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Abstract tention of arbitrary detail while at the same time reducing
data volumes. Sampling also has the desirable property of

in order that all traffic passes at least one observation oingemg simple to implement and quick to execute, giving it
. P Hon p n advantage over recently developed methods for comput-
The resulting measurements are subsequently joined far

network analysis. Ing compact approximate aggregates such as sketches [14].

M work i licati Sampling is used extensively in traffic measurement.
any network management applications use measuregFIOW [17] sends packet samples directly to a collector. In

traffic rates_(d_ifferentiated into classes according to SomeTrajectory Sampling, each packet is selected either at all
key) as their input data. But two factors complicate the oints on its path or none, depending on the result of apply-

analysis. Traffic can be represented multiple times in th ng a hash function to the packet content [3]. In Sampled

data, and the increasing use of sampling during MmeasUryetFlow [1], packets are sampled before the formation of

rsneenr:;g]eans some classes of frafiic may be poorly TP S ow statistics, in order to reduce the speed requirements

In thi how how t bi led trafi for flow cache lookup. Several methods focus measure-
n this paper, we show how to combine sampled UalliCy,anis o the small proportion of longer traffic flows that

measurements in way that addresses both of the above igz . o majority of packets. An adaptive packet sam-

fsues. d\./f\f/e construct traffic ratg esumatorshthqt 9on1|b|ne|da§|ing scheme for keeping flow statistics in routers which
rom different measurement datasets with minimal or clos ncludes a binning scheme to keep track of flows of differ-

to minimql variance.' This is achieved by robust adaptqtiorbnt lengths is proposed in [7]. Sample and Hold [8] samples
to the estimated variance of each constituent. We motlvatﬁew flow cache instantiations, so preferentially sampling

the method with two applications: estimating the interface-Ionger flows. RATE [12] keeps statistics only on those

lffvel trafﬂ(‘}matrlx inarouter, and l::‘stlmatmgi _n(Ttwork-IeveI flows which present successive packets to the router, and
ow rates from measurements taken at multiple routers. coq these to infer statistics of the original traffic. Packet

sampling methods are currently being standardized in the

IP network traffic is commonly measured at multiple points

1 Introduction Packet Sampling (PSAMP) Working Group of the Internet
Engineering Task Force [15]. Flow records can themselves
1.1 Background be sampled within the measurement infrastructure, either at

The increasing speed of network links makes it infeasible tgh€ collector, or at intermediate staging points. Flow-size
collect complete data on all packets or network flows. Thisdependent sampling schemes have been proposed [4, 5, 6]
is due to the costs and scale of the resources that woul@ avoid the high variance associated with uniform sam-
be required to accommodate the data in the measuremeRlting of flows with a heavy tailed length distribution.
infrastructure. These resources are (i) processing cycles _aLt
the observation point (OP) which are typically scarce in a™
router; (ii) transmission bandwidth to a collector; and (iii) Multiple Traffic Measurements. This paper is motivated
storage capacity and processing cycles for querying anly the need to combine multiple and possibly overlapping
analysis at the collector. samples of network traffic for estimation of the volumes or
These constraints motivate reduction of the datarates of matrix elements and other traffic components. By a
Of three classical methods—filtering, aggregation andraffic componentwe mean a (maximal) set of packets shar-
sampling—the first two require knowing the traffic featuresing some common property (such as a flow key), present
of interest in advance, whereas only sampling allows the rein the network during a specified time frame. Traffic OPs

2 Motivation



can be different routers, or different interfaces on the sam#éle but important point: we treat the underlying traffic as
router. Reasons for taking multiple measurements includea single fixed sample path rather than a statistical process.
(i) all traffic must pass at least one OP; (ii) measurementd he only variance is due to sampling, which can be imple-
must be taken at a specified set of OPs; and (iii) networkmented to be independent over each packet or flow record.
traffic paths must be directly measured. Consequently, variance estimates can be aggregated along

Sampling and Heterogeneity.Traffic analysis often re-  with the estimates themselves, even if the underlying sam-
quires joining the various measurement datasets, while giling parameters change during the period of aggregation.
the same time avoiding multiple counting. Sampling in- We now describe two scenarios in which multiple over-
troduces further complexity since quantities defined for thdapping traffic measurement datasets are produced, in
original traffic (e.g. traffic matrix elements) can only be es-which our methodology can be usefully applied. We also
timated from the samples. Estimation requires both renormention a potential third application, although we do not
malization of traffic volumes in order to take account of pursue it in this paper.

sampling, and analysis of the inherent estimator variability ) ] ]
introduced through sampling. 1.3 Router Matrix Estimation

Depending on the sampling algorithm used, the proporRouter Measurements and Matrix Elements. Appli-
tion of traffic sampled from a given traffic component may cations such as traffic engineering often entail determin-
depend on (i) the sampling rate (e.g. when sampling uniing traffic matrices, either between ingress-egress interface
formly) and/or (i) the proportion of that component in the pairs of a router, or at finer spatial scales, e.g., at the routing
underlying traffic (e.g. when taking a fixed number of sam-prefix level or subnet level matrices for traffic forwarded
ples from a traffic population). Spatial heterogeneity inthrough a given ingress-egress interface pair. A common
traffic rates and link speeds presents a challenge for estipproach to traffic matrix estimation is for routers to trans-
mating traffic volumes, since a traffic component may notmijt reports (e.g. packet samples or NetFlow statistics) to
be well represented in measurements all points, and samremote collector, where aggregation into matrix elements
pling rates can differ systematically across the network. FO{MESs) is performed.
example, the sampling rate at a lightly loaded access link  opservation Points and Sampling Within a Router.
may be higher than at a heavily loaded core router. Changephe choice of OPs within the router can have a great effect

in background traffic rates (e.g. due to attacks or reroutingpn the accuracy of traffic matrices estimated from samples.
can cause temporal heterogeneity in the proportion of trafconsider the following alternatives:

fic sampled.

Combining Estimates. This paper investigates how best ® Router-level Sampling all traffic at the router is
to combine multiple estimates of a given traffic component.  treated as a single stream to be sampled. We assume
Our aim is to minimize the variability of the combined es- ingress and egress interface can be attributed to the
timate. We do this by taking a weighted average of the =~ measure traffic, e.g., as reported by NetFlow.
component estimates that takes account of their variances
Naturally, this approach requires that the variance of each
component is known, or can at least be estimated from the
measurements themselves. A major challenge in this ap-
proach is that inaccurate estimates of the variance of the
components can severely impair the accuracy of the combi-
nation. We propose robust solutions that adapt to estimated
variances while bounding the impact of their inaccuracies. Comparing Sampling at the Observation Points.Ac-

What are the advantages of adapting to estimated varieurate estimation of an ME requires sufficiently many flows
ances, and combining multiple estimates? Why not simplyto be sampled from it. For example, in uniform sampling
use the estimate with lowest variance? The point of adaptawith probability p, the relative standard deviation for un-
tion is that the lowest variance estimate cannot generally bbiased estimation of the total bytes offlows behaves
identified in advance, while combining multiple estimatesroughly as~ 1/,/np. We propose two classes of impor-
gains significant reduction in variance. tant MEs:

The component estimators are aggregates of individual ) o
measurements. Their variances can be estimated providdg-arge matrix elementsthese form a significant propor-
the sampling parameters in force at the time of measureion Of the total router traffic.
ment are known. This is possible when sampling paramé#) Relatively large matrix elementghese form a signif-
ters are reported together the measurements, e.g., as is ddoant proportion of the traffic on either or both of their
by Cisco Sampled NetFlow [2]. The estimated variance igngress or egress router interfaces. (We use the temad
additive over the measurements. This follows from a subandrelatively smallin an obvious way).

"o Unidirectional Interface-level Sampling:traffic is
sampled independently in one direction (incoming or
outgoing) of each interface.

e Bidirectional Interface-level Samplingraffic is sam-
pled independently in both interface directions.



Gravity Model Example. In this case the Mk, from 1.4 Network Matrix Estimation Problem
interfacer to interfacey is proportional tdchnj\ljut where
M™ andM°"* denote the interface input and output totals;
see [13, 18]. The large MEs,,, are those for which both

The second problem that we consider is combining mea-
surements taken at multiple routers across a network. One
. . approach is to measure at all edge interfaces, i.e., access
M "’“,“j]\/[?({mt are !arge. The relatively large MEs are thoser(?lfters and peering points. Exgept for traffic destined
for which either/; or My (or both) are large. to routers themselves, traffic is sampled at both ingress

Router level sampling is good for estimating large MEs,and egress to the network. Estimating traffic matrices be-
but not those that are only relatively large at the routerween edges is then analogous to the problem of estimating
level. This is because the sampling rate is independent of ithgress-egress MEs in a single router from bidirectional in-
ingress and egress interfaces. In the gravity model, routeterface samples.
sampling is good for estimating the “large-to-large” MEs,  Once measurement and packet sampling capabilities be-
(i.e. thosem,, for which bothM}* and M are large)  come standardized through the PSAMP and Internet Proto-
but not good for estimating “large-to-small” and “small-to- col Flow Information eXport (IPFIX) [11] Working Groups
large” (and “small-to-small”) MEs. of the IETF, measurements could be ubiquitously available

Unidirectional interface-level sampling offers some im- across network routers. Each traffic flow would potentially
provement, since one can use a higher sampling rate ope measured at all routers on its path. With today's path
interfaces that carry less traffic. However, unidirectionallengths, this might entail up to 30 routers [16]. However,
sampling, say on the ingress direction, will not help in get-control of the total volume of data traffic may demand that
ting sufficient samples from a small interface-to-interfacethe sampling rate at each OP be quite low; estimates from
traffic ME whose ingress is on an interface that carries & single OP may be quite noisy. The problem for analysis
high volume of traffic. In the gravity model, “large-to- is how to combine these noisy estimates to form a reliable
small” (and “small-to-small”) MEs would be problematic one.
with ingress sampling.

Only bidirectional interface-level sampling can give a
representative sample of small but relatively large MEsMultiple sampling methods may be used to match differ-
Two different estimates of the MEs could be formed, oneent applications to the statistical features of the traffic. For
by selecting from an ingress interface all samples destinedxample, the distribution of bytes and packet per flow has
for a given egress interface, and one by selecting from abeen found to be heavy-tailed; see [10]. For this reason,
egress interface all samples from a given input interfacesampling flow records with a non-uniform probability that
The two estimates are then combined using the method pras higher for longer flows leads to more accurate estimation
posed in this paper. of the total traffic bytes than uniform sampling; see [4]. On

The effectiveness of router or interface level Samp"ngthe other hand, estimates of the number of flows are more
for estimating large or relatively large MEs depends on thedccurate with uniform sampling. When multiple sampling
sampling rates employed and/or the resources available féRethods are used, it is desirable to exploit all samples gen-
storing the samples in each case. If router levedl in- erated by both methods if this reduces estimator variance.
terface level sampling are employed, three estimates (from .
router, ingress and egress sampling) can be combined. H6 Outline

both the three-way and two-way combinations, no priorsection 2 describes the basic model for traffic sampling,
knowledge is required of sampling parameters or the sizeghen describes a class of minimum variance convex com-
of the MEs or their sizes relative to the traffic streams frompjnation estimators. The pathologies that arise when using
which they are sampled. these with estimated variance are discussed. Section 3 pro-
Resources and Realization.The total number of sam- poses two regularized estimators that avoid these patholo-
ples taken is a direct measure of the memory resources emgies. Section 4 recapitulates two closely related sam-
ployed. We envisage two realizations in which our analysiple designs for size dependent sampling of flow records,
is useful. Firstly, for router based resources, the questioand applies the general form of the regularized estimators
is how to allocate a given amount of total router memoryfrom Section 3 in each case. The remainder of the pa-
between router based and interface based sampling. Theer is concerned with experimental evaluation of the reg-
second realization is for data collection and analysis. Al-ularized size-dependent estimators for combining samples
though storage is far cheaper than in the router case, thed# flow records. Section 5 evaluates their performance in
is still a premium on query execution speed. Record samthe router interface-level traffic matrix estimation problem
pling reduces query execution time. The question becomesf Section 1.3, and demonstrates the benefits of including
how many samples of each type (interface or router) shouléhterface-level samples in the combination. Section 6 eval-
be used by queries. uates performance of the regularized estimators in the net-

1.5 Parallel Samples



work matrix estimation problem of Section 1.4 and shows2.3 Average Combination Estimator
how they provide a robust combination estimates under ~ B - ,
wide spatial variation in the underlying sampling rate. WeHere A; = 1/m hence X = > j—1X;. This

conclude in Section 7. estlAmator is unbiased since th)e,- are mdependent :
E[X] = 2701 A JE[X;] = X. It has variance/ar(X) =

m~2 > iy vj. This estimator is very simple to compute.
2 Combining Estimators However, it suffers from sensitivity ofar(X) to one con-

stituent esumatoKJ having large variance;, due to. e.g.,
a small sampling rate. The average estimator is special case
Considern traffic flows labelled byi = 1,2,...,n, with  of the following class of estimator.
byte sizesz;. We aim to estimate the byte totd =
>, x;. Each flowi can be sampled at one of OPs, 2.4 Independent{);} and {)A(j}_
giving rise to estimator(y, ... X,, of X as follows. Let o P _ _
pi; > 0 be the probability that flowis selected at Op. In ~ WhenJ; is independent of;, X' is unbiased, since
generap;; will be a function of the size;, while its depen-
dence ory reflects the possible inhomogeneity of sampling > -
parameters across routers. E[X] =E[E| X Al = Z
Let x;; be the indicator of selection, i.ex;; = 1 when B
the flow i is selected in measuremeptand0 otherwise. Furthermore, elementary algebra shows that
Then eacly;; = x;;x;/p;; is an unbiased estimator of,
i.e., E[z;;] = z, for all measurements. Renormalization
by p;; compensates for the fact that the flow may not be Var Z E /\2 4)
selected. Clearly; = >, T;j is an unbiased estimator
of X. Note thex; are considered deterministic quantities; ]
the randomness in th&; arises only from sampling. We 1he RHS of (4) can be rewritten as
assume that the sampling decisions (g for each flow m
i at eagh of then OPs are independent; it follows that the ZE )\2 ZE [\ — A v))? Jv; + Vo(v)  (5)
X are independent. — =

2.1 Models for Traffic and Sampling

®)

2.2 Variance of Combined Estimators where

In order to use all the information available concerniig 1/v; WS

we form estimators oK that depend jointly on the: esti- Aj(v) = W , Vo) =1/> vt (6)
matorle,.. X,,. We focus on convex combinations of =100 j=

theX ie., esumators of the form R
Eqg. (5) shows that the variance &fis minimized by min-
m imizing the total mean square error in estimating the
X =3 "NXj, with; €[0,1], Y A =1. (1) by, ThenVy(v) is the minimum variance that can be
J=1 J=1 attained. The form of\; says that the more reliable esti-

mates, i.e., those with smaller variance, have a greater im-
We allow the coefficients\; to be random variables than pact on the final estimator.

can depend on the;,. ThIS class of models is reasonably
amenable to analysis, and the statistical properties of |t§ 5 Estimators of Known Variance
members are relatively easy to understand.

m

Each choice of the coefficients = {)\; : j =  Forknown variancesj,Var()A() is minimized by
1,...,m} gives rise to an estimatox . Which A should
be used? To evaluate the statistical properties of the esti- Aj=4;(v) (1)

mators (1), we focus on two properties: bias and variance. _ o
We now describe these for several cases of the estimatd¥e do not expect the; will be known a priori. For general

(1). Letwv; denote the variancéar(X ), i.e, pi; it is necessary to know alt; in order to determine;.
However, in many applications, only the sizesof those
" 22.(1— pyj) flows actually selected during sampling will be known. We

L= Var ZVar (@i5) Z i

’ (2)  now mention two special cases in which the variance is at
i=1 if

least implicitly known.



2.6 Spatially Homogeneous Sampling other hand, the average estimator is susceptible to the effect

Each flow is sampled with the same probability at each OPO]c high variances. Some ad hoc fixes include:

) . AH1: Use); = A;(V) on the subset of sample sgtwith
which may differ between flowsy;; = p; for somep; and Joo I . . .
all i, Then thew. are equal and ]vve takk; — A, (1) — non-zero estimated variance. If all estimated variances are
J- ' q kkf L9l zero, use the average estimator.
1/m. Hence for homogeneous sampling, the average es:, .’ . . .
. . : g . AH2: Use the non-zero estimate of lowest estimated vari-
timator from Section 2.3 is the minimum variance convex - . -
combination of thex, ance. But these estimators still suffer from a potentially far
a more serious pitfall: the impact of statistical fluctuations
2.7 Pointwise Uniform Sampling in small estimated variances. This is discussed further in

Section 2.10.
Flows are sampled uniformly at each OP, although the
sampling probability may vary between points; = g; 2.10 Discussion
for someg; and alli. Thenv; = (3., 2?)u; where
uj = (1 —¢;)/q;. The dependence of eachin the {z;}
is a common multiplier which cancels out upon taking the
minimum variance convex combinatidf using

Absence of Uniformity and Homogeneity.We have seen

in Section 2.6 that the average estimator is the minimum
variance convex combination only when sampling is ho-
mogeneous across OPs. In Section 2.7 we saw that we can

N = A — A 8 form a minimum variance estimator without direct knowl-

i =A(v) =A;(w) (8) : . At
edge of estimator variance only when sampling is uniform.

2.8 Using Estimated Variance In practice, we expect neither of these conditions to hold

. L . for network flow measurements.
When variances are not know a priori, they may sometimes Firstly, sampling rates are likely to vary according to

be estimated from the data. For each QRnd each flow 1, hitored link speed, and may be dynamically altered in

i, the random quantity response to changes in traffic load, such as those gener-
ated by rerouting or during network attacks. In one pro-
posal, [7], the sampling rate may be routinely changed on
short time scales during measurement, while the emerging
PSAMP standard is designed to facilitate automated recon-
figuration of sampling rates. Secondly, the recognition of

iy = xije; (1 = pij) /035 9)

is an unbiased estimator of the variangg = Var(Z;;) in
estimatinge; by ;;. Hence

R n the concentration of traffic in heavy flows has led to sam-
Vj= Z@j (10)  pling schemes in which the sampling probability of a flow
i=1 (either of the packets that constitute it, or the complete flow

records), depends on the flow’s byte size rather than being
uniform; see [4, 5, 6, 8, 12]. Finally, in some sampling
. . > schemes, the effective sampling rate for an item is a ran-
7ls selected at observation point . dom quantity that depends on the whole set of items from
Note thatV; ar_1de are Fjep.endent. This takes us out of which it is sampled, and hence varies when different sets
the class of estimators with independént;} and{X;},  are sampled from. Priority sampling is an example; see
and there is no general simple form for ter(X) analo-  Section 4.
gous to (4). An alternative is to estimate the variance from pathologies of Small Estimated VariancesUsing es-
an independent set of samples at eachjOPhis amounts  timated variances brings serious pitfalls. The most prob-
to replacingy;; by an independent identically distributed lematic of these is that samples taken with a low sampling
sampling indicatof x;, } in (9). With this change, we know rate may have estimate variance close to or even equal to

is an unbiased estimator of. Put another way, we add an
amountz? (1 — pi;)/p;; to the estimatol’; whenever flow

from Section 2.4 that using zero. Even if the zero case is excluded in ad hoc man-
~ ner, e.g. as described in Section 2.9, a small and unreliable
Aj=4;(1) (11) sample may spuriously dominate the estimate because its

] ] ] ] ~ ~ estimated variance happens to be small. Some form of reg-
will result in an unbiased estimatof in (1). Butthe esti-  j5rization is required in order to alleviate this problem. A
mator will not in general have minimum possible variancegecondary issue for independent variance estimation is the
Vo(v) since); is not necessarily an unbiased estimator ofrequirement to maintain a second set of samples, so dou-
Aj(v). bling resource requirements.

In the next sections we propose a regularization for
variance estimation in a recently proposed flow sampling
A problem with the foregoing is that an estimated variancescheme that controls the effect of small estimated vari-
V; could be zero, causing,; (1) to be undefined. On the ances, even in the dependent case.

2.9 Some Ad Hoc Approaches



3 Regularized Estimators sample rates (as reflected by inhomogeneity inthevhile

o ) not being subject to statistical fluctuations in variance esti-
We propose two convex combination estimators of the typgyates.

(1) using random coefficients; } of the form (11) but Uniform and Homogeneous Sampling.Note that uni-
regularizing or bounding the variances to control the impack,m and homogeneous sampling fall into this framework

of Smaﬂestimated variarlces. Both estimators take the forna"eady (with equality in (15)), since in both cases the de-
2.5 2 X; with A; = A;(U) for some estimated variances pendence of the variances on the objects:; to be sam-

U, while they differ in whichU is used. pled is a common factor over all OBs which is hence
Both estimators are characterized by the set of quantitiesliminated from the coefficients;.
7, where for each OR: Small Sampling Probabilities. The tightness of the
bound (15) depends on the functional formpgf. One par-
T = i:rﬁ?ﬁl(mi/pij) (12)  ticular case is when sampling probabilities are small. For

this case we propose a linear approximation:
The7; may be known a priori from a given functional de-
y Cori =i/ + O((z:/75)?) (16)
pendence op;; on z;, or it may only be known from the Dij i/ Tj i/ Tj

measurements themselves. L. . L .
This yields approximate equality in (15), providedaliare

3.1 Regularized Variance Estimator small compared with;. We give an example of a sample

: , , . design with this property in Section 4.
The first estimator ameliorates the impact of small underes-

timated variances, while still allowing combination to take 3.3 Confidence Intervals

account of different but well-estimated variances. Note that ; . . fid . Is f
the estimated variang; obeys the bound We form approximate conservative confidence intervals for

X by applying a regularization of the type (14). Thus the
by < Xiﬂf (13)  upper and lower confidence intervals are

This suggests that we can ameliorate the effects of random Xi=X+s(V+s7%) 17)
exclusion of a flow from a sample by adding a small mul-
tiple s of 77 to each variance estimat®j. This represents
the scale of uncertainty in variance estimation. The ad{Tom the mean.

dition has little effect when the estimated variance arises

from a large number of samples, but tempers the effect of 4 Size Dependent Flow Sampling
small sample for which the variance happens to be small or

even zero. V\iith this motAivation, thvegularized variance The remainder of the work in this paper will focus on
estimatoris X — Zj A X; with two closely related schemes for sampling completed flow

records. These ardareshold sampling [4] and priority
sampling [6]. We briefly recapitulate these now.

wheres is the target number of standard deviations away

Aj =4 (E/) where X7j’ = 17, + 577 (14)

. . _ . 4.1 Threshold Sampling
The corresponding variance estimate for this convex com-

bination isV = Z;_":l ,\ff/] The special case= 0isjust  For a thresholdz > 0, a flow of sizex is sampled with

the estimator from Section 2.8. probability p.(z) = min{l,z/z}. Thus flows of size
_ ) x > z are always sampled, while flows of size< z are
3.2 Bounded Variance Estimator sampled with probability proportional to their size. This al-

The second estimator uses a similar approach on the actultglvIates tEe problem of unn‘or_m sarr:jplm?, that dbyte esltlmtz_a-
variancev,,, which obeys the bound: ion can have enormous variance due to random selection

or omission of large flows. In threshold sampling, all flows
(15) of size at least are always selected.
Starting with a set of flows with sizege;} as before,
If this bound were equality, we would then haje= X7;,,  we form an unbiased estimatar of X = > | x; using
in which case, the minimum variance estimator would bethe selection probabilities; = p.(z;). (In this section we
thebounded variance estimator namely,X = Zj .¢ suppress the indeixof the OP). The estimator of from a
with A\; = A;(X7) = A(z). The corresponding variance single OP takes the foro¥ takes the specific form

estimate for this convex combination#s = >°" | A2V,

The strength of this approach is that the variance estimate ¢ _ - I (2) = - max{zi 2 18
can take account of knowledge of inhomogeneity in the ;Xl i/P= (@) ;Xz tewzy (18

Uij S xiTj



Threshold sampling is optimal in the sense that it mini-not of all sampled flows, but only of a selection of them that
mizes the cos€’, = Var(X) + 22N whereN = Y7 | p; share some property of interest, e.g., a specific source and
is the expected number of samples taken. This cost exdestination. The probability that a given interesting flow
presses the balance between the opposing goals of reducimgll be amongst the: flows selected, depends also on the
the number of samples taken, and reducing the uncertaintsizes of all flows in the background traffic, which gener-
in estimatingX. The value ofz determines the relative ally varies between different OPs. Threshold sampling is

importance attached to these goals. independent between flows.
Applying the general formula (2), the variance of the es-
timate X from a single OP is 4.3 Threshold and Priority Compared
R n The estimator (21) appears quite similar to that for thresh-
Var(X) = Z x; max{z — x;,0} (19) old sampling (18), except that the role of the threshoisl

i=1 played by the random quantigy. In fact, the relationship
is deeper: one can show that, conditioned on the threshold

which has unbiased estimator 7', the selection probabilities for each flow minimize a cost

R n analogous ta’’,.
V= Z xiz max{z — z;,0} (20) For applications, we see that threshold sampling is well
i=1 suited to streaming applications when buffer space is ex-

gensive (e.g., at arouter) since each object is sampled inde-
pendently. Priority sampling is able to constrain the num-
ber of samples taken, at the cost of maintaining a buffer
4.2 Priority Sampling of k£ candidate samples during selection. It is well suited

o . ) to applications where buffering is less expensive (e.g., in a
Priority sampling provides a way to randomly select ex-qata aggregator or database)

actly £ of the n flows, weighted by flow bytes, and then

form an unbiased estimator of the total byfésThe algo- 4.4 Regularized Variance Estimators

rithm is as follows. For each flow we generate a random o ) o

numbera; uniformly distributed in(0, 1], and constructits  1hreshold and priority sampling both give rise to regular-

priorities Z; = ;/o;. We select the: flows of highest ized estimators as described in Section 3. Consider first

priority. Let %’ denote the(k + 1)St highest priority. Ata  threshold sampling and let; be the sampling threshold

single OP, we for the estimate in force at OPj. Then the quantity; in (12) is justz;.
Moreover,p;; is approximately linear ir;, the sense of

In threshold sampling, inhomogeneity across OPs arise
through inhomogeneity of the threshald

~ " " (16), and hence the bounded variance estimator is expected
X = ZXZ‘ max{z;, 2’} (1) 1o perform reasonably for flows whose sizg are small
i1 compared with the;;. For priority sampling, we use the

random thresholds; in place of thez;. Although this in-
troduces additional variability; in practice priority approxi-
mates threshold sampling closely for large number of sam-
ples. In the next sections we show this heuristic performs
well in experiments.

of the total bytesX. Herey; is the indicator that flow is
amongst thé: flows selectedX is unbiased; see [6].

For priority sampling, the variance & takes a similar
form to that of threshold sampling:

Var(X) = 2;E[max{z’ — x;,0 22 ) .
(%) ; fmext ) (22) 5 Experiments: Router Matrix
which has unbiased estimator This section applies our method to traffic measurement at
. routers. As discussed in Section 1.3, while router level
V= ing' max{Z’ — z;,0} (23) sampl!ng captures large ME; accurately, interface level
P sampling offers the opportunity to accurately sample not

just the relatively large ones MEs, i.e., the largest amongst
Although sampling of flows is dependent, it turns out thatthose seen at each interface. This is particularly impor-
the unbiased estimatés = y; max{Z, z;} of the bytes of  tant for a method such as priority sampling where, in order
different flows have zero covariance. to provide a hard constraint on the use of measurement re-
In priority sampling, inhomogeneity between observa-sources, only a fixed number of samples are taken in a given
tion points arises not only through inhomogeneity of thetime period, There is a trade-off: if all resources were de-
number of flowsk selected, but also through the back- ployed for interface sampling, then not all larger flows on
ground traffic. Typically we want to estimate the total bytessome heavily used interfaces might be sampled.



1 2 3 4 5 6 7 8
0.0004 0.04 0.1 0.004 0.03 0.8 0.02 0

1|0 0 0 0 0 0 0 0 0
2105 8e-05 O 0.0007 O 0 0.5 0.0001 |D
31001 | 7e-05 0.0002 O 0 0.001 0.01 0.0004 |0
410 0 0 0 0 0 0 0 0
5|02 2¢-05 O 0.05 0.003 3e-05 0.1 0.006 |0
6|03 0.0002 0.04 0.08 0.001 0.02 0.2 0.01 0
71001 | 2e-05 0.003 0.0004 5e-06 0.006 0.0007 3e-05 || O
8 | 1e-06| 1e-06 O 0 0 0 0 0 0

Table 1: Router matrix elements faampPus, with row and column sums, normalized by total bytes

This motivates using a combined estimator. In this ap-
plication we explicitly want to take account of estimated
variance, so we use the regularized variance estimator of
Section 3. In experiments using real flow data taken at two

routers, we find that: 10°
(i) For a given total number of samples, the regularized es- 10°
timator is more accurate than its individual consistent esti- 10

mators or averages thereof. 107
(i) The regularized estimator is more accurate than the ad
hoc estimator AH1 when estimation error is large.

5.1 Router Data and Traffic Matrices

The data from this experiment comprised sampled NetFlow output

records gathered from two routers in a major ISP network.

These record the total bytes of the sampled flow packets,

and the router input and output interfaces traversed by th&igure 1: Matrix Elements of DatasetSTRIBUTION. In-
flow. Thus, it is possible to map each flow onto the appro-terfaces are ordered by total bytes

priate router to router traffic matrix.

The first datasetcAMPUS comprises 16,259,841 Net-
Flow records collected from a backbone router in a corpoy,
rate intranet during 24 hour period. The active flow timeout
was 30 minutes. The maximum size was 3.94 GB and avinput and output denote the byte estimators de-
erage size 20.4 kB. The router had 8 interfaces. Table tived input and output interface samples respectively,
shows the interface MEs for a 10 minute period, normal-while router denote the estimator derived from all
ized by total bytes. Note the non-zero MEs range over siXlows through the router, undifferentiated by inter-
orders of magnitude. face. average ;,, averagesinput , output and

The second dataset, DISTRIBUTION comprises router , while average ;, averages onlynput and
1,765,477 NetFlow records collected during 1 houroutput . adhoc ;,, combines the estimatoisput |,
from a distribution router in an ISP network. The active output and router as described in AH1 of Sec-
flow timeout was 1 minute, with maximum flow size 3.97 tion 2.9, whileregular ;. is the corresponding reg-
MB and average 1.4 kB. The router had 236 interfacesilarized variance estimator from Section Jounded
(and subinterfaces), whose line rates ranged from 62 the bounded variance estimator. In priority sampling,
MBps (OC-12) down to 1.5 Mbps (T1). Only 1971 MEs regular ;. (ki, ko, k;) denotes the regularized estimator
are non-zero. We represent these in Figure 1, wheré whichk; andk, priority samples were taken and each in-
the interfaces have been sorted in decreasing order gfut and output interface respectively, andwere taken at
total input and output bytes in the 1 hour period. Thethe router level.
distribution of traffic per interface is highly skewed: the A Sample Path Comparison. We compare the perfor-
busiest interface carries 46% of the bytes, while the 10mance of the various estimators on several ofdth&pPus
busiest together carry 94%. MEs from Table 1, as a function of the number of priority

.2 Notation for Estimators
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Figure 2: Estimator Comparisoinput , output , router , average ;.. andregular ;, ., for 4 matrix elements
from Table 1 representing various relative volumes of the total bytes.

samples: per interface direction. The estimated MEs (nor- When there are noticeable differences between the three
malized through division by the true value) are displayed insingle estimatorstegular ;. (k, k,2Nk) roughly fol-
Figure 2 fork roughly log-uniformly distributed between 1 lows the most accurate one. In the — 6 ME,

and 1000. Perfect estimation is represented by the valuegular ;. follows input most closely while in the

1. In this evaluation we selected all flows contributing to 6 — 3 and6 — 5 MEs, it follows output

a given ME, then progressively accumulated the required )

numbersk of samples from the selection. For this reason,5-3 Confidence Intervals

the variation withk is relatively smooth. Recall that each estimation method produces and estimate

There areN = 8 interfaces. Each of the single esti- of the variance of the ME estimator. This was used to form
mators was configured using the same number of samplepper and lower confidence intervals in Section 3.3. Fig-
slots, i.e.,input (k), output (k) androuter (2Nk).  ure 3 shows upper and lower confidence limits for estimat-
We compare these first; see Figure 2. For the smaller MEBg the MEs ofcaMPUS using the same router interfaces
(8—1, 6—3 and 6-5), input andoutput are notice- as in Figure 2. These use (17) with standard deviation pa-
ably more accurate thaonuter : the relatively large MEs rameters = 2.
are better sampled at the interface level than at the router 8—1 is a special caseinput has no estimated error
level. average ;,.(k,k,2Nk) performs poorly because whenk > 2. As can be seen from Table 14l is the
of the contribution ofouter , and also because it driven only ME with ingress at interface 8. It comprises 2 flows,
down by the zero estimation frommput and output so the estimated variance and sampling threshold &oe
when the number of sampléss small; see, e.g.,tte— 1 k£ > 2. The other methods perform poorly (their confi-
ME. Only for a large ME (2-6, constituting about half dence bounds are off the chart), since neithgput nor
the traffic in the router) doe®uter accuracy exceed the router samples this very small flow.
worst of the interface methods. Consequently, the accuracy regular ;. displays the best overall performance in
of average ;,, is better in this case too. Figure 2, i.e., it tends to have the smallest divergence from



the true value. Figure 3 show that the estimated estimaadhoc ;,, are more accurate than other estimators, is it
tor variance tends to be the smallest too, giving narrowenot immediately evident that this is due to the plausible
confidence intervals than the other methods. reasons stated earlier, namely, the more accurate inference
Estimator Accuracy for Fixed Resources. Now we  of relatively larger flows on smaller interfaces. Also it is
perform a more detailed comparison of the estimators withnot clear the extent to which interface sampling can pro-
the DISTRIBUTION dataset, using constant total sampling duce sufficiently accurate estimates at reasonable sampling
slots across comparisons. The router has= 236 inter-  rates. For example, for k=128 (roughly 1 in 30 sampling of
faces, each bidirectional. For a given numberf sampling  flow records on average) about 25% of the MEs have rela-
slots per interface direction, we compaoeiter (4Nk),  tive errors 1 or greater. We need to understand which MEs

input (4k), output (4k), average ;..(k,k,2Nk), are inaccurately estimated.
average ;.(2k,2k), adhoc ;,.(k,k,2Nk) and To better make this attribution we calculate a scaled ver-
regular .. (k, k,2NE). sion of a MEs as follows. Lef) denote the set of inter-

For k values of 16 and 128, and each estimation methodfaces, and letn,, denote the generic ME from interface
we sorted the relative errors for each ME in increasinge to interfacey. Let M™ and M°"* denote the interface
order, and plotted them as a function of rank in the leftinput and output totals, so that;* = 3° _,m., and
hand column of Figure 4. (The average flow samplingM " = > req May- If ey, is the relative error in estimat-
rates are approximately 1 in 234 fér = 16 and 1 in  ing m,, then we write the scaled version as
30 for k = 128). The curves have the following qualita-
tive features. Moving from left to right, the first feature,

present only in some cases, is when the curves start OnlMeremq.y/Zv in andm,, /Mo are the fractions of the to-
at some positive rank, indicating all MEs up to that rank g traffic thatm,, constitutes on it input and output inter-
have been estimated either with error smaller than the regzces. Heuristically’. deemphasizes errors in estimating
olution 10~°. The second feature is a curved portion of rg|atively small MEs.

relative errors smaller thah. The third feature is a flat We plot the corresponding ordered values of the errors
portion of relative errors, taking the valuefor the indi- ./ iy the right hand column of Figure 4. Note:

1 Ty . .
vidual, adhoc ;. andregular ;. . methods, and /2 (j)yegular i.0o.r andadhoc ;. are uniformly more ac-
and1/3 for average ;, andaverage ;. respectively.  cyrate than other methods, except for low sampling rates

This happens when a ME has no flows sampled by one ofq jow estimation errors, in which case they perform about
the individual estimators. The final feature at the right handpe same as the best of the other methods:

side are points with relative erroes> 1, indicating MES  (jj) the accuracy advantage ofegular ;,, and
that have been overestimated by a faetar 1. We make  g4hoc i.0.x IS More pronounced at larger sampling rates:

the following observations: (i) regular ;.. and adhoc ;. display neither the

(i) Interface sampling ifput and output ) and  tird nor fourth features described above, i.e., no flat por-

regular ;.. andadhoc ;. are uniformly more accu- tjon or errors greater than 1. This indicates that these meth-
rate thataverage o, orrouter . ods are successful in avoiding larger estimation errors for
(ii) Interface sampling performs better thadhoc ;.. Or  the relatively large MEs, while for the other methods some

regular ;.. when errors are small. When an ME is noticeable fraction of the relatively large MEs are badly es-
very well estimated on a given interfacany level infor-  timated.

mation from another interface makes the estimate worse. we can also get a picture of the relative performance of
But when the best interface has a large estimation erroghe methods by looking at the larger estimation errors of the
additional information can help reduce itegular ;..  whole traffic matrix. As examples, we show in Figure 5 un-
andadhoc ;,, become more accurate. scaled relative errors fdr = 128 samples per interface di-
(iii) The average-based methods perform poorly; we haveection, foraverage io andregular ;,,. Errors have
argued that they are hobbled by the worst performing compeen truncated at 10 in order to retain detail for smaller er-
ponent. For examplegverage ;, performs worse than rors. Observe:
input ~ and output  since typically only one of these (i) average ;, is poor at estimating many MEs through
methods accurate for a relatively large ME. the largest interface (labeled 1) since smaller MEs are
(iv) regular ;.. andadhoc ;,, have similar perfor- poorly sampled at that interfaceegular  ;,, performs
mance, but when there are larger errors, they are worse dsetter because it uses primarily the estimates gathered at
average foadhoc ;. the other interface traversed by these MEs.
(v) As expected, estimation accuracy increases with(ii) regular ;,, has a smaller number of large relative
the number of sampleg, althoughaverage ;, and errors tharaverage ;,.
average ;. are lessresponsive. In order to get a broader statistical picture we repeated
Although these graphs show theggular ;,, and the experiments reported in Figure 4 100 times, varying the

el €y max{my, /M, m,, /M) (24)

I:L/:
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Figure 3: Comparing Confidence Intervals by method, for 4 matrix elements from Table 1

seed for the pseudorandom number generator that goveriisl Experimental Setup

random selection in each repetition. The ranked root mean

square (RMS) of the relative errors shows broadly the sam¥Ve wished to evaluate the combined estimator from inde-
form as Figure 4, but with smoother curves due to averagPendent samples of a traffic stream from multiple points.
ing over many experiments. Since we do not have traces taken from multiple locations,
we used instead multiple independent samples sets of the
campus flow trace, each set representing the measure-
ments that would be taken from a single OP. We took 30

In this section we shift the focus to combining a large num_sample sets in all, .co_rresponding fo the current maximum
ber of estimates of a given traffic component. Each esti—typlcal hop counts in internet paths [16].
mate may individually be of low quality; the problem isto ~ The experiments used threshold sampling, rather than
combine them into a more reliable estimate. As mentionedpriority sampling, since this would have required the ad-
in Section 1.4, this problem is motivated by a scenario inditional complexity of simulating background traffic for
which routers or other network elements ubiquitously re-€ach observation point. Apart from packet loss or the pos-
port traffic measurements. A traffic component can genersible effects of routing changes, the multiple independent
ate multiple measurements as it transits the network. ~ samples correspond with those obtained sampling the same
A challenge in combining estimates is that they may belraffic stream at multiple points in the network.
formed from sample sets drawn with heterogeneous sam- Our evaluations used multiple experiments, each of
pling rates and hence the estimates themselves may hawehich represented sampling of a different set of flows in
differing and unpredictable accuracy, as described in Seadhe network. The flow sizes were taken from successive
tion 2.10. For this reason, the approach of Section 3 igortions of thecaAmpus trace (wrapping around if neces-
appealing, since estimation requires no prior knowledge ofary), changing the seed pseudorandom number generator
sampling rates; it only assumes reporting of the samplingised for sampling in each experiment. The estimates based
rate in force when the sample was taken. on each set of independent samples were combined using

6 Experiments: Network Matrix
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Figure 4: Relative Errors of Matrix Elements for Different Estimators, Ranked by Size. Left: raw relative errors. Right:
scaled relative errors. Top: 16 slots per interface. Bottom: 128 slots per interface.

the following methodsaverage , adhoc , bounded and 1.2 ‘
regular . As a performance metric for each method, we L\**$+
computed the root mean square (RMS) relative estimation § ! * R e e e
error over 100 experiments. g 08 | |

£ o
6.2 Homogeneous Sampling Thresholds é 06 |
As a baseline we used a uniform sampling threshold at alll § 04l |
OPs. In this case théiounded reduces taverage . In g '
7 separate experiments we use a sampling threshdld of g 0.2 [ bounded s i
Bytes fori = 3,...,9. This covers roughly the range of regulay o
flow sizes in thecaAMPUS dataset, and hence includes the 0 Y

0 10 20 30 40 50 60 70 80 90 100

range ofz values that would likely be configured if flow
sizes generally conformed to the statisticeafpus. The
corresponding sampling rate (i.e. the average proportion ofjgure 6: Combined estimators acting cumulatively over
flows that would be selected) with threshalds 7(z) = 100 independent estimates.

>, min{l,z;/2}/N where{z; : i = 1,...,N} are the

sizes of theV flows in the set. For this datasefz) ranged

from 7(10%) = 0.018 to 7(10%) = 1.9 x 10~°.

We show a typical single path of the byte estimate (nor+ate, but displays some biasdhoc displays systematic
malized by the actual value) for a single experiment in Fig-bias beyond 30 combinations. The bias strikingly shows
ure 6. This was for 10,000 flows sampled with thresholdthe need for robust estimation methods of the type proposed
10MB at 100 sites. There were typically a handful of flows in this paper.
sampled at each OP. Theunded estimate relaxes slowly Summary RMS error statistics over multiple experiment
towards the true valuegegular also follows at a similar are shown in Tables 2 and 3. Here we vary the number of

# estimates
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threshold| adhoc bounded regular threshold| adhoc  bounded regular
103 | 0.0017 0.0016 0.0017 10% | 0.00002 0.00002 0.00002
10* | 0.0121 0.0066 0.0117 10* | 0.00012 0.00012 0.00012
10° | 0.1297 0.0353 0.0883 10° | 0.00064 0.00063 0.00064
10 | 0.4787 0.1293 0.3267 10% | 0.00340 0.00321 0.00339
107 | 8.080 0.515 0.527 107 | 0.01505 0.01110 0.01469
108 | 46.10 1.464 0.923 108 | 0.16664 0.05400 0.11781
10° | 108.7 3.581 1.926 10° | 0.78997 0.17387 0.37870

Table 2: Homogeneous Sampling. RMS relative errofable 3: Homogeneous Sampling. RMS relative error;
1000 flows, 30 sites 100,000 flows, 30 sites

flows in the underlying population (1000 or 100,000) for individual estimators obtained from samples drawn using
30 measurement sites. (Results for 10 measurement sit#ise m lowest thresholdgz; : ¢ = 1,...,m}. The perfor-
are not displayed due to space constrairtteunded has  mance on traffic streams comprising 10,000 flows is shown
somewhat better performance thaagular  and signif-  in Figure 7. Qualitatively similar results were found with
icantly better performance thaadhoc . The differences 1,000 and 100,000 flows.

are generally more pronounced for 30 sites than for 10, i.e.,

bounded is able to take the greatest advantage (in accu-

racy) of the additional information. On the basis of exam-

ination of a number of individual experiments of the type

reported in Figure 6, this appears to be due to lower biasin 1h€ RMS error ofaverage initially decreases with

bounded . path length as it combines the estimators of lower vari-
ance (higher sampling rate). But it eventually increases as
6.3 Heterogeneous Sampling Thresholds it mixes in estimators or higher variance (lower sampling

rate). RMS errors fobounded andregular are es-

To model heterogeneous sampling rates we used 30 sargentially decreasing with path length, witbunded hav-
pling thresholds in a geometric progression from 100kB toing slightly better accuracy. The minimum RMS errors
100MB, corresponding to average sampling rates of from{over all path lengths) of the three methods a roughly the
0.016 t08.9 x 10~°. This range ot values was chosento same. Couldaverage be adapted to select and include
encompass what we expect would be a range of likely openly those estimates with low variance? This would re-
erational sampling rates, these being quite small in order tquire an additional decision of which estimates to include,
achieve significant reduction in the volume of flow recordsand the best trade-off between accuracy and path length
through sampling. is not known a priori. On the other handounded and

We arranged the thresholds in increasing oidB3 =  regular can be used witlall available data even with
21 <...< 2z <...<z = 10°B, and for eachn com-  constituent estimates of high variance, without apparent
puted the various combined estimators formed fromvthe degradation of accuracy.



uniform sampling of the same population.

Further work in progress examines the properties of
combined estimators at an analytical level, and yields a
deeper understanding of their statistical behavior beyond

10,000 flows

ad hoc 1 —+—

regularized -3
bounded
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s 5
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Figure 7: Heterogeneous Sampling Rates. RMS relative
errors foradhoc , average , regular andbounded ,

as a function of number of estimates combined. 4l
[5]
7 Conclusions -

This paper combines multiple estimators of traffic volumes (7]
formed from independent samples of network traffic. If the
variance of each constituent is known, a minimum vari- [l
ance convex combination can be formed. But spatial and
temporal variability of sampling parameters mean that vari- [g]
ance is best estimated from the measurements themselves.
The convex combination suffers from pathologies if used
naively with estimated variances. This paper was devoteg g
to finding remedies to these pathologies.

We propose two regularized estimators that avoid the
pathologies of variance estimation. The regularized variqyy)
ance estimator adds a contribution to estimated variance
representing the likely sampling error, and hence ameliot'2]
rates the pathologies of estimating small variances while at
the same time allowing more reliable estimates to be bal-
anced in the convex combination estimator. The boundeél3]
variance estimator employs an upper bound to the varianc[? 4]
which avoids estimation pathologies when sampling prob-
abilities are very small. [15]

We applied our methods to two networking estimation
problems: estimating interface level traffic matrices in[16]
routers, and combining estimates from ubiquitous measure-
ments across a network. Experiments with real flow datdl7]
showed that the methods exhibit: (i) reduction in estima-
tor variance, compared with individual measurements; (ii)1g
reduction in bias and estimator variance, compared with
averaging or ad hoc combination methods; and (iii) appli-
cation across a wide range of inhomogeneous sampling pa-
rameters, without preselecting data for accuracy. Although
our experiments focused on sampling flow records, the ba-
sic method can be used to combine estimates derived from
a variety of sampling techniques, including, for example,
combining mixed estimates formed from uniform and non-

the mean and variance.
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