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Problem

%

• How can we model the set of destination IP addresses visible on
some link? (And does it matter?)

Example from a 4-hour trace at a university access link:

255.255.255.255192.0.0.0128.0.0.064.0.0.00.0.0.0

In particular, can we model how the addresses aggregate?

We call this address structure.

• Applications might include average-case route lookup, analysis of
aggregate-based congestion control, realistic sets of addresses for
simulations, . . .
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Results
%

• Address structure dominates the characteristics of medium-scale
prefix aggregates, such as /16s.

• The medium-scale aggregation behavior of real addresses is well
modeled by a multifractal Cantor set construction with two
parameters.

The model captures both fractal metrics and metrics we developed for
address structures.

• Address structure can serve as a site “fingerprint”.

Structural metrics differ between sites.

At a given site, these metrics are stable over short time scales.

New communication dynamics, such as worm propagation, show up in
the metrics.
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Outline

%

• Terminology

• Address structure and aggregate packet counts

• Model

• Metrics

• Fingerprints
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Terminology

%

• Active address: an IP address visible in the trace as a destination

• N: the number of active addresses in a trace

N ≤ 232 by definition; N� 232 for all our traces

• p-aggregate: a set of addresses that share the same p-bit address
prefix (0 ≤ p ≤ 32)

Also called a /p

1.0.0.0 and 1.99.130.14 are in the same /8, but different /10s

• Active p-aggregate: a /p containing at least one active address
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Traces

%

Name Description ∆T # pkts N
U1 large university access link ∼ 4 h 62M 69,196
U2 large university access link ∼ 1 h 101M 144,244
A1 ISP ∼ 0.6 h 34M 82,678
A2 ISP 1 h 29M 154,921
R1 link from regional ISP 1 h 1.5M 168,318 §
R2 link from regional ISP 2 h 1M 110,783 §
W1 large Web site access link ∼ 2 h 5M 124,454

• Collected between 1998 and 2001

Most anonymized while preserving prefix and class relationships

§ means sampled (1 in 256)
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Does address structure matter?

%

• Assume that aggregate packet counts matter.

Accounting, fairness, congestion control . . .

• What factors affect aggregate packet counts?

Packet counts per address: probably a heavy-tailed distribution

Addresses per aggregate = address structure

Correlation

• Analyze the contributions of these factors to an observed packet
count distribution

Medium scales are most interesting (/16s and thereabouts)
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R1 packet count distributions

%
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Semi-experiments

%

• Manipulate the data, destroying one factor at a time; see which
factors impact aggregate packet counts

• “Random counts”: destroy per-address packet counts

Replace the (heavy-tailed) per-address packet count distribution with a
uniform distribution over [0, 17.54]

• “Random addresses”: destroy address structure

Replace address structure with a uniform random distribution over the
entire IP address space

• “Permuted counts”: destroy correlation

Permute per-address packet counts among the active addresses

9



Address structure matters most

%

10-4

10-3

10-2

0.1

1

1061051041000100101

C
o

m
p

le
m

en
ta

ry
 C

D
F

16-aggregate packet count

R1
Permuted counts
Random counts
Random addresses

10



Tour of U1’s address structure
%

255.255.255.255192.0.0.0128.0.0.064.0.0.00.0.0.0

200.0.0.0198.0.0.0196.0.0.0194.0.0.0192.0.0.0

195.192.0.0195.176.0.0195.160.0.0195.144.0.0195.128.0.0

195.190.0.0195.189.128.0195.189.0.0195.188.128.0195.188.0.0
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Self-similarity?

%

• Interesting structure all the way down

Visually “self-similar” characteristics

• Might address structure be usefully modeled by a fractal?

Treat an address structure as a subset of the unit interval

Fractal dimension D ∈ [0, 1]?
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Fractal dimension for address structure

%

• Use lattice box-counting dimension

Corresponds nicely to prefix aggregation

• Let np equal the number of active /ps in a trace

n32 = N

np ≤ np+1 ≤ 2np

each /p contains and is covered by 2 disjoint /(p + 1)s

• Then D = lim
p→∞

log np

p log 2
But p ≤ 32 here, and expect sampling effects for high p

Examine medium p to see if the limit exists
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log np is linearly related to p at medium scales

%
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Multifractality

%

• Monofractal may not be sufficient

Same scaling behavior everywhere

Not what we saw in the tour

• Examine the multifractal spectrum to test for multifractality
(different local scaling behavior)

Binned approximation (Histogram Method)

If multifractal, spectrum will cover a wide range of scaling exponents
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Address structure is multifractal at /16

%
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Multifractal model

%

• Make a multifractal Cantor measure matching this spectrum

• Start with a Cantor dust with dimension D

Repeatedly remove middle subinterval with proportion h = 1− 21−1/D

• Sample unequally from left and right subintervals

Distribute a unit of “mass” between subintervals; left gets m0, middle
gets 0 (removed), right gets m2 = 1−m0

Produces a sequence of measures µk that weakly converge to µ

Sample an address with probability equal to its measure

Result: different local scaling behavior
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The model fits well

%
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The model fits well

%
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Why multifractal?

%

• Perhaps it’s due to a cascade

Recursive subdivision plus a rule for distributing mass

• For example, address allocation

Pure speculation!

ICANN allocates short prefixes to providers

Providers allocate longer prefixes to their customers

All parties might allocate basically from left to right
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Does the multifractal spectrum matter?

%

• Certainly the model doesn’t look like real data:

U1
255.255.255.255192.0.0.0128.0.0.064.0.0.00.0.0.0

U1 Model
255.255.255.255192.0.0.0128.0.0.064.0.0.00.0.0.0

How do we know whether we’ve captured relevant properties?

• Develop application metrics for address structures

Contrast metrics among traces

Compare with model
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Active aggregate counts: np and γp

%

• np again equals the number of active /ps in a trace

• np measures how densely addresses are packed

If N = 216 and n16 = 1, addresses are closely packed

If N = 216 and n16 = 216, addresses are well spread out

Useful for algorithms keeping track of aggregates—shows how many
aggregates there tend to be

• γp = np+1/np more convenient for graphs

N =
∏

1≤p<32 γp
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γp

%
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Models’ γp

%
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Discriminating prefixes

%

• The discriminating prefix of an active address, a, is the prefix length
of the largest aggregate that contains only one active address,
namely a.

Example with 4-bit addresses:
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• Measures address separation

If many addresses have d.p. < 20, say, then addresses are well
separated

How depopulated do aggregates become?
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Discriminating prefixes: πp

%

• Let πp equal the number of addresses with d.p. p
∑
πp = N

Turns discriminating prefixes into a metric
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πp

%
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Models’ πp

%
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Aggregate population distribution

%

• Like aggregate packet count distribution, but count the number of
active addresses per aggregate

Expect a wide range of variation, just as with the other metrics
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Aggregate population distribution

%
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Models’ aggregate population distribution

%
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A tough metric

%

• The model for A2 doesn’t match A2’s aggregate populations

R1, W1 match well, A2, U1 do not

Significant aggregation in A2, U1 at long prefixes . . . ?

• Aggregate population distribution is difficult to match

• Consider random allocation constrained to match γp and πp exactly

Heck, match “generalized discriminating prefixes”—d.p.s for
aggregates—as well

Call this the “Match-DP” model

How well does this do?
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Match-DP fails aggregate population distribution

%

10-4

10-3

10-2

0.1

1

1051041000100101

C
o

m
p

le
m

en
ta

ry
 C

D
F

Aggregate population

/16s

/8s

R1
R1 Model
R1 DP-Model
A2
A2 Model
A2 DP-Model

33



Another tough metric: The multifractal spectrum

%
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Properties of γp: Sampling effects?

%

• Turn from the multifractal model to properties of our γp metric

• First: Is γp dominated by sampling effects?

N is effectively a sample size

How does the shape of the γp curve depend on N?

• Plot γp for longer and shorter sections of trace U1

24 hours→ 6 minutes; N = 161,560→ 11,838
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Shape of γp similar for wide range of sample sizes

%
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Shape of γp similar for wide range of sample sizes

%
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Short-term stability?

%

• Is γp stable over short time scales?

• Divide traces into short sections, each with N = 32,768

Plot maximum, minimum, and mean γp over all sections

R1, A2, and U2; sections last about 6–7 minutes each
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Shape of γp relatively stable over short time scales

%
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New communication dynamics?

%

• How does γp change given a different communication pattern, such
as worm propagation?

Expect worm propagation to significantly change the destination
addresses visible at an access link, since every possible internal address
will be contacted.

Not the best detection metric . . .

• Take a new data set, collected at a national laboratory, before and
after Code Reds 1 and 2

Consider γp and aggregate population distribution
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Shape of γp changes during worm propagation

%
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Agg. packet counts change during worm propagation

%
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Address stability

%

• Divide a trace into sections, each lasting t seconds.

• How many addresses in section 1 recur in section 2?

. . . in sections 1, 2, and 3? and so forth

Indicates how quickly address sets change

• Model: there are long-lived addresses and short-lived addresses

Every section contains nS short-lived and nL long-lived

Addresses survive into the next section with probabilities pS and pL
(where pL > pS)

How well does this model match?
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U2, 6-minute sections

%
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Other time scales
%
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Conclusions

%

• Demonstrated importance of address structure

• Real address structure well modeled by a two-parameter
multifractal

Captures some aggregation behavior better than models built using
metrics from real data

• Use of structural metrics as site fingerprints

Metrics differ between sites, are stable over short time scales
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Future work

%

???
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Analysis details

%

• Sections are numbered 1 . . . k.

n[A] is number of active addresses in intersection of sections A.

• nL long-lived addresses per section, nS short-lived addresses.

• pL long-lived survival probability, pS short-lived.

• pL ∼ n[1 . . . k]/n[1 . . . k− 1].

• nL = n[1 . . . k]/pL
k.

• nS = n[1]− nL.

• pS = (n[1, 2]− nLpL)/nS.
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