotNets ’25, November 17–18, 2025, College Park, MD, USA Jiangkai Wu et al.

Figure 9: Context-aware streaming can dramatically
lower the bitrate while maintaining MLLM accuracy.

CLIP model to compute the semantic correlation between
user words and video regions. To ensure real-time computing
on mobile devices, we adopt Mobile-Clip [35]. Specifically,
given the current userwordsT and the latest video frame 𝐹 ∈
R𝐻×𝑊 ×3, we first partition 𝐹 into non-overlapping patches
{𝑃𝑚𝑛 | 1 ≤ 𝑚 ≤ ⌊𝐻/𝑁 ⌋ , 1 ≤ 𝑛 ≤ ⌊𝑊 /𝑁 ⌋}, where each patch
𝑃𝑚𝑛 ∈ R𝑁×𝑁×3 represents a video region. Then, the CLIP
visual encoder 𝜙𝑣 (·) : R𝑁×𝑁×3 → R𝑑 is employed to extract
patch-wise features 𝑓 𝑣𝑚𝑛 = 𝜙𝑣 (𝑃𝑚𝑛), while the CLIP language
encoder 𝜙𝑙 (·) : T → R𝑑 encodes the user words T into a
semantic features 𝑓 𝑙 = 𝜙𝑙 (T ). Here 𝑑 denotes the unified
feature dimension. Semantic correlation 𝜌𝑚𝑛 between user
words and patches is then computed as cosine similarities:

𝜌𝑚𝑛 =
𝑓 𝑣𝑚𝑛 · 𝑓 𝑙

∥ 𝑓 𝑣𝑚𝑛 ∥


𝑓 𝑙

 ∈ [−1, 1] (1)

Semantic correlation 𝜌𝑚𝑛 can measure the importance of
region 𝑃𝑚𝑛 for the current chat context. The larger 𝜌𝑚𝑛 is,
the more important 𝑃𝑚𝑛 is. So we can allocate more bitrate to
important regions while allocating as little bitrate as possible
to irrelevant regions. To achieve this, we adjust the Quan-
tization Parameters (QP) of different regions during video
encoding. When QP is larger (0 ≤ QP ≤ 51), the region occu-
pies less bitrate, but the quality becomes worse. Specifically,
for region 𝑃𝑚𝑛 , its QP𝑚𝑛 is derived as:

QP𝑚𝑛 = 51
(
1 −

(
𝜌𝑚𝑛 + 1

2

)𝛾 )
(2)

Where 𝛾 is the temperature coefficient, set to 3 to aggres-
sively penalize irrelevant regions (𝜌𝑚𝑛 ≪ 1). To achieve
fine-grained QP control, we adopt H.265 implemented by
Kvazaar [36] to encode ours and baseline. Except for the QP
values, ours and baseline use the same encoding parameters.
The frame rate is consistent with the video source (e.g., 60
FPS). The specific Kvazaar command lines can be found in
our open-source link. As for decoding, both ours and baseline

Figure 10: An example of accuracy gain. We visualize
the frame input to the MLLM. (a) Encoded with default
settings. (b) Encoded with CLIP-informed QP. (c) The
CLIP-informed QP map. The results show that even
with similar bitrates (430 Kbps vs. 425 Kbps), ours allo-
cates more bits to chat-important regions (e.g., purple
circles) and fewer bits to chat-irrelevant regions (e.g.,
yellow circles), thus improving MLLM accuracy.

adopt x265 from decord 0.6.0, maintaining the same decod-
ing parameters. We test with Qwen2.5-Omni [40]. Code and
model are frozen before testing. We keep the default settings
(the same random seed, system prompt, and configuration as
officially recommended), without tuning for the QA samples.
We evaluate the performance gains 1 in Figure 9. The re-

sults demonstrate that context-aware streaming can dramat-
ically lower the bitrate while maintaining MLLM accuracy.
For example, when the bitrate is reduced from 827.9 Kbps
to 426.4 Kbps (48.5% reduction), the MLLM accuracy drops
from 0.73 to 0.33. After integrating context-aware stream-
ing, as the bitrate drops from 850.1 Kbps to 432.7 Kbps, the
accuracy only decreases from 0.93 to 0.87. To intuitively
demonstrate the benefits, we visualize two sampled frames
fed into the MLLM, as shown in Figure 10. The results show
that even with similar bitrates (430 Kbps vs. 425 Kbps), our
method allocates more bits to chat-important regions (e.g.,

1Since DeViBench is continuously scaling up and iterating, the experiments
in Figure 9 are frozen at an earlier version (small-scale, free-response, also
available in the open-source link), rather than the version reported in §3.1.
This is because video encoding takes a long time to run, and time constraints
prevented us from rerunning the experiments on the current version. During
Kvazaar encoding, the target bitrate often differs greatly from the actual
bitrate. So we use a trial-and-error approach to ensure that the actual bitrates
of ours and the baseline are comparable. Each video requires many encoding
iterations, causing large time costs. Despite not updating the experiments,
we speculate that the baseline’s accuracy would be higher on the current
version. This is because, compared to the previous free-response questions,
multiple-choice questions are easier to answer. On one hand, the options, as
part of the question prompt, provide sufficient hints to the MLLMs. On the
other hand, even if the video is too blurry to see clearly, MLLMs can still
make a vague guess from the ABCD options (with at least 25% accuracy).



Chat with AI: The Surprising Turn of Real-time Video Communication from Human to AI HotNets ’25, November 17–18, 2025, College Park, MD, USA

purple circles) and fewer bits to chat-irrelevant regions (e.g.,
yellow circles), thus improving MLLM accuracy.

4 DISCUSSIONS AND OPEN QUESTIONS
Proactive context-aware. In this paper, we leverage user
words to achieve context awareness. It may not necessarily
perform well in practice. Because it requires user words to
be known before video encoding. But users may speak at any
moment in the video, causing user words not to cover some
segments. For example, in some benchmarks like [22, 38, 42],
they assume that users ask questions at the end of the video.
As our next step, we are building a proactive context-aware
mechanism that can actively recognize important video re-
gions even if users do not speak.
MLLM long-termmemory. Tominimize bitrate, the sender
discards most video content irrelevant to the current chat
context. This is based on the assumption that the current
chat only references real-time video content. However, some
MLLMs have developed long-term memory mechanisms [26,
37, 39], allowing chats to reference historical video content.
Some video content, even if not relevant in the current chat
context, may be needed in future chats. As our next step, we
are developing a semantic layered video streaming framework.
Different from SVC [30] that layers based on video quality,
we layer by semantic correlation. The base layer contains the
most important video content for the current chat context,
so it must ensure low latency. The enhancement layers con-
tain complete video details, used to offline build long-term
memory, so they are not sensitive to latency.
Token pruning. To further lower the end-to-end latency, it
is necessary to reduce the inference latency of MLLMs. Since
MLLMs run in an autoregressive manner, a straightforward
solution is to decrease the number of input tokens. Some
related work exploits attention mechanisms [48] or video
redundancy [43] to prune most visual tokens, without affect-
ing MLLM accuracy. In this paper, context-aware streaming
has already recognized important video regions, so it makes
much sense to prune tokens from chat-irrelevant regions. As
our next step, we are developing context-aware token pruning
mechanisms to accelerate MLLM inference.
Client-side computation. Despite being optimized for mo-
bile devices, Mobile-CLIP still incurs considerable compu-
tation. This leads to the computational resources not being
fairly equalized in the comparison, because the encoders for
both ours and the baseline use the default preset (medium).
As future work, the baseline can adopt a more complex en-
coder preset (e.g., slower) to balance computational resources
and achieve better video quality. Moreover, extra computa-
tional resources can also be used to explore model collab-
oration. For example, deploying a mobile MLLM [17, 44]

on the client to handle simple questions locally, while only
transmitting challenging videos to the cloud-side MLLM.
Client-side tokenizer and token streaming. Is it possible
to offload the video tokenizer from the server to the client and
stream video tokens to the MLLM? This offers three poten-
tial gains: First, the tokenizer can serve as a powerful video
compressor. For instance, MAGVIT-v2 [45] achieves a better
compression ratio than H.266 [19]. Second, video tokens are
loss-resilient. On one hand, even when 82.8% of tokens are
lost, the MLLM can still maintain 98% of its original accuracy.
On the other hand, missing tokens can be recovered at the
receiver using some Masked Language Models [20]. Third,
offloading the tokenizer can fully leverage client-side compu-
tational resources, thereby alleviating server-side pressure
and increasing the number of concurrent requests. However,
despite the significant potential benefits, this approach is in-
feasible. It is important to note that there are two types of
video tokens: continuous tokens (outputs from the encoder,
represented as embeddings) and discrete tokens (quantized
through a codebook, represented as indices [34]). Only dis-
crete tokens have a low bitrate [45], while continuous tokens
are uncompressed floating-point tensors whose bitrate is too
high to stream. Discrete tokens are used only for AIGC tasks
(such as text-to-video generation [9, 21, 45]), while MLLMs
exclusively employ continuous tokens for video understand-
ing [9, 21, 40]). Although some earlier MLLMs adopted dis-
crete tokens [31], state-of-the-art MLLMs no longer do so
due to the significant accuracy loss caused by quantization.
Circularity. The substantial gains shown in Figure 9 par-
tially stem from circularity. Since DeViBench has "cherry-
picked" QA samples on which the MLLM makes mistakes at
200 Kbps, the baseline’s low accuracy is expected (Although
different encoders were used during testing and QA selec-
tion). In fact, this is the motivation for proposing DeViBench.
As discussed in §2.3, only 8% of existing QA samples exhibit
errors at low bitrates and 92% can be answered correctly. This
indicates that existing QA samples are too coarse-grained
and lack reference to details. To bridge this gap, we need
more video quality-sensitive QA samples to evaluate how
quality degradation affects MLLM accuracy. In future work,
wewill analyze the proportion of such video quality-sensitive
QA in real-world AI Video Chat applications. On the other
hand, we will also test the accuracy of various MLLMs on
such QA samples to demonstrate the generality of the gains.

Acknowledgements
We sincerely thank our shepherd KeithWinstein, and review-
ers for their valuable feedback. This work is sponsored by the
National Natural Science Foundation of China (62431017).
We gratefully acknowledge the support of Key Laboratory
of Intelligent Press Media Technology. Xinggong Zhang is
the corresponding author (zhangxg@pku.edu.cn).



HotNets ’25, November 17–18, 2025, College Park, MD, USA Jiangkai Wu et al.

References
[1] 2025. Qwen3-VL-Plus. https://bailian.console.aliyun.com/

?spm=a2c4g.11186623.0.0.74e555efL5VoGI&tab=model#/model-
market/detail/qwen3-vl-plus.

[2] 2025. VMAF. https://github.com/Netflix/vmaf.
[3] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica

Chen, Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, and Hui Zhang.
2018. Oboe: Auto-tuning video ABR algorithms to network conditions.
In Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication. 44–58.

[4] Congkai An, Huanhuan Zhang, Shibo Wang, Jingyang Kang, Anfu
Zhou, Liang Liu, Huadong Ma, Zili Meng, Delei Ma, Yusheng Dong,
et al. 2025. Tooth: Toward Optimal Balance of Video QoE and Redun-
dancy Cost by Fine-Grained FEC in Cloud Gaming Streaming. In 22nd
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 25). 635–651.

[5] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson. 2017. BBR: Congestion-based conges-
tion control. Commun. ACM 60, 2 (2017), 58–66.

[6] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mas-
colo. 2016. Analysis and design of the Google congestion control for
web real-time communication (WebRTC). In Proceedings of the 7th
International Conference on Multimedia Systems. 1–12.

[7] Joya Chen, Zhaoyang Lv, Shiwei Wu, Kevin Qinghong Lin, Chenan
Song, Difei Gao, Jia-Wei Liu, Ziteng Gao, Dongxing Mao, and
Mike Zheng Shou. 2024. VideoLLM-Online: Online video large lan-
guage model for streaming video. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. 18407–18418.

[8] Tianyu Chen, Yiheng Lin, Nicolas Christianson, Zahaib Akhtar,
Sharath Dharmaji, Mohammad Hajiesmaili, Adam Wierman, and
Ramesh K Sitaraman. 2024. SODA: An adaptive bitrate controller
for consistent high-quality video streaming. In Proceedings of the ACM
SIGCOMM 2024 Conference. 613–644.

[9] Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu,
Zhenda Xie, Xingkai Yu, and Chong Ruan. 2025. Janus-pro: Unified
multimodal understanding and generation with data andmodel scaling.
arXiv preprint arXiv:2501.17811 (2025).

[10] Yihua Cheng, Ziyi Zhang, Hanchen Li, Anton Arapin, Yue Zhang,
Qizheng Zhang, Yuhan Liu, Kuntai Du, Xu Zhang, Francis Y Yan,
et al. 2024. GRACE: Loss-Resilient Real-Time video through neural
codecs. In 21st USENIX Symposium on Networked Systems Design and
Implementation (NSDI 24). 509–531.

[11] Mo Dong, Qingxi Li, Doron Zarchy, P Brighten Godfrey, and Michael
Schapira. 2015. PCC: Re-architecting congestion control for consistent
high performance. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15). 395–408.

[12] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad,
Brighten Godfrey, and Michael Schapira. 2018. PCC vivace: Online-
Learning congestion control. In 15th USENIX symposium on networked
systems design and implementation (NSDI 18). 343–356.

[13] Chaoyou Fu, Haojia Lin, Xiong Wang, Yi-Fan Zhang, Yunhang Shen,
Xiaoyu Liu, Haoyu Cao, Zuwei Long, Heting Gao, Ke Li, et al. 2025.
Vita-1.5: Towards GPT-4o level real-time vision and speech interaction.
arXiv preprint arXiv:2501.01957 (2025).

[14] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell,
and Mark Watson. 2014. A buffer-based approach to rate adaptation:
Evidence from a large video streaming service. In Proceedings of the
2014 ACM conference on SIGCOMM. 187–198.

[15] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya
Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes,
Alec Radford, et al. 2024. GPT-4o system card. arXiv preprint

arXiv:2410.21276 (2024).
[16] Junchen Jiang, Vyas Sekar, and Hui Zhang. 2012. Improving fairness,

efficiency, and stability in HTTP-based adaptive video streaming with
Festive. In Proceedings of the 8th international conference on Emerging
networking experiments and technologies. 97–108.

[17] Zhiwei Jin, Xiaohui Song, Nan Wang, Yafei Liu, Chao Li, Xin Li,
Ruichen Wang, Zhihao Li, Qi Qi, Long Cheng, Dongze Hao, Quanlong
Zheng, Yanhao Zhang, Haobo Ji, Jian Ma, Zhitong Zheng, Zhenyi Lin,
Haolin Deng, Xin Zou, Xiaojie Yin, Ruilin Wang, Liankai Cai, Haijing
Liu, Yuqing Qiu, Ke Chen, Zixian Li, Chi Xie, Huafei Li, Chenxing
Li, Chuangchuang Wang, Kai Tang, Zhiguang Zhu, Kai Tang, Wen-
mei Gao, Rui Wang, Jun Wu, Chao Liu, Qin Xie, Chen Chen, and
Haonan Lu. 2025. AndesVL Technical Report: An Efficient Mobile-
side Multimodal Large Language Model. arXiv:2510.11496 [cs.CV]
https://arxiv.org/abs/2510.11496

[18] Zeqi Lai, Weisen Liu, Qian Wu, Hewu Li, Jingxi Xu, and Jianping
Wu. 2022. SpaceRTC: Unleashing the low-latency potential of mega-
constellations for real-time communications. In IEEE INFOCOM 2022-
IEEE Conference on Computer Communications. IEEE, 1339–1348.

[19] Minhun Lee, HyeonJu Song, Jeeyoon Park, Byeungwoo Jeon, Jung-
won Kang, Jae-Gon Kim, Yung-Lyul Lee, Je-Won Kang, and Donggyu
Sim. 2023. Overview of versatile video coding (H. 266/VVC) and its
coding performance analysis. IEIE Transactions on Smart Processing &
Computing 12, 2 (2023), 122–154.

[20] Tianhong Li, Vibhaalakshmi Sivaraman, Pantea Karimi, Lijie Fan, Mo-
hammad Alizadeh, and Dina Katabi. 2023. Reparo: Loss-resilient gen-
erative codec for video conferencing. arXiv preprint arXiv:2305.14135
(2023).

[21] Yanghao Li, Rui Qian, Bowen Pan, Haotian Zhang, Haoshuo Huang,
Bowen Zhang, Jialing Tong, Haoxuan You, Xianzhi Du, Zhe Gan, et al.
2025. MANZANO: A Simple and Scalable Unified Multimodal Model
with a Hybrid Vision Tokenizer. arXiv preprint arXiv:2509.16197 (2025).

[22] Junming Lin, Zheng Fang, Chi Chen, Zihao Wan, Fuwen Luo, Peng Li,
Yang Liu, and Maosong Sun. 2024. Streamingbench: Assessing the gap
for MLLMs to achieve streaming video understanding. arXiv preprint
arXiv:2411.03628 (2024).

[23] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural
adaptive video streamingwith Pensieve. In Proceedings of the conference
of the ACM special interest group on data communication. 197–210.

[24] Zili Meng, Xiao Kong, Jing Chen, Bo Wang, Mingwei Xu, Rui Han,
Honghao Liu, Venkat Arun, Hongxin Hu, and Xue Wei. 2024. Hair-
pin: Rethinking packet loss recovery in edge-based interactive video
streaming. In 21st USENIX Symposium on Networked Systems Design
and Implementation (NSDI 24). 907–926.

[25] Zili Meng andMingwei Xu. 2024. Feedback on Control Path: Early Con-
gestion Feedback. In Latency Optimization in Interactive Multimedia
Streaming. Springer, 23–42.

[26] Rui Qian, Shuangrui Ding, Xiaoyi Dong, Pan Zhang, Yuhang Zang,
Yuhang Cao, Dahua Lin, and Jiaqi Wang. 2025. Dispider: Enabling
Video LLMs with Active Real-Time Interaction via Disentangled Per-
ception, Decision, and Reaction. arXiv preprint arXiv:2501.03218 (2025).

[27] Haoran Qiu, Anish Biswas, Zihan Zhao, Jayashree Mohan, Alind
Khare, Esha Choukse, Íñigo Goiri, Zeyu Zhang, Haiying Shen, Chetan
Bansal, Ramachandran Ramjee, and Rodrigo Fonseca. 2025. Mod-
Serve: Modality- and Stage-Aware Resource Disaggregation for Scal-
able Multimodal Model Serving. arXiv:2502.00937 [cs.DC] https:
//arxiv.org/abs/2502.00937

[28] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel
Goh, Sandhini Agarwal, Girish Sastry, AmandaAskell, PamelaMishkin,
Jack Clark, et al. 2021. Learning transferable visual models from natural
language supervision. In International conference on machine learning.
PmLR, 8748–8763.

https://bailian.console.aliyun.com/?spm=a2c4g.11186623.0.0.74e555efL5VoGI&tab=model#/model-market/detail/qwen3-vl-plus
https://bailian.console.aliyun.com/?spm=a2c4g.11186623.0.0.74e555efL5VoGI&tab=model#/model-market/detail/qwen3-vl-plus
https://bailian.console.aliyun.com/?spm=a2c4g.11186623.0.0.74e555efL5VoGI&tab=model#/model-market/detail/qwen3-vl-plus
https://github.com/Netflix/vmaf
https://arxiv.org/abs/2510.11496
https://arxiv.org/abs/2510.11496
https://arxiv.org/abs/2502.00937
https://arxiv.org/abs/2502.00937
https://arxiv.org/abs/2502.00937


Chat with AI: The Surprising Turn of Real-time Video Communication from Human to AI HotNets ’25, November 17–18, 2025, College Park, MD, USA

[29] Michael Rudow, Francis Y Yan, Abhishek Kumar, Ganesh Anantha-
narayanan, Martin Ellis, and KV Rashmi. 2023. Tambur: Efficient loss
recovery for videoconferencing via streaming codes. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
23). 953–971.

[30] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand. 2007. Overview
of the scalable video coding extension of the H.264/AVC standard. IEEE
Transactions on circuits and systems for video technology 17, 9 (2007),
1103–1120.

[31] Chameleon Team. 2024. Chameleon: Mixed-modal early-fusion foun-
dation models. arXiv preprint arXiv:2405.09818 (2024).

[32] Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai,
Anmol Gulati, Garrett Tanzer, Damien Vincent, Zhufeng Pan, Shibo
Wang, et al. 2024. Gemini 1.5: Unlocking multimodal understanding
across millions of tokens of context. arXiv preprint arXiv:2403.05530
(2024).

[33] V Team, Wenyi Hong, Wenmeng Yu, et al. 2025. GLM-4.5 V and GLM-
4.1 V-Thinking: Towards Versatile Multimodal Reasoning with Scalable
Reinforcement Learning. arXiv preprint arXiv:2507.01006 (2025).

[34] Aaron Van Den Oord, Oriol Vinyals, et al. 2017. Neural discrete repre-
sentation learning. Advances in neural information processing systems
30 (2017).

[35] Pavan Kumar Anasosalu Vasu, Hadi Pouransari, Fartash Faghri,
Raviteja Vemulapalli, and Oncel Tuzel. 2024. Mobileclip: Fast image-
text models through multi-modal reinforced training. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
15963–15974.

[36] Marko Viitanen, Ari Koivula, Ari Lemmetti, Arttu Ylä-Outinen, Jarno
Vanne, and Timo D. Hämäläinen. 2016. Kvazaar: Open-Source
HEVC/H.265 Encoder. In Proceedings of the 24th ACM International
Conference on Multimedia (Amsterdam, The Netherlands). http:
//doi.acm.org/10.1145/2964284.2973796

[37] Haibo Wang, Bo Feng, Zhengfeng Lai, Mingze Xu, Shiyu Li, Weifeng
Ge, Afshin Dehghan, Meng Cao, and Ping Huang. 2025. StreamBridge:
Turning Your Offline Video Large Language Model into a Proactive
Streaming Assistant. arXiv preprint arXiv:2505.05467 (2025).

[38] Yuxuan Wang, Yueqian Wang, Bo Chen, Tong Wu, Dongyan Zhao,
and Zilong Zheng. 2025. OmniMMI: A Comprehensive Multi-modal
Interaction Benchmark in Streaming Video Contexts. In Proceedings of
the Computer Vision and Pattern Recognition Conference. 18925–18935.

[39] Haomiao Xiong, Zongxin Yang, Jiazuo Yu, Yunzhi Zhuge, Lu Zhang,
Jiawen Zhu, and Huchuan Lu. 2025. Streaming Video Understand-
ing and Multi-round Interaction with Memory-enhanced Knowledge.
arXiv preprint arXiv:2501.13468 (2025).

[40] Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai,
Keqin Chen, Jialin Wang, Yang Fan, Kai Dang, et al. 2025. Qwen2.5-
Omni technical report. arXiv preprint arXiv:2503.20215 (2025).

[41] Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James
Hong, Keyi Zhang, Philip Levis, and Keith Winstein. 2020. Learning
in situ: a randomized experiment in video streaming. In 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
20). 495–511.

[42] Zhenyu Yang, Yuhang Hu, Zemin Du, Dizhan Xue, Shengsheng Qian,
Jiahong Wu, Fan Yang, Weiming Dong, and Changsheng Xu. [n. d.].
SVBench: A Benchmark with Temporal Multi-Turn Dialogues for
Streaming Video Understanding. In The Thirteenth International Con-
ference on Learning Representations.

[43] Linli Yao, Yicheng Li, YuanchengWei, Lei Li, Shuhuai Ren, Yuanxin Liu,
Kun Ouyang, Lean Wang, Shicheng Li, Sida Li, et al. 2025. TimeChat-
Online: 80% Visual Tokens are Naturally Redundant in Streaming
Videos. arXiv preprint arXiv:2504.17343 (2025).

[44] Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji
Zhu, Tianchi Cai, Haoyu Li, Weilin Zhao, Zhihui He, Qianyu Chen,
Huarong Zhou, Zhensheng Zou, Haoye Zhang, Shengding Hu, Zhi
Zheng, Jie Zhou, Jie Cai, Xu Han, Guoyang Zeng, Dahai Li, Zhiyuan
Liu, and Maosong Sun. 2024. MiniCPM-V: A GPT-4V Level MLLM on
Your Phone. arXiv:2408.01800 [cs.CV] https://arxiv.org/abs/2408.01800

[45] Lijun Yu, Jose Lezama, Nitesh Bharadwaj Gundavarapu, Luca Versari,
Kihyuk Sohn, David Minnen, Yong Cheng, Agrim Gupta, Xiuye Gu,
Alexander GHauptmann, et al. [n. d.]. LanguageModel Beats Diffusion-
Tokenizer is key to visual generation. In The Twelfth International
Conference on Learning Representations.

[46] Pan Zhang, Xiaoyi Dong, Yuhang Cao, Yuhang Zang, Rui Qian, Xilin
Wei, Lin Chen, Yifei Li, Junbo Niu, Shuangrui Ding, et al. 2024.
InternLM-XComposer2.5-OmniLive: A comprehensive multimodal
system for long-term streaming video and audio interactions. arXiv
preprint arXiv:2412.09596 (2024).

[47] Yuankang Zhao, Qinghua Wu, Gerui Lv, Furong Yang, Jiuhai Zhang,
Feng Peng, Yanmei Liu, Zhenyu Li, Ying Chen, Hongyu Guo, et al. 2024.
JitBright: towards Low-Latency Mobile Cloud Rendering through Jitter
Buffer Optimization. In Proceedings of the 34th edition of the Workshop
on Network and Operating System Support for Digital Audio and Video.
36–42.

[48] Yiwu Zhong, Zhuoming Liu, Yin Li, and Liwei Wang. 2024. Aim: Adap-
tive inference of multi-modal LLMs via token merging and pruning.
arXiv preprint arXiv:2412.03248 (2024).

http://doi.acm.org/10.1145/2964284.2973796
http://doi.acm.org/10.1145/2964284.2973796
https://arxiv.org/abs/2408.01800
https://arxiv.org/abs/2408.01800

	Abstract
	1 Introduction
	2 Motivation
	2.1 Main differences between AI Video Chat and traditional RTC
	2.2 What factors affect the transmission latency of AI Video Chat?
	2.3 Key Insights and Potential Gains

	3 Towards RTC for AI: Case Study
	3.1 DeViBench
	3.2 Context-Aware Video Streaming

	4 DISCUSSIONS AND OPEN QUESTIONS
	References

