Analysis of link failures in an IP backbone network

Gianluca Iannaccone Sprint ATL

joint work with:
Chen-Nee Chuah, UC Davis
Richard Mortier, Microsoft
Supratik Bhattacharyya, Sprint ATL
Christophe Diot, Sprint ATL

Motivation

- Today's Service Level Agreements:
 - Performance in terms of delay and packet loss
 - Availability in terms of "port availability"
- Need to introduce a "service availability" metric:
 - Would permit to compare VoIP/VPN services to standard telephone networks

Question:

"How often does a router have no forwarding information for any given destination prefix?"

Methodology

- Frequency and duration of link failures
 - Recorded IS-IS routing updates
 - Python Rout(e)ing Toolkit to listen to failures
 - 4 months of data (Dec 2001 Mar 2002)
 - U.S. inter-PoP links
 - Failures less than 24hrs long

Internet Measurement Workshop

Network-wide Time Between Failures

Breakdown by time of the day (EDT)

Causes of failures

- Duration may give a hint
- Some speculations:
 - Long (>1hour): fiber cuts, severe failures
 - Medium (>10min): router/line card failures
 - Short (>1min): line card resets
 - Very Short (<1min): optical equipment</p>

Does the duration give any hint?

Controlled failure experiment

Impact of a failure: 7 steps to re-route traffic

1.	Detect link down	<100ms
2.	Wait to filter out transient flaps	2s
3.	Wait before sending update out	50ms
4.	Processing & flooding the update	~10ms/hop
5.	Wait before computing SPF	5.5s
6.	Compute shortest paths	100-400 ms
	→ exp. protocol convergence:	5.1s / 5.9s
7.	Update the routing tables	~20 pfx/ms
	→ exp. service convergence:	1.5s / 2.1s
	→ exp. total disruption:	6.6s / 8.0s

Conclusion

- Link failures are part of everyday operations
- Majority of failures are short-lived
- Disruption in packet forwarding depends on
 - routing protocol dynamics and implementation
 - router architecture
 - too many timers and interactions among different components
- Need to develop link failure model:
 - define IP service availability
 - need more points (4 months are not enough)

