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ABSTRACT

The right vantage point is critical to the success of any active
measurement. However, most research groups cannot afford to
design, deploy, and maintain their own network of measurement
endpoints, and thus rely measurement infrastructure shared by
others. Unfortunately, the mechanism by which we share access
to measurement endpoints today is not frictionless; indeed, issues
of compatibility, trust, and a lack of incentives get in the way of
efficiently sharing measurement infrastructure.

We propose PacketLab, a universal measurement endpoint in-
terface that lowers the barriers faced by experimenters and mea-
surement endpoint operators. PacketLab is built on two key ideas:
It moves the measurement logic out of the endpoint to a separate
experiment control server, making each endpoint a lightweight
packet source/sink. At the same time, it provides a way to delegate
access to measurement endpoints while retaining fine-grained con-
trol over how one’s endpoints are used by others, allowing research
groups to share measurement infrastructure with each other with
little overhead. By making the endpoint interface simple, we also
make it easier to deploy measurement endpoints on any device
anywhere, for any period of time the owner chooses. We offer
PacketLab as a candidate measurement interface that can accom-
modate the research community’s demand for future global-scale
Internet measurement.
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1 INTRODUCTION

Having the right vantage points can make or break a network
study. Whether it is observing Internet censorship, testing for
network neutrality violations, or building a map of the Internet,
researchers need access to end hosts from which they can conduct
their measurements. Indeed, research groups invest considerable
effort to secure access to such end hosts and operate them as
measurement endpoints. The result has been a proliferation
of Internet measurement platforms with different underlying
architectures, implementations, functionalities, APIs, and user
bases. Unfortunately, to run experiments on these platforms at
scale, outside researchers and platform operators must overcome
several obstacles:
• Compatibility. Each measurement platform has its own de-
ployment and usage models. The experimenter must port her
experiment to each platform individually—not an easy task.
To break the N -interfaces-to-N -platforms paradigm, we need
a single universal interface that works across all platforms,
allowing experiments to scale easily.

• Incentives. Many platform operators provide technical sup-
port to the experimenter in the design phase of an experiment
and operational support during deployment. The cost of pro-
viding these services falls on the operator and thus limits the
number of outside experiments a platform can support. By re-
ducing their support costs, platform operators can accept more
outside experiments.

• Trust. On general-purpose platforms that do not limit exper-
imenters to a fixed set of measurements, platform operators
must trust each experimenter to behave according to a specified
set of rules, and this can limit the set of experimenters admitted
to a platform. To encourage platform operators to open their
measurement infrastructure to a greater user base, operators
need reliable mechanisms to guarantee compliance with their
rules.

To lower these barriers, we propose a clean-slate measurement ar-
chitecture we call PacketLab. PacketLab is not a new measurement
platform; rather, PacketLab provides a lightweight, universal inter-
face to existing measurement endpoints. Our value proposition to
measurement platform operators is that PacketLab gives them con-
trol over how their platform is used and does so in a low-overhead
way. By lowering barriers to sharing, PacketLab makes it easy to
expose network vantage points to the measurement community,
including new vantage points that are not part of an existing mea-
surement platform. For experimenters, PacketLab provides a single
interface to multiple measurement platforms, so that researchers
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develop and test their experiments once and then run them on any
endpoint exporting the PacketLab interface.

To meet these goals, PacketLab makes several unique design de-
cisions. First and foremost, we argue that measurement endpoints
should provide an interface to the network, and not to the endpoint
computing hardware. Current platforms follow a model where
adding a new experiment (whether one’s own or external) requires
updating software on the endpoint. Our philosophy is that adding
a new experiment should require no changes to endpoints. This is
only possible if we decouple the platform from the experiment. In
PacketLab, measurement endpoints are simple packet senders and
receivers. All experiment logic is located on a separate experiment
controller that carries out the experiment. During an experiment,
the experiment controller tells the endpoint what packets to send
and what packets to capture and send back. This separation of ex-
periment and platform means that measurement endpoints can be
very simple while still supporting experiments of arbitrary com-
plexity built on basic send and capture primitives. And because
endpoints are simple, it is easy to add PacketLab support to ex-
isting measurement platforms. PacketLab experiment controllers
are ephemeral, lasting only for the duration of an experiment. An
experiment controller is provisioned and operated by the experi-
menter, not the platform operator, shifting costs typically borne by
platform operators to the experimenter.

To control access to their endpoints, operators issue crypto-
graphic certificates that authorize an experimenter to carry out
a particular set of experiments. The experimenter’s experiment
controller then presents this certificate to each measurement end-
point she wishes to use. Certificates include restrictions that allow
endpoint operators to limit the kinds of traffic that can be generated
or collected at their measurement endpoints.

2 BACKGROUND AND RELATEDWORK

End-host network measurement is an active area of research, with
several measurement platforms in operation:
• RIPE Atlas [4] • BISmark [30] • FCC’s MBA [2]
• CAIDA Ark [14] • OONI [25] • ICLab [1]
• Dasu [26] • Netalyzr [19] •MITATE [17]
• Scriptroute [29] • PEERING [27] • CAIDA Periscope [16]

We refer the reader to Bajpai and Schonwalder’s recent survey [6]
for an in-depth description of these efforts. Of particular relevance
to this work are those platforms that explicitly invite outside exper-
iments, namely BISmark, RIPE Atlas, FCC’s Measuring Broadband
America (MBA), Scriptroute, and Ark, as well as the more general
PlanetLab [3] platform. Both BISmark and MBA started specifically
for broadband speed measurements. CAIDA’s Ark infrastructure
was designed to be a community platform for active Internet mea-
surement. RIPE Atlas was designed to support the operational needs
of the RIPE community.

Ark, BISmark, and MBA can support arbitrary experiments that
are vetted by the platform operator. Vetting as well as experiment
development, testing, and deployment require involvement of the
platform operator, and it is these costs that PacketLab aims to mini-
mize. Furthermore, porting experiments to these platforms can be
non-trivial. For example, when we wanted to extend our measure-
ment of inter-domain congestion [20], originally written for Ark, to

run on BISmark, differences between the platforms required us to
re-design the experiment, moving most of the experiment logic off
the endpoint. We argue that these platforms, and the experiments
using them, stand to gain by offering an interface like PacketLab.

Scriptroute allows researchers to run scripts (written in the Ruby
language) on the measurement endpoints without prior vetting,
applying a local policy filter to limit the kind of traffic an endpoint
can send. One of the unique features of Scriptroute is that it also
allows measurement packet destinations to express a traffic policy
by encoding it in a DNS record for the network.

In contrast, PacketLab moves all experiment logic off the end-
point, allowing researchers to write experiments in a language
of their choice. PEERING, a measurement platform designed for
routing experiments, follows the same philosophy, providing an
OpenVPN tunnel to the researcher for handling traffic for an adver-
tised route. To support general-purpose measurements, PacketLab
endpoints also provide packet filtering, timestamping and schedul-
ing primitives.

MITATE, ameasurement platform aimed atmobile devices, keeps
endpoints simple yet general by letting experimenters send an arbi-
trary, but pre-declared sequence of packets with a specific timing.
The authors ensure that “these packets do not pose threats to other
systems by matching them against signatures of known exploits
using intrusion detection mechanisms.”

At the more conservative end, RIPE Atlas supports a fixed (but
useful) set of measurements that include ping, traceroute, DNS,
SSL/TLS and some HTTP types. By limiting itself to measurements
generally considered safe, RIPE Atlas achieves greater deployment
(nearly 10,000 endpoints—an order of magnitude more than Ark
and BISmark combined). RIPE Atlas underscores the importance of
providing guaranteed limits to what an experiment can do in order
to scale access to vantage points.

PacketLab is not another measurement platform, but an interface
to existing and future platforms. In principle, each of the above
platforms can provide a PacketLab interface in addition to their
native interface. To make this possible, PacketLab will provide an
access control and experiment monitoring system that allows each
platform operator to enforce their desired experiment policy, while
making as few assumptions as possible about the endpoint.

The measurement community has long sought a single inter-
face to unify existing measurement platforms. There have been
numerous discussions on federating existing measurement infras-
tructure, notably at the past three CAIDA AIMS workshops [11–13]
(PacketLab itself was the subject of extended discussion at AIMS
2017). Projects such as MPlane [31] and Tophat [9] have attempted
to either federate existing infrastructures, or build an intelligent
measurement plane with probes that can execute measurements
on-demand. Bajpai et al. [5] discussed the issue of platform inte-
gration at a Dagstuhl seminar, arguing that integration could be
achieved by encouraging convergence towards an agreed-upon set
of measurement primitives, tools, data storage formats, as well as
a software management framework. PacketLab adresses the same
need in a different way: moving all experiment logic to the experi-
ment controller, leaving only the most simple packet send/receive
mechanism on the endpoint.
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3 ARCHITECTURE

The PacketLab architecture consists of measurement endpoints, ren-
dezvous servers, and experiment controllers. Measurement endpoints
may be software agents (e.g. Netalyzr), dedicated servers (e.g. Ark),
or embedded systems connected to a home router (e.g. BISmark).
Endpoints are managed and maintained by an endpoint operator. Ex-
cept for granting permission to conduct an experiment, PacketLab
does not specify how endpoint operators interact with measure-
ment endpoints or if they do so at all. An endpoint operator can
grant an experimenter (researcher) permission to use the endpoints
he controls. The remainder of this section describes these elements
of PacketLab in greater detail.

3.1 Measurement Endpoints

PacketLab measurement endpoints are software or hardware agents
capable of sending and receiving packets on the Internet. A Packet-
Lab endpoint provides an experimenter an interface to the network
rather than an interface to the endpoint hardware. To run an ex-
periment, an experiment controller operated by the experimenter
interactively controls the measurement endpoint. In PacketLab ter-
minology, experiments are short-lived interactive sessions between
an experiment controller and an endpoint, generally lasting only
a few minutes. A long-lived real-world research experiment will
involve many short interactive sessions (PacketLab experiments).
An endpoint’s role during an experiment is simple: it sends packets
that the experiment controller tells it to send, and it captures pack-
ets the experiment controller tells it to capture. All experiment logic
is located on the experiment controller so that the measurement
endpoint interface can remain simple and universal.
Network Primitives. The interface PacketLab endpoints export
to experiment controllers is shown in Table 1. PacketLab endpoints
can provide two kinds of access to the network: a raw IP interface,
or a native TCP/UDP socket serviced by the endpoint’s operating
system. While the endpoint network access API (commands with
an n prefix) resemble the BSD sockets interface, there are also
important differences.

The first departure from BSD sockets is in how data is sent. To
send data, the experiment controller uses the nsend command with
a time parameter that tells the endpoint when it should send the
data. This allows the experiment controller to schedule data to be
sent at some future time, rather than immediately. (To send immedi-
ately, the controller specifies a time in the past.) The endpoint then
attempts to send the data at the specified time, recording the time
it was actually sent; an endpoint can retrieve this timestamp using
the mread command described below. Delaying packets is useful
when precise packet timing is necessary. For example, to measure
bandwidth to a particular host, the experiment controller would
schedule a sequence of packets to be sent a short time in the future.
This avoids contention for the access link, since in most cases the
same access link carries both PacketLab control and measurement
traffic. By scheduling data to be sent later, rather than sending it im-
mediately, traffic between the endpoint and experiment controller
does not affect the bandwidth measurement.

The second difference between PacketLab and BSD socket inter-
faces is in how data is received. When an endpoint receives network
data, it does not forward it to the experiment controller immediately,
but buffers it internally until the experiment controller issues the

nopen(sktid,proto)
nopen(sktid,proto,locport,remaddr,remport)

The first form opens a raw IP socket on the endpoint. The second
form opens a TCP or UDP socket with the specified local port to the
specified remote address and port.

nclose(sktid)
Closes the specified socket.

nsend(sktid,time,data)
Queues data to be sent on a socket at a particular time.

ncap(sktid,time,filt)
Installs a packet filter on a raw socket. Packets matched by filter
will be captured until the specified time.

npoll(time)
Polls endpoint for received network data, sending it to experiment
controller. Waits until time if no data is available.

mread(memaddr,bytecnt)
Reads bytecnt bytes starting from memaddr in endpoint virtual
address space.

mwrite(memaddr,data)
Writes data to location memaddr in endpoint virtual address space.

Table 1: Operations supported by PacketLab endpoints.

npoll command. Only then does the endpoint sends all received
data to the experiment controller. Buffering received data keeps the
access link free of control traffic during a measurement, ensuring
that PacketLab control traffic does not interfere with the experi-
ment. If an experiment controller does not poll an endpoint quickly
enough, an endpoint may run out of space to store all received data.
When this happens, the endpoint simply stops reading (and buffer-
ing) experiment data. For TCP sockets, this will create flow control
back pressure, while for UDP and raw IP sockets, the endpoint’s
host OS will simply drop packets. In addition to the received data,
the npoll command also returns the number of packets and bytes
dropped due to buffer exhaustion.

Opening a raw socket exposes the endpoint to all network traf-
fic arriving on the endpoint’s network interface. To limit which
packets are returned, the experiment controller can install a packet
filter using the ncap command. The filt parameter specifies the
packet filter to use for filtering packets (see Section 3.4). The de-
fault behavior is to drop all packets, so an endpoint does not start
capturing packets on a raw socket until the experiment controller
installs a filter. The ncap command also takes a time parameter,
which tells the endpoint when to stop capturing packets. This time
can be arbitrarily far in the future, resulting in the filter remaining
in place for the remainder of the experiment.

In raw mode, some incoming packets induced by the experiment
may generate a response from the endpoint’s host operating sys-
tem. For example, an incoming TCP packet normally causes the
operating system to send a RST packet if there is no matching TCP
session. This can interfere with measurement experiments that
create TCP sessions using the raw interface. To handle this, the
packet filter installed by ncap specifies whether a packet should be
ignored, consumed or mirrored to the experiment controller. (The
mirror option is useful because it allows PacketLab to be used as a
passive packet capture interface, for example, to capture packets at
a network telescope [24].)
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Not all endpoints may be able to support raw sockets. Many
operating systems require superuser privileges to use raw sockets.
If a PacketLab endpoint is a software agent running without root
privileges, it will be unable to open a raw socket. (An experiment
controller can determine if this is the case using the endpoint infor-
mation commands, described next.) Endpoints that do not support
the raw interface are still useful for experiments that only need a
TCP or UDP socket, but not for experiments that need to create
raw IP packets.
Endpoint Information and Configuration. An experiment con-
troller may need additional information from the endpoint to carry
out an experiment. For example, to craft a valid IP packet in raw
mode, a controller needs to know the endpoint’s internal IP address.
(For endpoints behind a NAT, this address will be different from its
external address.) A PacketLab endpoint makes this information
such as its IP address, DHCP parameters, and the current socket
state available to the controller via a structured block of memory
that is accessed using the mread and mwrite commands listed in
Table 1. The contents of this block of memory are also accessible to
monitor programs (Section 3.4).
Timekeeping. The time parameter used in the nsend command
and the timestamps on received packets are measured with respect
to the endpoint’s local clock. To keep endpoints as simple as pos-
sible, PacketLab does not require endpoints to keep accurate time.
Instead, an endpoint makes its clock available as a read-only 64-bit
value via thememory accessed using mread and mwrite commands.
If an experiment requires accurate timing, the experiment controller
should start by determine its clock offset with respect to the end-
point using a clock synchronization algorithm such as NTP [22].
By determining the clock offset of each endpoint, an experiment
controller can then coordinate a multi-endpoint experiment that
requires exact timing.

3.2 Rendezvous

Experiment controllers and measurement endpoints find each other
with the help of a rendezvous server, which provides a publish-
subscribe facility for experiment dissemination. Experimenters
publish their experiments to a rendezvous server by sending the
rendezvous server an experiment descriptor, which contains the
address of the experiment controller, the experiment name, and a
URL describing the experiment. When a PacketLab measurement
endpoint starts up, it tries to find an experiment to run by con-
tacting a rendezvous server and subscribing to a set of experiment
channels. The rendezvous server sends the endpoint all experiment
descriptors published to these channels. (We explain channels in
Section 3.3). For each experiment descriptor it receives from the
rendezvous server, an endpoint contacts the experiment controller
given in the descriptor. The experiment controller can interact with
the endpoint to determine whether it is suitable for a particular
experiment based on its IP address and other information made
available by the endpoint as described earlier.

An experiment descriptor does not contain the set of commands
issued by the experiment controller, because experiments execute
in an interactive fashion. An experiment controller is free to issue
any commands during an experiment; the endpoint will use the
monitor mechanism, described next, to determine whether it should
execute each command.

Unlike experiment controllers, rendezvous servers are persistent.
They constitute the only permanent infrastructure required by
PacketLab. Their addresses may be hard-coded into the endpoint
software like the names of DNS root servers. Rendezvous servers
provide a simple service and are not themselves directly involved
in experiments. We believe that two or three rendezvous servers
can be maintained by the measurement community, just as NTP
and PGP servers are managed by their respective communities.

3.3 Access Control

Access to rendezvous servers andmeasurement endpoints in Packet-
Lab is controlled using cryptographic certificates similar to X.509
certificates used in the SSL/TLS ecosystem. Like X.509 certificates,
PacketLab certificates may be chained to support hierarchical dele-
gation. A certificate consists of a cryptographic hash of the signer
public key, a cryptographic hash of the signed object, an optional
list of restrictions, and a digital signature of the above.

There are two functionally different kinds of certificates: exper-
iment certificates and delegation certificates. Both use the same
format and differ only in the object being signed. In an exper-
iment certificate, the object signed is an experiment descriptor
(Section 3.2). In a delegation certificate, the object signed is another
public key. A certificate may contain an optional list of restrictions
on certificate applicability: validity period, experiment monitor
(Section 3.4), buffer space limits, and priority (described later). The
optional restrictions may apply to both kinds of certificates to limit
the kinds of experiments an experimenter can run under those
certificates.
Rendezvous ServerCertificateChecking.The first use of certifi-
cates is to grant experimenters permission to publish experiments
on a rendezvous server. To publish an experiment, an experimenter
must first have a public/private key pair. The experimenter requests
permission to publish her experiments from the rendezvous server
operator. It is not the responsibility of the rendezvous server oper-
ator to act as an experiment gatekeeper, so permission to publish
should be granted liberally. In practice, we expect the rendezvous
server operator to delegate this task to a set of respected mem-
bers of the community who can grant experimenters permission
to publish experiments. The reason a certificate is required at all
is to protect the rendezvous server against anonymous abuse by
tying experiments to an individual or organization. The rendezvous
server operator (or a delegate) grants a request to publish by sign-
ing a certificate where the subject is the hash of the public key of
the experimenter. (Public keys are identified by their hash value.)
An experimenter can then publish experiments on the rendezvous
server by signing them with this key and providing the certificate
issued by the rendezvous server operator to the rendezvous server.
Each rendezvous server has a list of public keys whose signatures
it accepts. An experiment descriptor must be signed (either directly
or through delegation) by one of these keys for it to be accepted by
the rendezvous server.
Measurement Endpoint Certificate Checking. Measurement
endpoints follow a similar pattern. Each measurement endpoint
has a set of public keys whose signatures it will accept. This set of
trusted keys is installed and managed out-of-band by the endpoint
operator. To run an experiment on an endpoint, an experiment
controller must present the endpoint with an experiment descriptor
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Figure 1: Authorization relationships in a PacketLab experiment.

An experimenter obtains an experimenter certificate signed by a

rendezvous server operator (➊). The experimenter then creates and

signs a delegation certificate (➋) and has it signed by an endpoint

operator whose endpoints she wants to use (➌). The delegation cer-

tificate allows the experimenter to create certificates for specific ex-

periments (➍). Each experiment is published to a rendezvous server

(➎), which accepts the experiment because the certificate chain es-

tablishes that the rendezvous server operator authorized the exper-

imenter to publish experiments on the rendezvous server (➏). The

experiment controller presents the certificate to eachmeasurement

endpoint (➐), which accepts the experiment because the certificate

chain establishes that the endpoint operator authorized the experi-

ment to run on the endpoint (➑).

that is directly or indirectly (via a chain of certificates) signed by
one of its trusted keys. While an experimenter can ask the endpoint
operator to sign an experiment descriptor for each experiment, it
is more convenient to use delegation certificates. A delegation cer-
tificate signed by the endpoint operator authorizes a public-private
key pair (controlled by an experimenter) to be used to sign experi-
ment descriptors that will be accepted by the operator’s endpoints.
The experimenter must also sign the key pair corresponding to
the delegation certificate so that a rendezvous server will accept
experiments signed using that delegation certificate. Delegation can
be extended several levels by forming a certificate chain. Figure 1
shows these authorization relationships.
Rendezvous Publish/Subscribe Channels. Recall that ren-
dezvous servers provide a publish-subscribe system for experiment
dissemination. Endpoints subscribe to a set of channels and receive
all experiment descriptors published to those channels. The identi-
fier used to describe a channel is simply the hash of a public key
used to sign certificates. When a measurement endpoint connects
to a rendezvous server, it subscribes to the set of channels corre-
sponding to each of the public keys it trusts to sign experiment
certificates. When an experimenter publishes an experiment to a
rendezvous server, the experimenter includes the full certificate
chain and corresponding public keys. This allows the rendezvous
server to verify the certificate chain and broadcast the experiment
to all endpoints that accept experiments signed by at least one of
the keys in the certificate chain.

Contention. Access to endpoints is time-shared by multiple con-
trollers. An endpoint can be involved in multiple concurrent experi-
ments; however, at any given time, no more than one controller has
control of an endpoint. If more than one controller wants to run an
experiment on an endpoint, the endpoint decides which experiment
to run based on its priority. When an experiment controller starts an
experiment, it tells the endpoint at what priority it wants the exper-
iment to run; this priority must not exceed the maximum priority
specified in any certificate in the certificate chain used to authorize
the experiment (see Section 3.3). If an experiment controller asks
an endpoint to run a higher-priority experiment than what it is
currently running, the endpoint notifies the experiment controller
of the current experiment that its experiment has been interrupted,
and then transfers control to the controller with the higher-priority
experiment. The interrupted experiment is suspended until the
higher-priority experiment completes or its controller suspends
it by yielding control of the endpoint. The endpoint then returns
control to the controller with the next highest priority suspended
experiment. The ability to interrupt experiments ensures that low-
priority experiments do not block high-priority ones. An endpoint
operator can use this mechanism to grant outside researchers ac-
cess to its endpoints with the understanding that their experiments
may be interrupted at any time for the operator’s own experiments.

As noted, unless interrupted by a higher-priority experiment,
controllers have exclusive control of an endpoint during their ex-
periment. This is necessary to prevent experiments from interfering
with each other by competing for the same access link or endpoint
buffers.

3.4 Experiment Monitor

In addition to the coarse certificate-based access control system
described above, PacketLab experiment descriptors and certificates
include a monitor. Monitors provide the mechanism by which an
operator restricts what an experiment can do on an endpoint. An
endpoint uses the monitor during the experiment to ensure that
the experiment does not stray outside the behavior allowed by the
endpoint operator.

Conceptually, a monitor is a black box that says whether an
operation is allowed. Practically, a monitor is a program executing
in a specialized virtual machine, a design borrowed from the BSD
Packet Filter (BPF) [21], itself an evolution of earlier designs [10,
23]. In fact, BPF already nearly satisfies our requirements for a
monitor mechanism. BPF has limitations, however. In particular,
many implementations of BPF have a limited scratch memory of 16
32-bit words that does not persist across packets, making stateful
filtering impossible. BPF programs must also be acyclic, a design
that ensures that they execute in linear time (in the size of the
program). Several packet filtering schemes attempt to overcome the
limitations of BPF [7, 8, 15, 18, 28, 32, 33]; additional investigation is
necessary to determine whether these, or a completely new scheme,
would be most appropriate for PacketLab.

Recall that the ncap command included a packet filter argument
that specifies which packets the controller wants the endpoint to
capture. This packet filter is expressed as a program using the same
mechanism as the monitor. Thus, both packet filters used with ncap
and monitors attached to certificates determine which packets will
be returned to the controller.
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Memory. In addition to the information necessary to make an ac-
cess control or packet filtering decision (e.g., packet data), a monitor
program has access to auxiliary information about the endpoint
and the state of the experiment via a structured memory block
described earlier (Section 3.1). The monitor program sees this as a
block of memory in its virtual address space. (Note that the address
space seen by the monitor program and accessed by the controller
using mread and mwrite is distinct from the virtual address of the
host environment.) In addition, each monitor also has a block of
private memory that persists for the duration of the experiment
that is not accessible to the controller via the mread command.
High-level language for monitor programs.Writing a monitor
in a (virtual) machine language is cumbersome. To make this task
easier, we propose a simple C-like language we call Cpf that would
be compiled to the representation interpreted by the endpoints.
Cpf uses C syntax and semantics, but omits features like function
pointers that are not necessary for creating monitor programs. We
chose C because it is a familiar language to our target developer au-
dience (network measurement experimenters), and, as such, would
present no impediments to adoption. Furthermore, it allows us to
directly use existing constant and structure definitions written in
the C language.

A full discussion of Cpf is outside the scope of this article. How-
ever, Figure 2 shows how an endpoint operator might express a
monitor for a traceroute experiment (we assume common header
files such as netinet/in.h have been included, and that union
packet is a union of structures containing common protocol head-
ers). The endpoint operator would compile and attach this monitor
to the experiment certificate it issues to an experimenter. The send
entry point (invoked by the endpoint when the controller tries to
send a packet) allows ICMP echo requests to any host. The program
saves the destination in the ping_dst global variable. The recv
function (invoked by the endpoint to determine whether a packet
can be captured and passed on to the controller) allows echo replies
from the destination and time exceeded packets from any host.
For the latter, the monitor ensures the source and destination of
the returned IP header fragment match the original packet.

3.5 Limitations

Because PacketLab moves all experiment logic to the controller,
any data to be sent by an endpoint during an experiment must first
come from the controller. This means that there is necessarily a
delay between when a controller commands the endpoint to send a
packet and when the endpoint can actually send it. Experiments
that require fast endpoint response times will be at a disadvantage,
because the time between when an endpoint receives a packet and
when it can generate a response that depends on the received packet
will include the round-trip time between endpoint and controller.
We note, however, that a round trip is only necessary if a sent
packet depends on a received packet. If it does not, the controller
can schedule the packet to be sent ahead of time. Timing measure-
ments such as ping and traceroute are not affected by this, because
what they need are precise timestamps (which PacketLab provides),
rather than fast endpoint response times.

Another limitation of PacketLab is practical rather than technical.
Most measurement platforms today follow the PlanetLab [3] model,
where experiments run on the endpoint rather than on a separate

controller. Developers will need to adjust to the PacketLab model,
where, rather than sending packet directly, the programmer tells a
remote endpoint to send a packet and may need to schedule packets
in advance. We plan to develop libraries and VPN-style drivers to
allow developers to code experiments to the old model but run
them on PacketLab nodes.

4 PRELIMINARY RESULTS

We are in the early stages of prototyping PacketLab in order to
validate the ideas presented in the paper. In the near future, we
hope to provide the community with an open source endpoint ref-
erence implementation for evaluation. Our prototype supports a
subset of operations shown in Table 1, namely commands to: open
a TCP, UDP, or raw IP socket; send packets at a specified time; and
capture and forward packets to the controller. Our endpoint does
not yet support the rendezvous mechanism, certificates, or exper-
iment monitors. Using our prototype endpoint, we implemented
two experiments, described below.
Bandwidth measurement. To measure an endpoint’s uplink
bandwidth, we make it send a sequence of UDP packets to our
server as quickly as possible, and then record the rate and which
they arrive at the server. The controller first reads the current time
t0 on the endpoint (using the mread command). It then opens a UDP
socket on the endpoint (using nopen) and schedules a block of UDP
datagrams to be sent from the endpoint to the controller at time
t0 + 5 (using nsend). The controller then waits for the UDP packets
from the endpoint, records their arrival times, and calculates the
uplink bandwidth.
Traceroute. To reproduce the traceroute tool, an experiment con-
troller creates a series of ICMP echo reqest packets with incre-
menting TTL values starting from 1 and the payload set to contain
a two-byte sequence number. The controller first obtains the end-
point’s current time t0 as above, and then schedules the ICMP
packets for transmission at some time tsnd > t0. After scheduling
the ICMP packets, the controller begins polling the endpoint for
incoming packets, forwarding each to the controller with its receive
timestamp (trcv). The sequence number is extracted from the packet
and used to match the original ICMP’s tsnd to calculate the round
trip time as trcv − tsnd. Note that both timestamps are relative to
the endpoint’s clock. The controller sends packets to the endpoint
until either an ICMP reply is received from the target destination
or the next TTL value is greater then 40.

5 CONCLUSION

The aim of this work is to argue for a universal network measure-
ment interface by presenting a particular design we call PacketLab.
PacketLab gives endpoint operators a way to provide researchers
access to measurement endpoints in a controlled manner. End-
point operators can precisely enforce the kinds of experiments
researchers can run on their endpoints using a mechanism based
on packet filters. For experimenters, PacketLab is a uniform in-
terface to all measurement endpoints supporting the PacketLab
interface. Once an experimenter obtains a certificate (from an end-
point operator) granting her access to a set of endpoints, running
the experiment does not require endpoint operator involvement,
streamlining experiments and lowering support costs borne by
operators of today’s platforms.
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in_addr_t ping_dst = 0; // destination of traceroute

uint32_t send(const union packet * pkt, uint32_t len) {
if (pkt->ip.ver == 4 && pkt->ip.ihl == 5 &&

pkt->ip.proto == IPPROTO_ICMP &&
pkt->ip.src == info->addr.ip &&
pkt->ip.icmp.type == ICMP_ECHO_REQUEST)

{
return len; // allow
ping_dst = pkt->ip.dst;

} else
return 0; // deny

}

uint32_t recv(const union packet * pkt, uint32_t len) {
if (pkt->ip.ver == 4 && pkt->ip.ihl == 5 &&

pkt->ip.proto == IPPROTO_ICMP && (
(pkt->ip.icmp.type == ICMP_ECHO_REPLY &&
pkt->ip.src == ping_dst) ||

(pkt->ip.icmp.type == ICMP_TIME_EXCEEDED &&
pkt->ip.icmp.orig.ip.src == info->addr.ip &&
pkt->ip.icmp.orig.ip.dst == ping_dst)))

return len; // allow
else

return 0; // deny
}

Figure 2: Fragment of a monitor program for a traceroute exper-

iment. The send entry point in the monitor is called by the end-

point to determine if a packet can be sent. The monitor first checks

that the packet is an ICMP echo reqest packet and then stores

the destination address in the global ping_dst. The recv entry

point is called by the endpoint to determine whether the controller

is allowed to capture the packet. It checks that the packet is an

ICMP echo reply packet from the destination or a time exceeded

packet generated in response to the original echo reqest. Note

that recvuses the global variable ping_dst to ensure that only pack-
ets corresponding to the original echo reqest are returned to the

controller.
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