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Abstract

Verifiable network telemetry is crucial for ensuring trans-
parency and trust in network measurements. However, teleme-
try logs (e.g., NetFlow records) often contain sensitive data,
making public verification challenging. Recent work has at-
tempted to address this problem using Trusted Execution
Environments (TEEs), such as Intel SGX; to provide confiden-
tiality and integrity guarantees. However, TEEs are known
to suffer from complex deployment requirements and lim-
ited scalability. In this paper, we introduce a software-based
approach utilizing the latest advances in Zero-knowledge
Proofs (ZKPs) to enable verifiable network telemetry without
revealing the underlying sensitive logs or relying on special-
purpose hardware. Our system employs a general-purpose
ZKP virtual machine (RISC Zero) to generate cryptographic
proofs over NetFlow data, enabling operators to securely
attest to network flow metrics. Our preliminary results indi-
cate that our ZKP-based design offers a viable path toward
overcoming deployment and scalability limitations inherent
in the solutions that require special-purpose hardware.
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1 Introduction

The End-to-End Principle (E2EP) anticipates that the Internet
should function not only as an interconnecting platform but
also as an economically neutral one. While this well-known
principle suggests that the Internet Protocol layer should
refrain from unfairly discriminating among packets based
on their higher-layer protocols, there is nothing preventing
the Internet Service Providers (ISPs), or the private networks
of the hyperscalers, from discriminating against others and
specific customers [7].

In this paper, we revisit the problem of how to make
network performance more verifiable to users and reg-
ulators [4, 19, 22]. This problem requires a solution to con-
duct accurate and trustworthy network telemetry for opera-
tors, regulators, and end-users to enforce service-level agree-
ments, optimize infrastructure, and conduct reliable security
and compliance audits. As networks grow more complex and
dynamic, verifiable network telemetry has become essential,
not just for internal visibility, but for ensuring external ac-
countability. For instance, verifiable network telemetry can
be used as a credible verification of performance metrics
reported by operators.

Verifiable network telemetry faces two interrelated chal-
lenges: (C1) how to ensure the integrity and authenticity of
collected telemetry logs, and (C2) how to preserve the confi-
dentiality of sensitive telemetry data. Unlike traditional data
integrity problems where digital signatures and fingerprints
can be useful, in the verifiable telemetry setting, operators do
not want to reveal their full telemetry logs (e.g., NetFlow [9]
and sFlow [20] records) in the first place for privacy and
business considerations: logs often contain proprietary in-
formation such as internal policies or user activity patterns.
At the same time, any meaningful verification requires the
assurance that the reported metrics are based on authentic
and untampered logs.

To date, recent work [8] has made attempts to achieve
verifiable network telemetry with sketching algorithms [3,
13, 15, 16, 23, 25] on end hosts by leveraging hardware roots
of trust, such as Trusted Execution Environments (TEEs).
In these approaches, TEEs serve as “secure enclaves” that
execute telemetry algorithms with runtime guarantees on
the integrity of both code and data. They can also protect
the confidentiality of the telemetry logs at the point of data
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collection. However, adopting TEEs in practice is limited by
complex deployment requirements and restricted scalability.
In particular, TEE-based telemetry requires deploying TEEs
on every vantage point to collect telemetry data, which may
be infeasible in large or heterogeneous environments. Ideally,
we want a solution that addresses both C1 and C2 in verifiable
network telemetry without having to deploy special-purpose
hardware in the network.

In this paper, we propose a software-based solution that
ensures both confidentiality and verifiable integrity for net-
work telemetry. Our system ensures integrity by requiring
network operators to periodically commit to collected teleme-
try data through lightweight cryptographic hash functions.
It then uses zero-knowledge proofs (ZKPs) [6, 10-12] to
demonstrate that reported metrics, such as packet loss rate
or flow counts, were computed correctly from the commit-
ted data, without revealing the underlying logs. Because our
system is built on a general-purpose ZKP virtual machine,
it supports arbitrary queries over the committed telemetry
data and can use any logging or sketching algorithm. This
design enables third parties to independently verify reported
network behavior while preserving the confidentiality of
internal telemetry records.

Our approach is applicable to various use cases which re-
quire trustworthy reporting of network behavior, including
service-level agreement (SLA) verification, regulatory com-
pliance audits, and policy enforcement cases such as network
neutrality. While our prototype implementation is not yet
ready for large-scale deployment, preliminary results show
that it successfully enforces correctness and preserves confi-
dentiality in telemetry computations. This demonstrates the
feasibility of a purely software-based, privacy-preserving
telemetry verification, representing an important step to-
ward scalable and verifiable network telemetry without re-
liance on specialized hardware.

In summary, we make the following contributions:

e We present a preliminary design of a software-based ver-
ifiable network telemetry system using zero-knowledge
proofs, eliminating the deployment complexity and scala-
bility limitations of TEE-based approaches.

e We design a commit-based data integrity mechanism that
allows the detection of any modification to telemetry data
after collection, using cryptographic hashes and authenti-
cated data structures.

e We support arbitrary queries over aggregated telemetry
data, and generate cryptographic proofs that certify cor-
rectness without revealing raw logs.

e We decouple the aggregation phase from both logging and
query processing, allowing it to be performed off-path.
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e Our preliminary experiments show that while proof gener-
ation remains a performance bottleneck, it can be moved
offline and off-device with small proof sizes, highlighting
the potential for future deployment and optimizations.

2 Background and Motivation

In this section, we begin by discussing motivating scenarios
of verifiable network telemetry. We then provide a concise
overview of ZKP and explore how ZKP has been applied
across various domains beyond networking. Lastly, we in-
troduce the architecture of RISC Zero, the general-purpose
ZKP framework that underpins our system.

2.1 Motivating Scenarios

Network neutrality and compliance audits. Network
neutrality regulations require that ISPs and CDN operators
treat traffic from all applications and content providers eq-
uitably. In practice, however, several studies have revealed
that network operators sometimes throttle, prioritize, or oth-
erwise differentiate traffic classes such as video streaming,
gaming, or peer-to-peer flows, to optimize performance or
favor business partners [1, 17]. Existing tools often attempt
to detect unfair treatments from end-to-end measurements,
but cannot localize its origin within complex Internet paths
or attribute it to specific network domains. Verifiable teleme-
try introduces a new paradigm: regulators or public auditors
could request cryptographic proofs that are constructed in
zero-knowledge, demonstrating neutrality compliance. An
edge operator could, for instance, prove that flows from
distinct content providers exhibit statistically equivalent la-
tency, throughput, and jitter distributions, without disclosing
individual user data or proprietary network configurations.
This enables transparent, privacy-preserving audits of neu-
trality policies that were previously infeasible.

Service-level agreements (SLAs). ISPs and CDN providers
frequently establish SLAs with content providers or peer-
ing networks that specify quantitative performance guaran-
tees, such as minimum bandwidth, latency, or packet deliv-
ery rates. Today, compliance with these agreements relies
largely on private monitoring and contractual trust, leaving
limited recourse in the event of disputes. When performance
degradation occurs, neither party is willing to reveal raw
telemetry due to business confidentiality or user privacy
concerns. Verifiable telemetry resolves this tension by en-
abling cryptographic proofs of performance compliance. An
operator can prove, for example, that at least 90% of flows
achieve RTT < X ms, throughput > Y Gbps, and jitter < Z
ms, satisfying the SLA requirements without exposing any
underlying measurement data or revealing the structure of
the network. This shifts SLA enforcement from trust-based
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to proof-based, reducing disputes and fostering greater ac-
countability in inter-network operations.

Summary. The motivating scenarios above highlight the
need for verifiable network telemetry. Our goal is not to
formalize what constitutes a violation of network neutrality
or an SLA breach; such definitions depend on policy and
contractual contexts beyond the scope of this work. Instead,
we focus on enhancing the transparency and verifiability
of network measurements themselves. Within this design
space, zero-knowledge proofs emerge as a promising solu-
tion: they allow network operators to prove performance
properties (e.g., flow statistics, latency bounds, or throughput
guarantees) while keeping underlying telemetry data private.
This approach bridges the gap between accountability and
confidentiality, two goals that have been at odds in network
operations without deploying special secure hardware inside
the network.

2.2 Zero-knowledge Proofs

Zero-knowledge proofs [11] are cryptographic protocols that
allow a prover to convince a verifier that a computation
is correct without revealing the underlying data. Succinct
Non-interactive Arguments of Knowledge (SNARK), [6], a
type of zero-knowledge proof, support efficient proofs for
Turing-complete computations, making them well-suited
for privacy-preserving applications where the correctness
of a result must be verified without exposing sensitive in-
puts. They have been commercially deployed in, for example,
privacy-preserving payments [5]. Here, we use SNARKs for
verifiable network telemetry.

As an example of a simple zk-proof, consider password au-
thentication. A server stores a user’s hashed password (Y).To
authenticate, the user must show they know the password
X such that Y = hash(X). Instead of revealing the password,
a zero-knowledge proof allows the user to provide a suc-
cinct cryptographic proof that they correctly performed the
computation, thus verifying their identity while keeping the
password private!.

This principle extends directly to verifiable network teleme-
try, where raw network logs often contain sensitive informa-
tion that cannot be revealed. A service provider can commit
to these logs with a cryptographic hash, and then use a ZKP
to prove that metrics such as packet loss or latency were
computed correctly from the original data. This approach
allows external parties to verify reported network behavior
without the provider needing to reveal the sensitive logs
themselves, ensuring both data privacy and accountability.

ZKPs for verifiable databases. Recent ZKP systems have
enabled their use in a wide range of verifiable computation
scenarios. A notable example is verifiable databases [14, 24],

! Assuming the password is strong enough to not be brute forced.
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where ZKPs are used to prove that operations such as aggre-
gations (e.g., SUM, AVG, COUNT) are executed correctly
over private data, without revealing the underlying contents.
Recent advances even support proofs of complete state transi-
tions [18], allowing clients to verify that the current database
state is the result of a valid sequence of operations.

However, the networking context introduces unique chal-
lenges that make direct adoption of database-style ZKP tech-
niques insufficient. First, network telemetry systems operate
at extremely high data generation rates, often collecting mil-
lions of flow records per second across distributed routers
and switches. Unlike databases, where it is feasible to gener-
ate proofs per transaction or per-query, network telemetry
requires a lightweight, periodic commitment model that can
scale with real-time log generation. Second, network logs are
typically ephemeral. Due to storage and privacy constraints,
raw logs are often discarded after a period of time. This de-
mands ZKP designs that allow for continuous integration
based verification over committed summaries rather than on
raw, persistent data. Third, routers and middleboxes gener-
ating telemetry are resource-constrained and not suited to
perform expensive cryptographic operations. This necessi-
tates proof generation to be offloaded to an external verifier
or collector, which is uncommon in database-style settings.

While our work does not address every design challenge
introduced above, it focuses on two key aspects: data in-
tegrity and scalable proof generation. To this end, our system
employs lightweight per-router hash commitments to ensure
the integrity of locally collected telemetry data and uses a
centralized aggregation mechanism built upon Merkle trees
to verify computations across routers. Proof generation is
performed on an off-path compute environment, decoupled
from the data collection process, enabling scalability with-
out burdening network infrastructure. The complete system
architecture is described in Section 4.

To the best of our knowledge, this is the first ZKP-based
approach to verifiable network telemetry. This ZKP-driven
design offers two key advantages: (1) the entire telemetry
system operates purely in software, eliminating the need
to access trusted hardware and thereby simplifying deploy-
ment in practice; and (2) third party verifiers can validate
telemetry results without accessing the underlying sensitive
logs as only the query results are exposed. This combination
of software-based privacy and cryptographic verifiability
enables both public accountability and scalable deployment.

2.3 RISC Zero and the zkVM Model

RISC Zero [21] is a ZKP framework designed to enable veri-
fiable execution of arbitrary programs in a general-purpose
programmable environment. It allows code written in a high-
level language (i.e., Rust) to be compiled into a RISC-V binary,
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which is then executed inside a zkVM (zero-knowledge vir-
tual machine). The zkVM produces a succinct, cryptographic
proof that certifies the correct execution of the program on
specific inputs without revealing the inputs themselves.

The architecture consists of two main components, both
implemented as conventional Rust programs:

e The host, which prepares the inputs, coordinates proof
generation, and processes the output.

e The guest, which runs inside the zkVM and contains the
computation logic to be proven.

To illustrate how RISC Zero works, consider the hash ex-
ample from Section 2.2. The host passes a batch of telemetry
logs into the zkVM, where the guest program computes the
hash as it would in conventional Rust. The zkVM then out-
puts both the result (Y) and a zero-knowledge proof attesting
that Y = hash(X) was computed correctly, without revealing
X. This structure extends naturally to more complex opera-
tions like Merkle verification and aggregate computations.

This design makes RISC Zero particularly appealing for
prototyping verifiable systems, as developers do not need
to manually design ZKP circuits. In our system, the guest
code is responsible for parsing committed NetFlow records,
checking their inclusion using Merkle proofs, and comput-
ing performance metrics such as packet loss or throughput.
The zkVM then produces a ZKP that the computation was
performed correctly over authentic, unmodified data. This en-
ables ISPs to provide cryptographic attestations over network
telemetry metrics without exposing raw NetFlow records.

3 Threat Model

We assume that the embedded NetFlow program in each
router hardware are generating telemetry logs faithfully at
the time of packet observation. This assumption is consis-
tent with many network monitoring use cases, where raw
NetFlow records are used for operational and diagnostic pur-
poses. However, we do not assume that the records remain
trustworthy after their initial generation. For example, a ma-
licious service provider may attempt to retroactively modify
logs in order to misrepresent network performance metrics
or conceal policy violations.

Previous efforts have attempted to address this challenge
by running the telemetry algorithms inside the TEEs, which
guarantee the integrity of telemetry computation at the point
of capture. While such solutions offer strong guarantees,
they require specialized hardware and introduce substantial
complexity in deployment, requiring a third party to directly
access network operator’s infrastructure.

In contrast, our system adopts a software-based alterna-
tive. We require service providers to periodically commit to
their raw logs by computing a cryptographic hash over the
data in each router. These hash commitments are published
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Figure 1: Overall Architecture

periodically and serve as tamper-evident attestations, where
any modification to the logs after commitment will result
in a hash mismatch. During aggregation, the system recom-
putes the hashes over the raw logs and checks them against
the published commitments to ensure that only unaltered
data is used in the computation. This lightweight mecha-
nism ensures data integrity of the raw logs without heavy
computational overhead.

4 Preliminary Architecture

This section describes the overall architecture of our system
for verifiable network telemetry using ZKP. We consider
a typical network topology that involves multiple routers
deployed across its system. Each router locally generates
conventional telemetry records (e.g., NetFlow entries), cap-
turing statistics about observed traffic such as 5-tuples, in
and out bytes, and timestamps. For convenience, we refer to
the raw telemetry records as RLogs (short for raw logs), and
to the aggregated results produced by our system as CLogs
(short for combined logs).

As illustrated in Figure 1, our system consists of a Prover
and a Verifier. Routers periodically commit to their NetFlow
records (RLogs) and publish the hashes. The service provider
(Prover) collects RLogs from routers within its network topol-
ogy and aggregates them into a unified dataset (CLogs) based
on a predefined aggregation policy. For instance, packet loss
counts from each router for the same flows can be summed
to produce a total loss count per flow. Each time it aggregates
the new RLogs into its CLog, the service provider creates a
zero-knowledge proof that the updated aggregation was cor-
rect. Clients (Verifier) may then issue queries over the CLogs,
and the provider responds with a cryptographic proof that
the result was computed correctly over authentic, committed
data. By verifying both the query proof and the aggregate
proof, clients are convinced the query was correctly run on
a genuine aggregate log that accurately reflects what the
routers logged and announced hashes of. Importantly, the
proof does not reveal any RLogs nor CLogs, preserving the
confidentiality of internal telemetry.

The aggregation phase is decoupled from query processing
and runs independently in the background. This allows it to
be scaled according to the available resources of the provider.
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Queries operate solely on the most recently committed aggre-
gation results (CLogs), and the system can support arbitrary
computation over these results within the ZKP framework.

4.1 Aggregation

We leverage Merkle tree construction as a key component
in the aggregation phase. A Merkle tree (depicted as Merkle
in Figure 2) is a cryptographic data structure used to ensure
data integrity. It is organized as a binary tree in which each
leaf node stores the hash of an individual data block (in our
system, a CLog entry), and each internal node contains the
hash of the concatenation of its two child nodes. The root of
the tree, known as the Merkle root, acts as a compact cryp-
tographic commitment to the entire dataset. To verify that
a particular data entry is part of the committed dataset, a
Merkle proof is constructed using the hashes along the path
from the leaf node to the root. A verifier can use this proof
to recompute the root and confirm it matches the original,
thereby detecting any tampering. Merkle tree structure en-
ables efficient tamper-evident verification of data integrity,
playing an essential role in our aggregation logic.

Figure 2 describes the aggregation process and Algorithm 1
illustrates the actual procedure. Aggregation is performed
periodically and serves as a core component to maintain an
up-to-date and verifiable global dataset (CLogs) over Net-
Flow entries (RLogs). Each aggregation round involves three
critical checks to ensure both data integrity and correctness
of computation. First, the system checks the validity of the
previous aggregation step by verifying its associated proof
(Figure 2 — Prev Proof), thereby maintaining a consistent
and trusted chain of computations (lines 1-4). Second, to
guarantee that only authentic data is aggregated, the sys-
tem verifies the integrity of the RLogs using the previously
published hash commitments from each router (lines 5-11).
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Algorithm 1 RiscO Guest: Aggregation Procedure

Require: Raw logs Ry, Ry, ..., R, from n routers
Require: Published hash commitments Hy, Hy, ..., H,
Require: Previous Merkle tree T,,¢, and proof mp,e,
Ensure: Aggregated dataset C and Merkle tree T, with
new proof e,
// Step 1: Verify Previous Aggregation
if =VerifyProof(m,,.,) then
abort // invalid previous proof
end if
// Step 2: Verify Authenticity of Raw Logs
fori=1tondo
Compute H; « Hash(R;)
if H # H; then
abort // integrity check for R; failed
end if
: end for
// Step 3: Verify, Aggregate, and Update Merkle Tree
for all new entry r,e,, in R; do
f « FlowID(rpew)
if f € Cprep then
if ~VerifyMerkle(T, o, f) then
abort // integrity check for C,,., failed
end if
Clf] < Clf] +rnew
else
C[f] — I'new
end if
: end for
Tnew < ProveAggregation(Ry,..
: Thew < UpdateMerkleTree(C)
: return (C, Tyew, Tnew)

R A A R o

e e T S e
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W N = O

L) Rn: C: TnEW)

[SCIEN CC R WV )
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This ensures that no tampering has occurred since the logs
were generated. Third, the system updates the CLogs and
the Merkle tree over the modified and newly inserted CLog
entries (line 25). Before updating, it uses the prior Merkle
tree to validate the integrity of existing entries, ensuring that
only verified CLogs are modified (lines 16-18).

The resulting new Merkle tree serves two purposes: it acts
as the basis for integrity checking during (1) query proof
generation, and (2) next round of aggregation proof genera-
tion. This periodic design ensures that both historical and
future aggregation operations remain verifiable and tamper-
evident.

4.2 Query

Once aggregation is completed and the new dataset has been
committed as a Merkle tree, clients may issue queries to the
service provider to verify specific performance metrics or
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policies over the aggregated data. These queries can range
from simple statistics such as total packet loss for a given
flow to more complex conditions involving filtering and
computation across multiple flows. In principle, the system
supports arbitrary queries over the aggregated dataset.

To respond to a query, the prover first verifies that the
query is being executed against a valid aggregated state
by referencing the aggregation proof. Then it checks the
integrity of the relevant CLog entries using Merkle inclusion
proofs. Finally, it executes the query logic over the verified
data and generates a proof of correct computation.

This proof is generated inside the zkVM and guarantees
two properties:

e The computation required for the query output was exe-
cuted correctly.

o The data used in the computation matches the committed
entries in the aggregated Merkle tree.

The client receives both the query result and the proof,
and can verify them locally without needing access to the
raw NetFlow records. Because the proof enforces both com-
putational correctness and data integrity, clients gain strong
guarantees that the result faithfully reflects the committed
telemetry state at the time of aggregation.

This query mechanism enables a wide range of auditing
and monitoring scenarios, including those required for pol-
icy enforcement, SLA compliance, and anomaly detection,
without exposing sensitive network data.

5 Security Analysis

We now revisit our threat model and analyze how our system
defends against malicious behavior.

First, note that query responses cannot be forged directly,
as they are accompanied by zero-knowledge proofs that at-
test to the correctness of the underlying computation. These
proofs are cryptographically sound, meaning that a forged
proof for an incorrect computation cannot be constructed
without breaking underlying hardness assumptions.

The more subtle threat lies in the potential manipulation
of log entries to influence query results. Our system mitigates
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this risk through a combination of timely hash commitments
and authenticated data structures:

e Per-router hash commitments. Each router periodi-
cally publishes a cryptographic hash over its local NetFlow
logs. Any modification to the logs after publication will
result in a hash mismatch, as shown in Figure 3, which is
detectable during proof generation.

o Aggregated logs with ZKP. We combine the logs into
an aggregate log, and a ZKP is generated to certify that
the aggregation was performed correctly.

e Authenticated queries over Merkle trees. We maintain
a Merkle tree of the aggregated logs, which is used as an
authentication data structure that ensures data integrity
for all queries (and indeed, the aggregation operations).
In summary, even a single post-commitment modification

to a log entry causes a mismatch in the hash commitments

or break Merkle inclusion consistency—both of which inval-
idate the generated proofs and expose adversarial behavior.

6 Preliminary Evaluation

We evaluate our system in a controlled environment using a
custom-built NetFlow simulator that emulates a simplified
network topology setting on a single machine. The simu-
lated setting comprises 4 routers, each generating NetFlow
telemetry logs in parallel via dedicated threads. These logs
are written to a shared PostgreSQL backend, and each router
periodically commits a cryptographic hash of its log data
every 5 seconds to model a realistic integrity window. This
commitment is later used to validate the authenticity of the
raw logs during aggregation and query operations.

All experiments are conducted on a server equipped with
an AMD Ryzen Threadripper PRO 5955WX (16 cores), 64 GiB
of DDR4 memory (Samsung M393A8K40B22-CAE @3200
MH?z), 2 TiB NVMe SSD, and PostgreSQL version 12.22. We
use RISC Zero version 3.0 as the ZKP backend for all proof
generation and verification.

End-to-end query verification. We begin by measuring
the overhead of generating a query proof over aggregated
telemetry data. Queries operate over the CLogs and apply
filtering and compute logic similar to the following SQL:

SELECT SUM(hop_count) FROM clogs
WHERE src_ip = "1.1.1.1" AND dst_ip = "9.9.9.9";

Figure 4 illustrates the latency of aggregation and query
proof generation across different query sizes. The increase
in latency correlates with input size, primarily due to the
computational cost of Merkle tree construction within the
zkVM. However, verification remains lightweight, complet-
ing in 3 ms regardless of the number of entries. We also
simulated a data tampering scenario as described in Section
5, and confirmed that any attempt to modify committed data
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results in failed proof generation due to hash mismatches or
Merkle inconsistencies.

Next, we evaluate the performance of our aggregation step,
which combines raw NetFlow logs into verifiable CLogs and
updates the authenticated Merkle tree. As shown in Figure 4,
the generation time for the aggregation proof increases with
the number of raw NetFlow entries, reaching approximately
87 min for 3,000 entries. Query proof generation shows a
similar trend, taking about 16 minutes at the same scale.
Profiling with RISC Zero indicates that the majority of this
overhead stems from Merkle tree updates performed within
the zkVM. We discuss potential improvements and optimiza-
tions in Section 7.

Proof and verification. Table 1 summarizes the size of
proofs, journals (i.e., public output), and receipts for aggre-
gation on different dataset sizes. Proof sizes remain constant
(256 bytes), as expected from zk-SNARKSs, while the journal
and receipt sizes grow with the number of entries. Verifi-
cation time remains consistently low (3 ms), validating the
practicality of lightweight client-side verification. The query
proof and verification show similar behavior.

7 Discussions

Our prototype demonstrates the feasibility of verifiable net-
work telemetry based on ZKPs. While the current system is
primarily a proof of concept, several directions can further
improve its scalability, performance, and practical applica-
bility in real-world deployments.

Query complexity. While our ZKP framework is general-
purpose and in principle supports arbitrary queries, the cost
of proof generation increases with query complexity. Queries
involving heavy iteration, sorting, or non-linear operations
may incur significant overhead. Exploring efficient support
for more complex query types remains an important direc-
tion for future work.

Proof parallelization. ZKP generation in our system can
be parallelized by dividing the workload into smaller, in-
dependent segments. For example, NetFlow entries can be
partitioned by flow ID or router ID, with separate proofs gen-
erated in parallel. These partial proofs can then be merged
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] # of records \ Proof (bytes) \ Journal (KB) \ Receipt (KB) \

50 256 3.6 7.6
100 256 5.6 12
500 256 29.3 58
1000 256 58.9 116
2000 256 118.1 231
3000 256 176.7 346

Table 1: Proof Size of Aggregation

into a single final proof, reducing end-to-end latency and
leveraging multicore architectures more effectively.

GPU acceleration. Since proof generation and aggregation
dominate runtime, hardware acceleration presents a natural
optimization opportunity. The RISC Zero framework [21]
supports GPU acceleration, and preliminary benchmarks
suggest that GPU-assisted hashing and modular arithmetic
can yield order-of-magnitude improvements.

Specialization proof systems. We implemented both our
query logic and aggregation logic in a zkVM. Aggregation
proofs can be significantly sped up, by removing the machin-
ery for arbitrary code execution and memory in a zkVM and
by switching to more specialized proof systems. For instance,
the work of [2] offers 600,000 hashes per second on an M3
MacBook Pro. Since aggregating 3,000 NetFlow records in a
Merkle tree of depth 11 requires ~ 35,000 hashes, this would
offer a substantial improvement over our current running
time of 87 minutes for aggregating 3,000 entries.

Off-path computation. The off-path property of aggrega-
tion opens the door for deploying powerful external compute
nodes to handle heavy cryptographic workloads without im-
pacting the network environment.

8 Conclusions

In this paper, we presented a ZKP-based approach for verifi-
able network telemetry that addresses both data integrity and
confidentiality without relying on specialized hardware. By
combining cryptographic commitments with zero-knowledge
proofs, our system allows third parties to verify reported
performance metrics without exposing sensitive logs. Built
atop a general-purpose ZKP framework, our design sup-
ports arbitrary queries and demonstrates practical feasibility
through a working prototype. While current performance
limitations prevent immediate real-world deployment, our
results highlight a promising direction toward scalable and
privacy-preserving network accountability.
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