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ABSTRACT
HTTP Adaptive Streaming (HAS) has emerged as the predominant
technique for transmitting video over cellular for most content
providers today. While mobile video streaming is extremely popu-
lar, delivering good streaming experience over cellular networks
is technically very challenging, and involves complex interacting
factors. We conduct a detailed measurement study of a wide cross-
section of popular streaming video-on-demand (VOD) services to
develop a holistic understanding of these services’ design and per-
formance. We identify performance issues and develop effective
practical best practice solutions to mitigate these challenges. By ex-
tending the understanding of how different, potentially interacting
components of service design impact performance, our findings can
help developers build streaming services with better performance.
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1 INTRODUCTION
Mobile video streaming has become increasingly popular in recent
years. It now dominates cellular traffic, accounting for 60% of all
mobile data traffic and is predicted to grow to 78% by 2021 [10].
However, delivering good QoE over cellular networks is technically
challenging. A recent Internet-scale study indicates that 26% of
smartphone users face video streaming QoE problems daily [12].

HTTP Adaptive Streaming (HAS) (see § 2.1) has been adopted for
streaming video over cellular by most services including Amazon,
Hulu and Netflix. It enables apps to adapt the streaming quality to
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changing network conditions. To build an HAS service, app develop-
ers have to determine a wide range of critical components spanning
from the server to the client such as encoding scheme, adaptation
logic, buffer management and network delivery scheme. The design
involves (i) considering various service-specific business and tech-
nical factors, e.g. nature of content, device type, service type and
customers’ network performance, and (ii) making complex deci-
sions and tradeoffs along multiple dimensions including efficiency,
quality, and cost, and across layers (application, network) and dif-
ferent entities. It is thus challenging to achieve designs with good
QoE properties, especially given the variable network conditions
in cellular networks.

It is important to develop support for developers to navigate this
complex design space. Understanding the performance and QoE
implications of their design decisions helps developers make more
informed and improved designs. Towards this goal, in this work,
we conduct a detailed measurement study of 12 popular streaming
video-on-demand (VOD) services to develop a holistic understand-
ing of their respective designs and associated performances.

1.1 Contributions
Methodology. The closed, proprietary nature of commercial ser-
vices makes it very challenging to gain deep visibility into their
designs. Approaches like code disassembly suffer from limitations
such as code obfuscation. Other approaches that either leverage
app-specific features such as URL patterns [19, 28] or rely on deep
modifications to the apps [18, 27] cannot be generally applied.

To address these challenges, we develop a general methodology
that leverages common properties of commodity VOD apps to de-
rive valuable insights into the proprietary VOD services without
access to the source code (§ 2.2). Based on the observation that
most popular VOD services adopt well-known HAS protocols, i.e.,
HTTP Live Streaming (HLS), SmoothStreaming (SS) and Dynamic
Adaptive Streaming over HTTP (DASH) [1, 15, 45], we analyze the
network traffic and extract useful information regarding the con-
tent download process, including timing, quality and size of video
chunks downloaded. In addition, detailed analysis of the displayed
User Interface (UI) elements for these apps reveals that they use
common methods to inform users about the playback, including
playback progress and stall events. We therefore develop techniques
to extract this information. Correlating the network and UI, our
approach is able to effectively extract critical video QoE metrics
such as video quality, stall duration, initial delay and number of
track switches. In addition, we can infer the apps’ internal buffer
state which is critical to gain insights into their behavior.

To derive insights into critical aspects of service design such as
the adaptation logic, we craft targeted black-box experiments to
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stress-test the apps by emulating various network conditions and
manipulating the communication between the client and server
(e.g., by altering the manifest file). By analyzing the reaction of the
apps, we are able to glean critical properties of their design.

In this paper, we focus primarily on VOD services on the Android
platform. However, the measurement methodologies we outline
are generally applicable to other platforms (e.g., iOS) and services
such as live streaming as they use the same standards (e.g., iOS AV
Foundation uses HLS) and substantially similar approaches.
QoE issues and best practices. This paper shows i) the differ-
ent points in the design space adopted by popular services, ii) the
different performance tradeoffs they entail. By examining the abso-
lute and relative performances across different points in the design
space, developers are able to get more insights into the implications
of design decisions they make, and hopefully make more informed
design decisions.

Our measurements cover both individual components across
the end-to-end delivery path of HAS and their interactions. This is
key to developing insights for better designs across components to
realize an overall enhanced QoE. In contrast, different entities in-
volved in the streaming system such as the content provider, ISP and
app developers have traditionally possessed only partial views and
optimized specific factors somewhat independently, based mainly
on their limited views. This can sometimes lead to suboptimal
performance as end-to-end QoE is ultimately determined by the
interplay across all the different factors. Towards filling this gap,
this cross-sectional study across different services develops unique
insights by revealing QoE implications of different points in the de-
sign space, shedding light on industry best practices by comparing
across different services and identifying outlier behaviors.

In this study, we observe interesting behaviors that span a wide
range of design decisions and further identify a number of QoE-
impacting issues and derive best practices for improvement. We
summarize some of the most interesting findings as follows.

• To improve quality, some apps perform Segment Replacement
(SR)- replacing a downloaded segment1 with a fresh download for
the same position in the video at a potentially different quality.
We uncover inefficiencies with existing SR schemes that result in
substantial additional data usage, identify root causes, and pro-
pose practical SR schemes that achieve better tradeoffs between
QoE and data usage (§ 4.1).
• Some services use Variable Bitrate (VBR) encoding1. However,
when determining the next segment to download, they do not
account for the substantial size differences across different seg-
ments in a track1, which can be a factor of 2 or more. This can
lead to suboptimal video QoE. We propose that apps should ex-
pose such segment information to the adaptation logic and adopt
an actual bitrate aware track selection algorithm (§ 4.2).
• Players typically wait until a minimum number of seconds (i.e.,
startup buffer duration) of video is fetched before initiating play-
back. We observe that some apps constantly stall at the beginning
of playback when network bandwidth is relatively low, even with
observed startup buffer values as other apps which don’t exhibit

1These terminologies are defined in §2.1

Figure 1: Relevant design factors in HAS service.

this issue. Our evaluation suggests the need for an additional con-
straint on when playback should begin – a minimum threshold
on the number of segments downloaded (§ 4.3).
• Inadequate synchronization between multiple TCP connections
and audio/video downloads can lead to QoE impairments (stalls)
for some apps. This highlights the need for better coordination
between the parallel download processes for better QoE (§ 3.2).
• A suboptimal buffer-based download strategy waits until the
buffer is close to empty, before it restarts downloading. The
corresponding app suffered more frequent stalls compared to the
others with higher resuming thresholds. Increasing this resuming
threshold would keep the buffer more occupied and be a practical
way to reduce the chances of stalls and provide the client extra
headroom to adapt to transient network variability (§ 3.3.2).

2 BACKGROUND AND METHODOLOGY
We provide some background on HTTP Adaptive Streaming and
describe our methodology to extract QoE information from the
popular VOD services.

2.1 HTTP Adaptive Streaming Overview
Video streaming over the best-effort Internet is challenging, due

to variability in available network bandwidth. To address such
problems and provide satisfactory QoE, HTTP Adaptive Stream-
ing (HAS) has been proposed to adapt the video bitrate based on
network conditions.

In HAS, videos are encoded into multiple tracks. Each track
describes the same media content, but with a different quality level.
The tracks are broken down into multiple shorter segments and the
client can switch between tracks on a per-segment basis. Media
meta-information including the available tracks, segment durations
and URIs is described in a metafile called manifest or playlist.

The manifest specifies a bitrate for each track (referred to as de-
clared bitrate) as an estimation of the network bandwidth required
to stream the track. Note that this value can be different from the
actual bandwidth needed for downloading individual segments es-
pecially in the case of Variable Bitrate (VBR) encoding. How to set
this declared bitrate is left to the specific service, and a common
practice is to use a value in the neighborhood of the peak bitrate of
the track. In addition to the declared bitrate, some HAS implemen-
tations also provide more fine-grained information about segment
sizes, such as average actual segment bitrate. For services with VBR
encoding, as the actual bitrate of segments in the same track can
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have significant differences, such fine-grained bitrate information
can potentially help players better estimate the required network
bandwidth to download each track and make more informed deci-
sion on track selection. We shall further look into this in § 4.2.

At the beginning of a session, the player downloads the manifest
from the server, and uses the HTTP/HTTPS protocol to fetch media
segments from the server. Each segment needs to be downloaded
completely before being played. To absorb network variance and
minimize stall events, the player usually maintains a buffer and
tries to fetch segments ahead of playback time. During streaming,
the client-side adaptation logic (often proprietary) determines what
track to fetch next based on a variety of factors, such as the esti-
mated available network bandwidth and playback buffer occupancy.

There exist a number of different implementations of the above
high-level HAS design, involving different file format and protocols.
HTTP Live Streaming (HLS) [45], Dynamic Adaptive Streaming
over HTTP (DASH) [1] and Smooth Streaming [15] are the most
well known of these.

Regardless of implementation details, a wide range of factors
spanning the server, the network and the client and across the trans-
port and application layers can be customized based on the system
designers’ considerations around different tradeoffs to optimize
streaming performance. For instance, the client can adopt different
track selection algorithms to balance video quality and stalls. We
summarize the relevant factors in Figure 1.

We explore a wide range of popular mobile VOD services, in-
cluding Amazon Video, DIRECTV, FOX NOW, Hulu, HBO GO,
HBO NOW, MAX GO, Netflix, NBC Sports, Showtime Anytime
and XFINITY TV. In this paper, we focus on 12 of these2 covering
a wide diversity of points in the design space, and study them in
depth. These services individually have millions of app store down-
loads, and collectively span a wide range of content types including
movies, TV shows and sports videos.

2.2 Methodology overview
Understanding the design choices and characterizing the QoE of
these proprietary video streaming services are challenging, as they
do not readily expose such information. To address the challenge,
we develop a general methodology to extract information from the
traffic and app UI events. To capture important properties of the
adaptation logic designs, we further enhance our methodology with
carefully crafted black-box testing to stress test the players.

Figure 2 shows an overview of the methodology. The proxy
between the server and the user device emulates various network
conditions (§ 2.6) and extracts video segment information from
the traffic flow (§ 2.3). The on-device UI monitor monitors critical
UI components (§ 2.4), such as the seekbar in the VOD apps that
advances with the playback to inform users the playback progress
and allow users to move to a new position in the video.

We combine information from the traffic analyzer and UImonitor
to characterize QoE.While developing objective measures of overall
user QoE for video streaming is still an active research area, it is
commonly acknowledged that QoE is highly correlated to a few
metrics listed below.

2One of the services adopts both DASH and SmoothStreaming. As they have very
different design on both server and client side, we treat them as two different services.

Figure 2: Methodology overview.

• Video quality. One commonly used metric to character-
ize video quality is average video bitrate, i.e. the average
declared bitrate of segments shown on the screen. A low
video bitrate indicates poor video quality, leading to poor
user experience. However, the average bitrate by itself is
not sufficient to accurately reflect user experience. As we
discuss in more detail in § 4.1.3, user experience is more im-
pacted by the playback of low quality, low bitrate tracks. It is
therefore important to reduce the duration of streaming such
tracks. To account for this, another metric is the percentage
of playtime when low quality tracks are streamed.
• Video track switches. Frequent track switches impair user
experience. One metric to characterize this is the frequency
of switches. In addition, users are more sensitive to switches
between non-consecutive tracks.
• Stall duration. This is the total duration of stall events
during a session. A longer stall duration means higher inter-
ruptions for users and leads to poorer user experience.
• Startup delay. The startup delay measures the duration
from the time when the users click the “play" button to the
time when the first frame of video is rendered on the screen
and the video starts to play. A low startup delay is preferred.

Each metric by itself provides only a limited viewpoint and all
of them need to be considered together to characterize overall QoE.
In our methodology, the Traffic Analyzer obtains detailed segment
information, such as bitrate and duration etc, and therefore can be
used to characterize video quality and track switches. The UI Moni-
tor on the device tracks the playback progress from the player’s UI,
and is able to characterize the stall duration and initial delay. Fur-
thermore, combining the information from both the traffic analyzer
and the UI monitor, we can infer the player buffer occupancy across
time (§ 2.5), which critically allows us to reason about, identify and
unveil underlying causes of many QoE issues.

To understand complex designs such as the adaptation logic, the
proxy uses the Network Emulator and Manifest Modifier to conduct
black-box testing. The network emulator performs traffic shaping
to emulate various network conditions. By carefully designing the
bandwidth profile, we are able to force players to react and under-
stand their design. In some cases, we use the manifest modifier
to modify the manifest from the server and observe players’ be-
havior to understand how client side players utilize information
from servers. For example, in § 4.2 with the manifest modification,



IMC ’17, November 1–3, 2017, London, UK Shichang Xu, Z. Morley Mao, Subhabrata Sen, and Yunhan Jia

we are able to explore whether players take actual track bitrate
information into consideration when performing track selection.

In the following, we provide details of components used in the
measurement methodology.

2.3 Traffic analyzer
We develop the network traffic analyzer to perform man-in-the-
middle analysis on the proxy and extract manifest and segment
information from flows between the server and client.

We observe that all the studied apps adopted one or more among
the three popular HAS techniques, i.e. HLS, DASH, and Smooth-
Streaming. We denote the four services that use DASH as D1 to
D4, another six that use HLS as H1 to H6, the two services that use
SmoothStreaming as S1 and S2.

We specifically developed the traffic analyzer to be generally
applied for all VOD services that adopt the three popular standard
HAS techniques. The traffic analyzer parses the manifest based
on the specification of the HAS protocols, and builds the mapping
between HTTP requests and segments. Since the three streaming
protocol implementations have some different properties, the traffic
analyzer extracts QoE information with different methodologies
based on the protocol each service adopts. We shall mainly describe
how the traffic analyzer works with the two most popular protocol
implementations HLS and DASH.

HLS vs. DASH HTTP Live Streaming (HLS) [45] is a media
streaming protocol proposed by Apple Inc. In HLS, a media pre-
sentation is described by a Master Playlist, which specifies the
resolution, bitrate and the URL of corresponding Media Playlist of
each track. The URL and duration of media segments are specified
in the Media Playlist. Each media segment in HLS is a separate
media file3. At the beginning of playback, the client downloads
the Master Playlist to obtain information about each track. After it
decides to download segments from a certain track, it downloads
the corresponding Media Playlist and gets the URI of each segment.

Compared with HLS, the Dynamic Adaptive Streaming over
HTTP (DASH) [1] is an international standard specifying formats
to deliver media content using HTTP. Media content in DASH
is described by the Media Presentation Description (MPD), which
specifies each track’s declared bitrate, segment duration and URI etc.
Each media segment can be a separate media file or a sub-range of a
larger file. The byte-range and duration of segments may be directly
described in the MPD. The MPD can also put such information in
the Segment Index Box (sidx) of each track and specify the URI of
sidx. The sidx contains meta information about the track and is
usually placed at the beginning of the media file.

To accommodate the differences across the HAS protocol and
service variations, the traffic analyzer works as follows. It gets the
bitrate of each track from the Master Playlist for HLS, and then
extracts the URI and duration of each segment from it. For DASH,
it gets the bitrate of each track from the MPD, and generates the
mapping of byte ranges to segment information using different data
sources for different apps. D2, D3 and D4 put such information into
the sidx of each track, while D1 directly encodes it in the MPD. D3
encrypts the MPD file in application layer before sending it through

3From version 4, HLS also supports using a sub-range of a resource as a media segment.
But none of our studied services use this feature.

the network. However, the sidx is not encrypted and we can still
get segment durations and sizes.

2.4 UI monitor
The UI monitor aims at exposing QoE metrics that can be obtained
from the app UI on the client. Based on our exploration of all the
VOD apps in our study, we identify the seekbar to be a commonly
used UI element that indicates the playing progress, i.e. the position
of displayed frames in the video in time.

We investigate how to robustly capture the seekbar information.
As the UI appearance of the seekbar has a significant difference
across different apps, we do not resort to image process techniques.
Instead, we use the Xposed framework [13], an Android framework
which enables hooking Android system calls without modifying
apps, to log system calls from the apps to update the seekbar.

We find that despite the significant difference in visual appear-
ance, the usage of the seekbar is similar across the services. During
playback, the players update the status of the seekbar periodically
using the Android API ProgressBar.setProgress. Thus, we obtain in-
formation about playback progress and stall events from the API
calls. The update may occur even when the seekbar is hidden on
the screen. This methodology can be generally applied to apps that
use the Android seekbar component regardless of the UI layout and
visual appearance.

For the all apps we studied, the progress bar was updated at least
every 1s and we can therefore get the current playing progress at
at least 1s granularity.

2.5 Buffer inference
The client playback buffer status, including the occupancy and
the information regarding segments in the buffer, is crucial for
characterizing the player’s behavior. We infer the buffer occupancy
by combining information from the downloading process and the
playback process, collected by the traffic analyzer and UI monitor
respectively: at any time, the difference between the downloading
progress and playing progress should be the buffer occupancy,
and the details, such as the bitrate, and duration of the segments
remaining in the buffer, can be extracted from the network traffic.

2.6 Network emulator
We use the Linux tool tc to control the available network bandwidth
to the device across time to emulate various network conditions.

To understand designs such as the adaptation logic, we apply
carefully designed network bandwidth profiles. For instance, to
understand how players adapt to network bandwidth degradation,
we design a bandwidth profile where the bandwidth stays high
for a while and then suddenly drops to a low value. In addition, to
identify QoE issues and develop best practices for cellular scenarios,
it is important to compare the QoE of the different services in the
context of real cellular networks. To enable repeatable experimenta-
tions and provide apples-to-apples comparisons between different
services, we also replay multiple bandwidth traces from real cellular
networks over WiFi in the lab for evaluating the services.

To collect real world bandwidth traces, we download a large file
over the cellular network and record the throughput every second.
We collect 14 bandwidth traces from real cellular network in various
scenarios covering different movement patterns, signal strength
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and locations. We sort them based on their average bandwidth and
denote them from Profile 1 to Profile 14 (see Figure 3).

We run each of the services with the 14 collected cellular band-
width traces. Each experiment lasts for 10min and is repeated for
several runs to eliminate temporary QoE issues caused by the ex-
ternal environment, e.g. transient server load.

3 SERVICE CHARACTERIZATION
The interactions between different components of each VOD service
across multiple protocol layers on both the client and server side
together ultimately determine the QoE. Using our methodology
from §2, for each service, we identify critical design choices around
three key components: the server, the transport layer protocols, and
the client, and investigate their QoE implications. We summarize
the various designs in Table 1.

Our measurements reveal a number of interesting QoE-
impacting issues caused by the various design choices (Table 2).
We shall present the design factors related to these issues in this
section and dive deeper into 3 most interesting problems in §4.

3.1 Server design
At the server-side, the media is encoded into multiple tracks with
different bitrates, with each track broken down into multiple seg-
ments, each corresponding to a few seconds worth of video. Un-
derstanding these server-side settings is important as they have
critical impact on the adaptation process and therefore the QoE.

For each service, we analyze the first 9 videos on the landing page
which span different categories. We find that for all studied services,
for the 9 videos in the same service, the settings are either identical
or very similar. We select one of these videos as a representative
sample to further illustrate the design for each service.

Separate audio track. The server can either encode separate
audio tracks or multiplex video and audio content in the same track.
Using separate audio tracks decouples video and audio content,
and gives a service more flexibility to accommodate different audio
variants for the same video content, e.g. to use a different language
or a different audio sample rate. We analyze a service’s manifest to
understand whether the service encodes separate audio tracks. We
find that all the studied services that use HLS do not have separate
audio tracks, while all services that use DASH or SmoothStreaming
encode separate audio tracks.

Track bitrate setting. Track settings such as track count (num-
ber of tracks), the properties of the highest and lowest tracks, and
the spacing (bitrate difference) between consecutive tracks all im-
pact HAS adaptation and therefore the QoE. We obtain the track
declared bitrate from the manifest of each service4.

The highest track represents the highest quality that a service
provides. We find across the services the highest track has diverse
bitrates from 2Mbps to 5.5Mbps. Note that the declared bitrate is
not the only factor that determines video quality, as it also depends
on other factors such as encoding efficiency.

The bitrate of the lowest track impacts the players’ ability to
sustain seamless playback under poor network conditions. Apple

4 This approach did not work for D3 as the manifest is encrypted at the application
layer and cannot be decrypted. Instead, we use the peak value of the actual segment
bitrates (which can be obtained by parsing the sidx) as the declared bitrate since other
DASH services such D1 and D2 follow such practice

recommends that the lowest track should be below 192 kbps for cel-
lular network [16]. However, the lowest track of 3 services is higher
than 500 kbps and significantly increases the possibility of having
stalls with slow network connection. For example, our evaluations
show with the two lowest bandwidth profiles, H5 always stalls for
more than 10 s, while apps with lower bit-rate bottom tracks such
as D2 and D3 do not have stalls under the same network conditions.
Because stalls severely impact QoE, we suggest setting the bitrate of
the bottom track to be reasonably low for mobile networks.

Tracks inbetween the highest and lowest track need to be se-
lected with proper inter-track spacing. If adjacent tracks are set
too far apart, the client may often fall into situations where the
available bandwidth can support streaming a higher quality track,
but the player is constrained to fetch a much lower quality, due
to the lack of choices. If adjacent tracks are set too close to each
other, the video quality improves very little by switching to the next
higher track and the higher track count unnecessarily increases
server-encoding and storage overheads. Apple recommends adja-
cent bitrate to a factor of 1.5 to 2 apart [16]. All services we study
are consistent with this guideline.

CBR/VBR Encoding. Services can use two types of video en-
coding scheme, i.e. Constant Bitrate (CBR) encoding which encodes
all segments into similar bitrates, and Variable Bitrate (VBR) en-
coding which can encode segments with different bitrates based on
scene complexity [9].

We examine the distribution of bitrates across segments from
the same track to determine the encoding. We get segment duration
information from the manifest. To get segment sizes, for services
using DASH, we directly get segment sizes from the byte range
information provided by the manifest and sidx. For services using
HLS and SmoothStreaming, we get the media URLs from the mani-
fest file and use curl [11] to send HTTP HEAD requests to get the
media size. We find that 3 services use CBR, while the others use
VBR with significant different actual segment bitrates in a single
track. For example, the peak actual bitrate of D1 is twice the average
actual bitrate.

With VBR encoding, using a single declared bitrate to represent
the required bandwidth is challenging. We look into how services
set the declared bitrate. For the highest track of each service, we
examine the distribution of actual segment bitrates normalized by
the declared bitrate. As shown in Figure 5, S1 and S2 set the declared
bitrate around the average actual bitrate, while other services set
the declared bitrate around the peak actual bitrate. We shall explore
further in § 4.2 the associated QoE implications.

Segment duration. The setting of segment duration involves
complex tradeoffs [3]. A short segment duration enables the client
to make track selection decision in finer time granularity and adapt
better to network bandwidth fluctuations, as segments are the small-
est unit to switch during bitrate adaptation. On the other side, a
long segment duration can help improve encoding efficiency and
reduce the server load, as the number of requests required to down-
load the same duration of video content reduces. We find significant
differences in the segment duration across the different services,
ranging from 2s to as long as 10s (see Table 1). We leave a deeper
analysis on characterizing the tradeoffs to future work. In addition,
as we find later in § 4.3, other factors such as startup buffer duration
need to be set based on the segment duration to ensure good QoE.
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Figure 4: Declared bitrates of tracks for dif-
ferent services
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Figure 5: The distribution of actual bitrate
normalized by declared bitrate

Designs H1 H2 H3 H4 H5 H6 D1 D2 D3 D4 S1 S2

Server Segment duration (s) 4 2 9 9 6 10 5* 5 2 6 2 3*
Separate audio track N N N N N N Y Y Y Y Y Y

Transport
layer

Max #TCP 1 1 1 1 1 1 6 2 3 3 2 2
Persistent TCP Y N N Y N Y Y Y Y Y Y Y

Startup Startup buffer (s) 8 8 9 9 12 10 15 5 8 6 16 6
Startup bitrate (Mbps) 0.63 1.33 1.05 0.47 1.85 0.88 0.41 0.30 0.40 0.67 1.35 0.76

Download
control

Pausing threshold (s) 95 90 40 155 30 80 182 30 120 34 180 30
Resuming threshold (s) 85 84 30 135 20 70 178 25 90 15 175 4

With constant bw Stability Y Y Y Y Y Y Y Y N Y Y Y
Aggressiveness N N N N N N Y N Y N Y N

With varying bw Decrease buffer (s) - 40 - - - - - - 30 - 50 -
* The audio segment duration of D1 and S2 is 2s.

Table 1: Design choices

Design factors Problem QoE impact Affected service
Track setting The bitrate of lowest track is set high. Frequent stalls H2, H5, S1
Encoding scheme Adaptation algorithms do not consider actual segment bitrate. Low video quality D2
TCP utilization Audio and video content downloading progress is out of sync when using multiple

TCP connections.
Unexpected stalls D1

TCP persistence Players use non-persistent TCP connections. Low video quality H2, H3, H5
Download control Players do not resume downloading segments until the buffer is almost empty. Frequent stalls S2
Startup logic Players start playback when only one segment is downloaded. Stall at the beginning H3, H4, H6, D2, D4

Adaptation logic
The bitrate selection does not stabilize with constant bandwidth. Extensive track switches D1
Players ramp down selected track with high buffer occupancy. Low video quality H1, H4, H6, D1
Players can replace segments in the buffer with ones of worse quality. Waste data and low video quality H1, H4

Table 2: Identified QoE-impacting issues

3.2 Transport layer design
In HAS, players use the HTTP/HTTPS protocol to retrieve seg-
ments from the server. However, how the underlying transport
layer protocols are utilized to deliver the media content depends
on the service implementation. All the VOD services in this study
use TCP as the transport layer protocol.

TCP connection count and persistence. As illustrated in Ta-
ble 1, all studied apps that adopt HLS use a single TCP connection
to download segments. 3 of these apps use non-persistent TCP con-
nections and establish a new TCP connection for each download.
This requires TCP handshakes between the client and server for
each segment and TCP needs to go through the slow start phase for
each connection, degrading achievable throughput and increasing
the potential of suboptimal QoE.We suggest apps use persistent TCP
connections to download segments. All apps that adopt DASH and
SmoothStreaming use multiple TCP connections due to separated
audio and video tracks. All these connections are persistent.

TCP connection utilization. Utilizing multiple TCP connec-
tions to download segments in parallel brings new challenges. Some

apps such as D1 use each connection to fetch a different segment.
Since concurrent downloads share network resources, increasing
the concurrency can slow down the download of individual seg-
ments. This can be problematic in some situations (especially when
either the buffer or bandwidth is low) by delaying the arrival of
a segment with a very close playback time, increasing the poten-
tial for stalls. Different from these apps, D3 only downloads one
segment at a time. It splits each video segment into multiple sub-
segment and schedules them on different connections. To achieve
good QoE, the splitting point shall be carefully selected based on per
connection bandwidth to ensure all sub-segments arrive in similar
time, as the whole segment needs to be downloaded before it can
be played. The above highlights that developing a good strategy
to make efficient utilization of multiple TCP connections requires
considerations of complex interactions between the transport layer
and application layer behavior. We leave further exploration to
future work.

When audio and video tracks are separate, the streaming of audio
and video segments are done separately. Since both are required to
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Figure 6: The downloading progress of video and audio con-
tent of D1 is out of sync, causing unexpected stalls.

play any portion of the video, there should be adequate synchro-
nization across the two download processes to ensure that both
contents are available by the designated playback time of the seg-
ment. Our evaluations reveal that uneven downloads for audio and
video lead to clear QoE impairments for some apps. For example,
we find D1 uses multiple TCP connections to download audio and
video content in parallel, but its download progresses for audio and
video content can have significant differences, especially when the
network bandwidth is low. For the two network profiles with the
lowest average bandwidth, the average difference between video
and audio downloading progress is 69.9 s and 52.5 s respectively. In
the example shown in Figure 6, buffered video content is always
more than audio content. When stalls occur, the buffer still contains
around 100 s of video content. In this case, the stalls could have been
avoided, without using any additional network resources, by just
reusing some of the bandwidth for fetching more audio and a little
bit less video.We suggest ensuring better and tighter synchronization
between audio and video downloads.

3.3 Client-side design
The client player is a core component that impacts QoE by per-
forming intelligent adaptation to varying network conditions. In
this subsection we stress test the different players using the 14
bandwidth profiles collected from various scenarios. By compar-
ing the behavior across different services under identical network
conditions, we are able to identify interesting client behaviors and
pinpoint potential QoE problems. More specifically, we use black-
box testing to study how players behave at startup, i.e. the startup
logic, when they load the next segment, i.e. the download control
policy and what segment they load, i.e. the adaptation logic.

3.3.1 Startup logic. We characterize two properties in the
startup phase, startup buffer duration and startup track.

Startup buffer duration. At the beginning of a session, clients
need to download a few segments before starting playback. We
denote the minimal buffer occupancy ( in terms of number of sec-
onds’ worth of content) required before playback is initiated as the
startup buffer duration.

Setting the startup buffer duration involves tradeoffs as a larger
value can increase the initial delay experienced by the user (as it
takes a longer time to download more of the video), but too small a

value may lead to stalls soon after the playback. To understand how
popular services configure the startup buffer, we run a series of
experiments for each service. In each experiment we instrument the
proxy to reject all segment requests after the first n segments. We
gradually increase n and find the minimal n required for the player
to start playback. The duration of these segments is the startup
buffer duration. As shown in Table 1, most apps set similar startup
duration around 10s.

Startup track. The selection of the first segment impacts users’
first impression of the video quality. However, at the beginning
the player does not have information about network conditions
(eg., historical download bandwidths), making it challenging to
determine the appropriate first segment.

We examine the startup track of different players in practice.
We find each app consistently selects the same track level across
different runs. The startup bitrates across apps have high diversity.
4 apps start with a bitrate lower than 500 kbps, while another 4
apps set the startup bitrate higher than 1Mbps. We shall further
explore the QoE impact of startup buffer duration and startup track
in sec 4.3.

3.3.2 Download control. One important decision the client
makes is determining when to download the next segment. A naive
strategy is to keep fetching segments continuously, greedily build-
ing up the buffer to avoid stall events. However, this can be subop-
timal as (1) it increases wasted data when users abort the session
and (2) it may miss the opportunity to get a higher quality segment
if network condition improves in the future. We observe that, even
under stable network conditions, all the apps exhibit periodic on-off
download patterns. Combining with our buffer emulation, we find
an app always pauses downloading when the buffer occupancy
increases to a pausing threshold, and resumes downloading when
the occupancy drops below another lower resuming threshold.

We set the network bandwidth to 10Mbps, which is sufficient
for the services to their respective highest tracks. We find 5 apps
set the pausing threshold to be around 30 s, while other apps set
it to be several minutes (Table 1). With a high pausing threshold,
the player can maintain a high buffer occupancy to avoid future
stall events. However, it may lead to more data wastage when users
abort the playback. The different settings among services reflect
different points in the decision space around this tradeoff.

The difference between the pausing and resuming threshold
determines the network interface idle duration, and therefore affects
network energy consumption. 8 apps set the two thresholds to be
within 10 s of each other. As this is shorter than LTE RRC demotion
timer [41], the cellular radio interface will stay in high energy mode
during this entire pause in the download, leading to high energy
consumption. We suggest setting the difference of the two thresholds
larger than LTE RRC demotion timer in order to save device energy.

If either the pausing threshold or the resuming threshold is set
too low, the player’s ability to accommodate network variability
will be greatly limited, leading to frequent stalls. We find that S2
sets the pausing threshold to be only 4s and has a higher probabil-
ity of incurring stalls than other services under similar network
conditions. As the example in Figure 7, at 25 s, the buffer occupancy
of S2 reaches to the pausing threshold and the player pauses down-
loading for around 30 s. When the player resumes downloading
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Figure 7: S2 sets the resuming buffer to only
4s, leading to stalls.

Figure 8: D1 selected track is not stable even
with constant bandwidth
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stant bandwidth

segments, the buffer occupancy is only 4s and drains quickly due to
temporary poor network condition. As stalls significantly degrade
user experience,we suggest setting both thresholds reasonably high to
avoid stalls. The exact value will depend on factors like the specific
adaptation algorithm and is beyond the scope of this paper.

Next, we study the client adaptation logic. A good adaption logic
should provide high average bitrate and reduce stall events and
unnecessary track switches.

3.3.3 Track selection under stable network bandwidth. For each
app, we run a series of experimentswithin each ofwhichwe emulate
a specific stable network bandwidth for 10min and examine the
resulting track selection in the steady state. A good adaption logic
should achieve an average bitrate similar to the network bandwidth
without stalls and frequent track switches.

Stability.We find that the selected track of D1 does not stabilize
even with constant network bandwidth. As shown in Figure 8, the
network bandwidth is constantly 500 kbps. However, D1 frequently
switches between different tracks and tries to improve the average
actual bitrate to be close to network bandwidth. However, frequent
switches, especially switches between non-consecutive tracks, can
impair user experience. In contrast, the other apps all converge to
a single track (different for each app) after the initial startup phase.
We suggest the adaptation logic avoid unnecessary track switches.

Aggressiveness. We find that the track that different apps con-
verge to under the same stable bandwidth condition has significant
difference across different services. We term services that converge
to a track with declared bandwidth closer to available bandwidth
as more aggressive. We show a few examples in Figure 9. We find 3
apps are more aggressive and select tracks with bitrate no less than
the available network bandwidth. The reason why they are able to
stream tracks with a bitrate higher than available network band-
width without stalls is that they use VBR encoding and the actual
segment bitrate is much lower than the declared bitrate. The other
apps are relatively conservative and select tracks with declared
bitrates no more than 75% of the available bandwidth. In particular,
D2 even select tracks with declared bitrates no more than 50% of
available bandwidth.

3.3.4 Track adaptation with varying network bandwidths. To
understand the adaptation to varying network condition, we run
each app with a simple “step function" bandwidth profile, i.e. the

network bandwidth first stays stable at one value and suddenly
changes to another value. We test different combinations of the
initial and final bandwidth steps, and when the step occurs. The
behavior across the different apps is summarized in Table 1.

Reaction to bandwidth increase.When bandwidth increases,
all apps start to switch to a track with higher bitrate after a few seg-
ments. In addition, we find some apps revisit earlier track switching
decisions and redownload existing segments in the buffer in an
attempt to improve video quality. We further analyze this in § 4.1.

Reaction to bandwidth decrease.When bandwidth decreases,
apps eventually switch to a track with a lower bitrate.

A higher buffer pausing threshold enables more buffer buildup,
which can help apps better absorb bandwidth changing events and
defer the decision to select a lower track without the danger of
stalls. However, among the 7 apps that have a large buffer pausing
threshold (larger than 60 s), 4 apps always immediately switch to a
low track when a bandwidth degradation is detected, even when the
buffer occupancy is high, leading to suboptimal QoE. In contrast,
the other 3 apps set thresholds on buffer occupancy above which
they do not switch to a lower track even if the available bandwidth
reduces. We suggest the adaptation logic takes buffer occupancy into
consideration and utilizes the buffer to absorb network fluctuations.

In summary, our measurements show popular VOD services
make a number of different design choices and it is important to
perform such cross-section study to better understand the current
practices and their QoE implications.

4 QOE ISSUES: DEEP DIVE
Some QoE impacting issues involve complex interactions between
different factors. In this section, we explore in depth some key issues
impacting the services we study, and use targeted black-box exper-
iments to deduce their root causes. In addition, we further examine
whether similar problems exist for ExoPlayer, an open source media
player used by more than 10,000 apps [4] including YouTube [2],
BBC [5], WhatsApp [6] and Periscope [8] etc. Exoplayer therefore
provides us a unique view of the underlying design decisions in a
state-of-the-art HAS player being increasingly used as the base for
many commercial systems. The insights and mitigation strategies
we develop from this exploration can be broadly beneficial to the
community for improving the QoE of VOD services.
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4.1 Segment Replacement (SR)
Existing adaptation algorithms [27, 31, 33, 52] try to make intelli-
gent decisions about track selection to achieve the best video quality
while avoiding stall events. However, due to the fluctuation of net-
work bandwidth in the mobile network, it is nearly impossible for
the adaption logic to always make the perfect decision on selecting
the most suitable bitrate in terms of the tradeoff between quality
and smoothness. We observe that to mitigate the problem, when
the network condition turns out to be better than predicted, some
players will discard low quality segments that are in the buffer but
have not yet been played, and redownload these segments using a
higher quality track to improve user perceived video quality. We
denote this behavior of discarding video segments in the buffer and
redownloading them with potentially different quality as Segment
replacement (SR).

While SR could potentially improve video quality, it does involve
some complex tradeoffs. As segments in the buffer are discarded and
redownloaded, the additional downloads increase network data us-
age. In addition, SR uses up network bandwidth which could poten-
tially have been used instead to download future segments and may
lead to quality degradation in the future. Existing works [36, 40, 48]
find Youtube can perform extensive SR in a non-cellular setting.
However, how common SR is used across popular services and the
associated cost-benefit tradeoff for cellular networks is not well un-
derstood. We characterize this tradeoff for popular services, identify
underlying causes of inefficiencies, and propose improvements.

4.1.1 Usage and QoE impact of SR for popular VOD apps. To
understand the usage of SR by popular VOD apps, we run themwith
the 14 collected network bandwidth profiles. We analyze the track
and index (the position of the segment within the video track) of
downloaded segments. As segments with the same index represent
the same content, when multiple segments with the same index
are observed in the traffic, we confirm that the player performs SR.
Among the players we study, we find H1 and H4 perform SR.

We conduct what-if analysis to characterize the extent of video
quality improvement and additional data usage caused by SR. When
SR occurs, among the segments with the same index, only the last
downloaded segment is preserved in the buffer and all previous
downloads are discarded. We confirm this using the buffer informa-
tion in the logcat of H1. We emulate the case with no SR by keeping
only the first downloaded segment for each index in the trace and
use it as a baseline comparison. Our analysis shows that SR as
currently implemented by H4, does not work well. The findings are
summarized as follows. H1 shows similar trends.

• SR as currently implemented can significantly increase data usage.
With 5 of the bandwidth profiles, the data consumption increases
by more than 75%. The median data usage increase is 25.66%.
• For most bandwidth profiles, the video quality improves
marginally. The median improvement in average bitrate across
the 14 profiles is 3.66%.
• Interestingly, we find SR can even degrade video quality. For one
profile, SR decreases the average bitrate by 4.09% and the duration
for which tracks higher than 1Mbps are streamed reduces by
3.08%.

The video quality degradation we observed with SR is surprising,
as one would expect SR to only replace lower-bitrate segments
with higher-bitrate ones and therefore improve the average bitrate.
Diving deeper, for each experimental run, we emulate the client
buffer over time. When a new segment is downloaded, if the buffer
already contains a segment with the same index, we replace the
previously buffered segment with the newly downloaded one and
compare their quality. A somewhat counter-intuitive finding is
that the redownloaded segments are not always of higher quality.
Across the 14 bandwidth profiles, for all SR occurrences, on average
respectively 21.31% and 6.50% of redownloaded segments were of
lower quality or same quality as the replaced segment. These types
of replacements are intuitively undesirable, as they use up network
resources, but do not improve quality.

To understand why H4 redownloads segments with lower or
equal quality, we analyze when and how H4 performs SR. We make
the following observations.
• How SR is performed. We find that after H4 redownloads a
segment seg, it always redownloads all segments that are in the
buffer with indexes higher than seg. In other words, it performs
SR for multiple segments proactively and does not just replace a
segment in the middle of the buffer. In all SR occurrences across
the 14 profiles, the 90th percentile of the number of contiguously
replaced segments was 6 segments.
• When SR is triggered.Whenever H4 switches to a higher track,
it always starts replacing some segments in the buffer. For all
runs with the 14 bandwidth profiles, each time SR occurs, we
examine the quality of the first replaced segment among the
contiguous replaced ones. We find in 22.5% of SR cases, even the
first redownloaded segment had lower or equal quality compared
with the one already in the buffer. This implies that H4 may not
properly consider the video quality of buffered segments when
performing SR.
We show an example of H4 performing SR in Figure 10. At 150 s,

H4 switches from Track 3 to Track 4, which triggers SR. Instead
of downloading the segment corresponding to 580 s’ of content, it
goes back to redownload the segment corresponding to 500 s’ of
content. In fact, that segment was already downloaded at 85 s with
a higher quality from Track 8. As the new downloaded segment is
from Track 4, this indicates SR with lower quality. Even worse, H4
keeps redownloading all buffered segments after that. This even
causes a stall at 165 s, which otherwise could have been avoided.

Deducing the root causes of such suboptimal SR design from
commercial players such as H4 is challenging due to their propri-
etary nature. To gain a deeper understanding into the underlying
considerations behind SR policies, we next examine the SR design
of the popular open-source ExoPlayer and its QoE implications.

4.1.2 SR analysis with ExoPlayer. We find that ExoPlayer ver-
sion 1 uses SR and suffers from some similar issues as H4, i.e. it
can also redownload segments with lower or equal quality. To un-
derstand this, we first need to understand Exoplayer’s adaptation
logic. Before loading each segment the track selection algorithm
selects the track based on available network bandwidth and buffer
occupancy. When it decides to select a higher track X than the last
selected one Y, it initiates SR if the buffer occupancy is above a
threshold value. It identifies the segment with the smallest playback
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Figure 10: H4 starts SR as long as it switches to a higher track and
does not consider the track of segments in the buffer.

index in the buffer that is from a track lower than the track Y that
ExoPlayer is about to select for the upcoming download. Beginning
with that segment, it discards all segments with a higher index from
the buffer. While this strategy guarantees that the first discarded
segment is replaced with higher quality one, the same does not
hold for the following segments being replaced.

The root cause of these SR-related issues is that the player does
not (i) make replacement decision for each segment individually and
(ii) limit SR to only replace segments with higher quality. To answer
the question why players including H4 and ExoPlayer do not do this,
we study the ExoPlayer code and discover that it does not provide
APIs to discard a single segment in the middle of the buffer. Further
investigation shows that this is caused by the underlying data
structure design. For efficient memorymanagement, ExoPlayer uses
a double-ended queue to store segments ordered by the playback
index. Network activities put new segments on one end, while the
video renderer consumes segments on the other end, which ensures
that the memory can be efficiently recycled. Discarding a segment
in the middle is not supported, and thus to perform SR, the player
has to discard and redownload all segments with higher indexes
than the first chosen one.

We find that the underlying data structure and SR logic remain
the same in the latest Exoplayer version 2, but that SR is currently
deactivated and marked for future activation. To understand the rea-
sons behind ExoPlayer’s approach to SR, we contacted its designers.
They communicated that they were concerned about the additional
complexity and less efficient memory allocation associated with
allowing a single segment in the middle to be discarded, and un-
certainty about the benefits of SR. They were also concerned that
allowing discard for a single segment introduces some dependency
between the track selection algorithm and other modules such as
buffering policy.

4.1.3 SR Best practices and improvement evaluation. The re-
sponse from ExoPlayer developers motivates us to look into how
useful SR is when designed properly and whether it is worthwhile
to implement it. Intuitively a proper SR logic should have the fol-
lowing properties.
• The logic considers replacing a segment a time. Each segment is
replaced individually.
• Segments can only be replaced by higher quality segments.

Figure 11: The displayed track percentage with/without SR. Each
pair of bars are with the same network condition: left is without SR;
right is with SR.

• When buffer occupancy drops below a threshold, the player
should stop performing more replacements and resume fetching
future segments to avoid the danger of stalls.
Changing the Exoplayer memory management implementation

to enable discarding individual segments is a non-trivial endeavor.
Instead, for our evaluations, we modify the Exoplayer track se-
lection logic to work with HTTP caching to achieve the same
end-results. As an example, when segments are discarded from
the buffer, their track information is recorded. Later if the track
selection logic determines to redownloaded them with quality no
higher than the discarded ones, we change the track selection to
select the track of the discarded segment so that they can be recov-
ered directly from the local cache on the device without sending
traffic to the network. From the network perspective, this would
have the same effect as not discarding the segment.

To evaluate the QoE impact of the improved SR algorithm, we
play a publicly available DASH stream [7] using the 14 collected
real world bandwidth profiles. We find that, across the profiles, the
median and 90th percentile improvements in average bitrate are
11.6% and 20.9% respectively.

Subjective QoE studies(eg., [35]) show that the video bitrate is
not linearly proportional to user QoE. Rather, increasing the bitrate
when bitrate is low will cause a much sharper increase in user
experience. But when bitrate is already high, further increasing the
bitrate does not lead to significant additional QoE improvements. In
other words, it is more important to reduce the duration of time that
really low quality tracks are streamed. Thus we further break down
the track distribution of displayed segments without and with SR.
As shown in Figure 11, when network bandwidth shows significant
fluctuation and players have chances to switch between tracks, a
properly designed SR strategy can greatly reduce the duration of
streaming low tracks. For bandwidth profiles 3 and profile 4, the
duration of streaming tracks lower than 360p reduces by 32.0%
and 54.1% respectively. For profile 7 to profile 12, the duration of
streaming tracks worse than 480p reduces significantly, reduction
ranging from 30.6% to 64.0%.

SR increases video bitrate at the cost of increasing network data
usage. For ExoPlayer with our improved SR algorithm, the median
data usage increase across 14 profiles is 19.9%. For 5 profiles, the
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Figure 12: We modify the manifest and shift the mapping be-
tween declared bitrate and corresponding media files to generate
two streams with the same declared bitrate but different actual bi-
trate (D in the figure stands for declared bitrate).

usage increases by more than 40%. Across the 14 profiles, the me-
dian amount of wasted data, i.e. data associated with downloading
segments that were later discarded, as a proportion of the total
data usage was 10.8%. This implies that SR should be performed
carefully for users with limited data plans.

To better make tradeoff between data usage and video qual-
ity improvement, we suggest only discarding segments with low
quality when data usage is a concern. As we shall see, discarding
segments with lower bitrate has a bigger impact on improving QoE
and causes less waste data. To evaluate the proposed concept, we
change the SR algorithm to only replace segments no better than a
threshold of 720p, and characterize the impact on data usage and
video quality. We test with three profiles with the largest amount
of waste data. Compared with the case of using no such thresh-
old, for the 3 profiles, the wasted data reduced by 44% on average,
while the proportion of time that streaming quality better than 720p
was played stayed similar. The results therefore show that this is
a promising direction for exploring practical SR schemes. Further
work is needed in fine tuning the threshold selection.

In summary, we find proper usage of SR significantly reduces the
duration of streaming tracks with poor quality and improves QoE.
When making replacement decisions, players should consider each
segment individually and only replace segment with higher quality.
This requires underlying implementation to support discarding a
segment in the middle of the buffer. Due to the implementation
complexities, creating a library that supports such operations can
greatly benefit the app developer community.

4.2 Using Declared vs. Actual Bitrate
Servers specify the declared bitrate for each track in the manifest
as a proxy for its network resource needs, to help client players
select proper tracks based on the network bandwidth. However,
especially for VBR encoding which is increasingly popular, a single
declared bitrate value cannot accurately reflect the actual bitrate
across the video. For example, as shown in Figure 5, the declared
bitrate of videos from D2 can be twice of the average actual bitrate.
Despite the potentially significant difference between the declared
bitrate and actual bitrate, we find that the adaptation logic in some
players such as D2 relies purely on the declared bitrate to make
track selection decisions, leading to suboptimal QoE.

Since D2 uses DASH, it can in theory obtain actual segment bi-
trates from segment index boxes before playback. To verify whether
D2 takes the actual bitrate into consideration during track selection,
we carefully design black-box testing experiments to reveal its in-
ternal logic. We modify the manifest to generate two variants with

tracks of the same declared bitrate but different actual bitrates. As
illustrated in Figure 12, in variant 1 we shift the mapping between
the declared bitrate and corresponding media files. We replace the
media of each track to the one with the next lower quality level,
while keeping the declared bitrate the same. In variant 2, we simply
remove the lowest track and keep other tracks unchanged to keep
the same number of tracks as variant 1. Thus, comparing these two
variants, each track in variant 1 has the same declared bitrate as
the track of the same level in variant 2, but the actual bitrate is
the same as that of the next lower track in variant 2. We use D2
to play the two variants using a series of constant available band-
width profile. We observe that with the same bandwidth profile,
the selected tracks for the two variants are always of the same level
with the same declared bitrate. This suggests that it only considers
the declared bitrate in its decision on which track to select next,
else the player would select tracks with different levels for the two
variants but with the same actual bitrate.

As the average actual bitrate of videos from D2 is only half of
declared bitrate, failure to consider the actual bitrate can lead to low
bandwidth utilization, and thus deliver suboptimal QoE. We use D2
to play original videos from its server with a stable 2Mbps available
bandwidth network profile. The average achieved throughput is
only 33.7% of the available bandwidth in the steady phase. Such low
bandwidth utilization indicates that D2 could potentially stream
higher quality video without causing stalls.

There are historical factors underlying the above behavior. HLS
was the first widely adopted HAS streaming protocol for mobile
apps, and some elements of its design meshed well with the needs
of the predominant encoding being used at the time, i.e. CBR. For
example, the HLS manifest uses a single declared bitrate value to
describe the bandwidth requirements for each track. This is the only
information available to the player’s track selection logic regard-
ing the bandwidth needs for a segment in a track, before actually
downloading the segment. HLS requires setting this value to the
peak value for any segment in the track [45]. With CBR encoding,
different segments in a track have similar actual bitrates, making
the declared bitrate a reasonable proxy for the actual resource
needs. Adaptation algorithms [31, 33, 34] therefore traditionally
have depended on the declared bitrate to select tracks.

More recently, HAS services have been increasingly adopting
VBR video encodings as shown in Figure 5, which offers a number of
advantages over CBR in terms of improved video quality. However,
different segments in a VBR encoded track can have very different
sizes due to factors such as different types of scenes and motion.

As the actual bitrate of different segments in the same track
can have significant variability, it becomes challenging to rely on
a single declared bitrate value to represent all the segments in a
track. With VBR encoding, setting the declared bitrate to average
actual bitrate can lead to stall events [27, 54]. On the other hand,
setting the declared bitrate to the peak rate and using that as an
estimate for a track’s bandwidth (as D2 seems to do) can lead to low
bandwidth utilization and suboptimal video quality. The solution to
the above is that (i) more granular segment size information should
be made available to the adaptation algorithm and (ii) the algorithm
should utilize that information to make more informed decisions
about track selection.
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Figure 13: The displayed track percentage without/with consider-
ing actual segment bitrate. Each pair of bars are with the same net-
work condition. The left one the is the distribution only considering
declared bitrate. The right one is the distribution considering actual
bitrate.

HAS protocols are moving towards making this granular infor-
mation available, but challenges remain. DASH and newer versions
of HLS support storing each segment as a sub-range of a media
file and expose the segment byte ranges and durations in the mani-
fest file which can be used to determine the actual bitrate for each
segment. HLS also supports reporting the average bitrate in the
manifest along with the peak bitrate. Thus, in theory, an adaptation
logic should now be able to utilize this information. However, we
find that the information may still not be exposed to the adaptation
algorithm. We checked the implementation of ExoPlayer version
2, the latest version. It provides a unified interface to expose in-
formation based on which an adaptation algorithm selects tracks.
However, the interface only exposes limited information including
track format, declared bitrate, buffer occupancy and bandwidth
estimation. It does not expose the actual segment-level bitrate infor-
mation that is included in the manifest file. This implies that even
though app developers can implement customized sophisticated
adaptation algorithms, in Exoplayer, currently they still can not
leverage actual bitrate information to select tracks.

We next demonstrate that even a simple adaptation algorithm
that considers actual segment bitrates can improve QoE. We adjust
ExoPlayer’s default adaptation algorithm to select the track based
on the actual segment bitrate instead of the declared bitrate. To
evaluate the performance, we VBR-encode the Sintel test video [14]
and create an HLS stream consisting of 7 tracks. For each track
we set the peak bitrate (and therefore the declared bitrate) to be
twice of the average bitrate. We play the video both with the default
adaptation algorithm and the modified algorithm that considers
actual bitrate using the 14 collected network profiles.

As shown in Figure 13, when actual bitrate is considered, the
duration of playing content with low quality reduces significantly.
Across the 14 network profiles the median of average bitrate im-
provements is 10.22%. For the 3 profiles with the lowest average
bandwidth, the duration for which the lowest track is played re-
duces by more than 43.4% compared with the case of considering
only the declared bitrate for track selection. Meanwhile, for all
profiles we observe the stall duration stays the same, except for
one profile, where it increases marginally from 10 s to 12 s. Note

Figure 14: H3 encounters a stall soon after starting to play.

that the above results just illustrates the potential of using fine-
grained segment size information. The development of superior
HAS adaptation schemes for VBR to make better tradeoff between
video quality and stalls is a separate research topic in itself.

In summary, we suggest the services should expose actual segment
bitrate information to the adaptation logic, and that the adaptation
logic should utilize such information to improve track selection.

4.3 Improving Startup Logic
We find that some apps such as H3 always have stalls at the begin-
ning of playback with certain network bandwidth profiles, while
other apps do not have stalls under the same network condition.
This indicates potential problems with the startup logic. As shown
in Figure 14, H3 first selects the track with a bitrate around 1Mbps,
which is higher than the available network bandwidth . It starts
playback after downloading the first segment. For the second seg-
ment it keeps selecting the same track as it may not yet have built
up enough information about the actual network condition. As the
network bandwidth is lower than selected bitrate, the buffer goes
empty before the second segment is downloaded, leading to a stall.

The investigation into the design difference between apps with
and without QoE problems can give us hints on potential causes and
solutions. We find H3 and H2 set similar startup buffer durations.
However, H2 does not encounter stalls with the same network,
while H3 does. Further analysis shows that each segment of H2 is
only 2 s long and it downloads 4 segments before starting playback,
while the segment duration for H3 is 9 s and it starts playback once
a single segment is downloaded. Based on this observation, we
hypothesize that the likelihood of having stalls at the beginning of
playback does not only depend on the startup buffer duration in
seconds but also on the number of segments in the buffer. Using
just 1 segment as startup buffer introduces a high possibility to
have stalls at the beginning of playback.

To validate this hypothesis and identify improvements, we char-
acterize the tradeoff brought by startup buffer duration setting
between resulting startup delay and stall likelihood at the begin-
ning of a video session, and propose suggestions for determining
the setting empirically. We instrument ExoPlayer to set different
startup buffer durations and play the Testcard stream, a publicly
available DASH stream [7], with different segment durations. We
also configure the player to use different startup track settings. We
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Figure 15: Startup delay and stall ratio with different seg-
ment durations, startup tracks and startup segment count.
For example, "4s 0.5Mbps" in the legend means the segment
duration is 4 s and the startup track bitrate is 0.5Mbps.

calculate the average startup delay and the stall ratio, i.e. ratio of
runs with stalls, with 50 bandwidth profiles of 1 min generated
by dividing the lowest 5 10-min bandwidth profiles. As shown in
Figure 15, we have the following observations.
• The stall ratio depends on both the startup buffer duration and
the segment duration. With the same startup buffer duration of
8 s, the stall ratio with segments of 4 s is only 57.7% of the ratio
with segments of 8 s.
• Compared with using 1 segment as startup buffer, using 2 or 3
segments significantly reduces the stall possibility. In all video
settings, the stall ratio for using 3 segments is less than 41.7% of
the stall ratio for 1 segment.
• Using a higher bitrate track as startup track can significantly
increase stall possibility, especially when startup buffer is only
1 segment. With the startup buffer duration set to be 4s, when
increasing the startup track bitrate from 0.5Mpbs to 1Mbps, the
stall ratio increases from 60.0% to 91.1%.
Our findings suggest that apps should set the startup buffer duration

to 2 to 3 segments. We check the implementation of ExoPlayer. The
startup buffer duration is a static value in seconds which developers
can configure.We suggest the player should enforce the startup buffer
threshold both in terms of duration and segment count. The startup
track bitrate should also be relatively low to avoid stalls. Similar
suggestions can be also applied to the logic when the player recovers
from stall events.

5 RELATEDWORK
QoE characterization of commercial video streaming sys-
tems. Some existing works make effort to characterize streaming
QoE of video services. However, none of existing methodologies
can be generally applied to the mobile VOD services we study. Some
studies [28, 31] extract bitrate information from the request URL
based on certain URL patterns. However, the URL pattern differs
between services and many services even do not have such patterns.
For example, we find that Netflix and Amazon do not directly put
bitrate information in the URL. Akhshabi et al. [17] estimate the
segment duration based on their sizes. However, we find that many
video services use variable bitrate (VBR) encoding. Even for the

same track, the actual bitrates of segments vary significantly. Recent
studies [19, 21] extract QoE information from statistical reports sent
from the client to servers for certain players. However, this can not
be generalized to other services. Some other works [20, 21, 46, 47]
propose to apply machine learning techniques to get QoE infor-
mation from network features such as delay and throughput, but
it unavoidably introduces errors. A recent work [18] proposes to
get initial loading time and stall time from UI events, but it needs
app-specific instrumentation and does not reveal bitrate informa-
tion. Some other studies[29, 49, 51, 53] examine telephony systems
and live multimedia streaming systems. We study popular mobile
video-on-demand services.
Proposal of novel adaptation algorithms. Many prior
works [27, 31, 33, 37, 39, 50, 52] have investigated the opportunities
for optimizing the rate adaptation algorithms. Jiang et al. [31]
propose an adaptation algorithm that improves fairness between
multiple video streaming applications. Li et al. [33] use a TCP-like
probe approach to select video bitrate. PiStream [52] leverages
physical layer information in LTE network to help predict network
bandwidth and adapt video bitrate. Huang et al. [27] select
video bitrate based on buffer occupancy. These state-of-the-art
algorithms can help improve video streaming performance. In
this paper we investigate the algorithms deployed in commercial
mobile VOD systems in practice.
Diagnosis of QoE issues in video streaming systems. Prior ef-
forts [23–26, 30, 32, 38, 42–44]have also emphasized the importance
and challenges of diagnosing the performance problems of video
streaming. Jiang et al. [30] propose to use clustering method over
client attribute to identify root cause to video problems. A recent
work [22] builds a machine learning model to perform root cause
analysis for poor video QoE based on network characteristics. These
works focus on identifying problems caused by external environ-
ment such as poor network condition. We focus on characterizing
the QoE impact of the service design.

6 CONCLUSION
We conduct a detailed measurement study of a wide cross-section
of 12 popular mobile streaming VOD services to develop a holistic
understanding of their design and performance. Using carefully
crafted measurements, we tease out important component designs
across the end-end pipeline, including track settings, startup be-
havior, track switching behavior etc., and identify a number of
QoE issues and their underlying causes. Using what-if-analysis,
we develop best practice solutions to mitigate these challenges.
By extending the understanding of how elements of service de-
sign impact QoE, our findings can help developers better navigate
the design space and build mobile HAS services with improved
performance.
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