
Measuring Packet Reordering

John Bellardo
Stefan Savage

Department of Computer Science and Engineering
University of California, San Diego

November 6, 2002



Motivation
• Why is reordering important?

– Performance (TCP fast retransmit)
– Race conditions (bad protocols)

• What is hard about measuring it?
– [Bennett et al 99]: active ICMP probing (ping)

• Round-trip only; ICMP filtering/rate limiting bias
– [Paxson 99]: pair-wise TCP endpoint analysis

• Scale issues (need software at each endpoint)
– [Jaiswal et al 02]: passive TCP analysis in net

• Significant infrastructure requirement



Our contributions

• Unidirectional measurement techniques
– Active approach

• Send packet pairs and check for reordering
– Code runs only at sender

• Leverage TCP/IP protocol/implementation features
• Infer if reordering is outbound or on return path

• Implementation of same
• Early experiences



First attempt:
Single Connection Test

• Leverage TCP’s error control mechanisms
– Every packet is labeled w/sequence number
– Latest in-order sequence number acknowledged
– Idea: Craft packets so ACKs reveal reordering

• Assumption
– ACK parity: ACK generated for each packet



Single Connection Test

• Fully establish a TCP session
– Sequence space starts at 1

Probing
Host

Remote
Host



Data 2

Single Connection Test

• Fully establish a TCP session
– Sequence space starts at 1

• Create a gap in sequence space

Probing
Host

Remote
Host



Data 2

ACK 1

Single Connection Test

• Fully establish a TCP session
– Sequence space starts at 1

• Create a gap in sequence space
– Wait for remote host to ACK the gap

Probing
Host

Remote
Host



Data 2

ACK 1

Data 1

Single Connection Test

• Fully establish a TCP session
– Sequence space starts at 1

• Create a gap in sequence space
– Wait for remote host to ACK the gap

• Send two sample packets that
straddle the previous packetData 3

Probing
Host

Remote
Host



Data 2

ACK 1

Data 1

ACK 3

Data 3

Single Connection Test

• Fully establish a TCP session
– Sequence space starts at 1

• Create a gap in sequence space
– Wait for remote host to ACK the gap

• Send two sample packets that
straddle the previous packet

• If there is no reordering
– First ACK should be for the gap

Probing
Host

Remote
Host



Data 2

ACK 1

Data 1

ACK 3

Data 3

ACK 4

Single Connection Test

• Fully establish a TCP session
– Sequence space starts at 1

• Create a gap in sequence space
– Wait for remote host to ACK the gap

• Send two sample packets that
straddle the previous packet

• If there is no reordering
– First ACK should be for the gap
– Second ACK is for the whole

sequenceProbing
Host

Remote
Host



Data 2

ACK 1

Data 1

ACK 3

Data 3

ACK 4

Single Connection Test
Data 2

ACK 1

Data 1
ACK 1

Data 3

ACK 4

Data 2

ACK 1

Data 1

ACK 3

Data 3

ACK 4

Data 2

ACK 1

No
Reordering

Forward
Reordering

Reverse
Reordering

Forward
and Reverse
Reordering

Data 1

ACK 1

Data 3

ACK 4



Single Connection Test Pitfalls
• Packet loss results in unusable

samples (general limitation)

• ACK parity assumption fails
– Delayed acknowledgements
– Need both ACKs to reveal order

Data 2

ACK 1

Data 1

Data 3

ACK 4
ACK 3 gets delayed and
subsequently is never sent



Dual Connection Test

• Need two samples to be reliable returned
– Send all packets out of order (ACK not delayed)
– ACK value useless, so infer order from other fields

• Use two connections to differentiate samples
• IPID – “unique” identifier for each datagram in a flow

• New assumptions
– IPID is strictly increasing per host

• Dominant implementations do this
– Both connections are made to the same machine



Dual Connection Test

• Fully establish two TCP sessions
(red and black)

Probing
Host

Remote
Host



Dual Connection Test

• Fully establish two TCP sessions
(red and black)

• Send two sample packets: one in
each connection

Probing
Host

Remote
Host



IPID n

Dual Connection Test

• Fully establish two TCP sessions
(red and black)

• Send two sample packets: one in
each connection

• If no reordering
– IPID of first response packet…

Probing
Host

Remote
Host



IPID n

Dual Connection Test

IPID > n

• Fully establish two TCP sessions
(red and black)

• Send two sample packets: one in
each connection

• If no reordering
– IPID of first response packet, is

strictly less than IPID of response
packet

Probing
Host

Remote
Host



Dual Connection Test Pitfalls

• Connection assumption violations
– Load balancer can direct two connections to

different hosts
• IPID assumption violations

– Random IPID values (e.g., OpenBSD)
– Zero IPID after MTU discovery (e.g., Linux)



SYN Test
• Trick load balancers by starting “identical”

connections
– Appear to belong to same flow (but different seq #’s)

• Use TCP connection state machine to infer order
– No assumptions about IPID

• Assumptions
– Duplicate SYN’s with different seq cause ACK or RST

packets



SYN Test

Probing
Host

Remote
Host

• Uses no pre-established sessions



SYN 1

SYN 10

SYN Test

Probing
Host

Remote
Host

• Uses no pre-established sessions
• Send two SYN packets to remote

host
– Different starting sequence number
– Other than that, identical



SYN 1

SY
N+ACK 1

SYN 10

SYN Test

Probing
Host

Remote
Host

• Uses no pre-established sessions
• Send two SYN packets to remote

host
– Different starting sequence number
– Other than that, identical

• First received packet will generate
a SYN+ACK



SYN 1

SYN 10

RST/ACK

SYN Test

Probing
Host

Remote
Host

• Uses no pre-established sessions
• Send two SYN packets to remote

host
– Different starting sequence number
– Other than that, identical

• First received packet will generate
a SYN+ACK

• Other packet causes a RST or ACK

SY
N+ACK 1



SYN Test Pitfalls

• SYN behavior assumption violations
– Poorly understood/implemented part of spec.
– Some TCP stacks send SYN+ACK or nothing

in response to a bad duplicate SYN
• A series of SYN-based probes may be

interpreted as a DoS attack
– Implementation is good about cleaning up state



Implementation

• User-level subset of TCP stack
– Shared origin w/Sting, TBit, Sprobe and Alpine
– Raw socket for sending frames
– Packet filters (via libpcap) to capture response
– Firewall filters to prevent host OS from seeing

response
– Detect assumption failures

• Runs on stock FreeBSD and Linux



Validation

• Controlled
– Added reordering to FreeBSD Dummynet
– Independently varied forward and reverse reordering
– Match between network trace and reports from tool

• Experimental
– Probed 50 hosts over 20 days with all tests
– Each host probed approx. every 30 minutes
– Probe results similar for hosts across tests

(where different tests were compatible)



Observations (1)

• Significant reordering seen on some paths
www.apple.com

0
5

10
15
20
25
30

22 10 22 10 22 10 22 10 22 10 22 10
hour

%
 re

or
de

rin
g

forward



Observations (2)

• Reordering can be highly asymmetric
www.apple.com

0
5

10
15
20
25
30

22 10 22 10 22 10 22 10 22 10 22 10
hour

%
 re

or
de

rin
g

forward
reverse



Observations (3)
• Small changes in packet spacing can have

large changes on reordering (on same path)

0

2

4

6

8

10

12

0 50 100 150 200 250 300
usec

%
 re

or
de

rin
g



Conclusion
• We can measure unidirectional reordering from a

single endpoint
• This matters

– Reordering does happen
– Asymmetry is common on reordered paths

• We still need a precise metric for reordering
– Results currently not comparable between studies

• Source code will be available shortly at:
http://ramp.ucsd.edu/reorder


