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ABSTRACT
Devices implementing newer wireless standards continue to displace
older wireless technology. As 802.11ac access points (APs) are
rapidly adopted in enterprise environments, new challenges arise.
This paper first presents an overview of trends in enterprise wireless
networks based on a large-scale measurement study, in which we
collect data from an anonymous subset of millions of radio access
points in hundreds of thousands of real-world deployments. Based on
the observed data and our experience deploying wireless networks
at scale, we then propose two techniques that we have implemented
in Meraki APs to improve both overall network capacity and perfor-
mance perceived by end users: (i) a dynamic channel assignment
algorithm, TurboCA, that adjusts to frequent RF condition changes,
and (ii) a novel approach, FastACK, that improves the end-to-end per-
formance of TCP traversing high-throughput wireless links. Finally,
we evaluate TurboCA with metrics taken from a variety of real-world
networks and evaluate TCP performance of FastACK with extensive
testbed experiments.
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1 INTRODUCTION
Wireless networks continue to grow at a prolific rate and have become
the communication medium of choice in enterprise environments,
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including offices, campus, hospitality, and retail. A recent report [3]
predicted that by 2020, 20 billion devices will be online and ex-
tensively using the wireless medium for data transfer. Further, [6]
estimates that 1.53 ZB of data will be transferred over-the-air as a
result. However, allocation of unlicensed spectrum has not increased
as quickly as demand, making it a precious commodity.

Several researchers [20, 30, 36, 44] in the past have studied
isolated wireless networks and their behavior, proposing protocols
and methodologies intended to improve the performance of wireless
networks under various settings. While their work has improved
our understanding of wireless network behavior, there are very
few studies across numerous varying environments in real-world
deployments.

Further, the introduction of 802.11ac has led to rapid adoption
of devices capable of achieving gigabit data rates over the air. This
not only changes, but also defies some of our assumptions regarding
performance of enterprise wireless networks in the wild. A previous
study [18] presented measurement aspects with a holistic view
of networks. In this paper, we look at wireless networks from a
performance perspective. We argue that it is necessary to redesign a
few fundamental knobs in order to ensure high performance.

The Meraki system provides a unique vantage point over a wide
range of network deployments owing to its cloud-based management
architecture. The Meraki backend system polls each Meraki AP
periodically to extract network information such as traffic usage,
channel utilization, client density, etc., which provides crucial insight
into the deployed network. This information is then written into a
database and can be accessed by network administrators through the
Meraki dashboard. This database has grown to contain information
drawn from millions of network devices, including APs, switches,
and gateway routers, and records billions of client devices. In this
paper, we focus on data from APs that are distributed geographically
over the mainland United States.

We collect data from tens of thousands of real-world operational
wireless networks and make the following observations:

• From a dataset consisting of 50 billion packets across a
hundred thousand APs, we look at the device, channel, density
and traffic trends in enterprise wireless networks at scale.
• Given the current spectrum trends, we identify the need for

changes in channel planning mechanisms, and make the case
for a new auto channel planning algorithm. We then study the
benefits observed after deploying the new solution in a few
real-world test networks.
• From the traffic trends, we also argue that TCP, as it is

implemented today, negatively interacts with performance
features in high-throughput wireless networks. By analyzing
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several key TCP parameters, we show that the end-to-end
performance of TCP is underwhelming when compared to
the high over-the-air performance that is achievable. We then
discuss a potential solution to close this gap, and compare it
against the baseline TCP in our performance lab setup.

The remainder of this paper is organized as follows: In section 2
we give an overview of Cisco Meraki architecture and our data
collection methodology. We then study wireless network behavior
by focusing on a few fundamental metrics in section 3. We focus on
the channel utilization and behavior seen in various deployments
in section 4, and then introduce a simple but effective automatic
channel planning mechanism. We study traffic behavior, in particular
the performance of TCP streams in the presence of 802.11 wireless
links in section 5, and introduce TCP FastACK, which can improve
the performance of TCP over 802.11 links. Finally, we conclude in
section 6.

2 SYSTEM ARCHITECTURE
2.1 Overview
The Cisco Meraki system consists of wireless APs deployed at
customer sites, a back-end subsystem hosted in data centers deployed
at various geographic locations, and a front-end web user interface for
network management. Individual APs are grouped into deployments
called networks and multiple networks can be managed by a single
organization. Each wireless AP either utilizes an Ethernet uplink
(gateway mode) or automatically meshes with nearby APs (repeater
mode). This paper focuses on gateway APs.

APs use an encrypted tunnel to communicate with the Meraki
back-end, from which they download configuration parameters. These
parameters are generated based both on user input in the front-end
UI as well as centralized algorithms in the back-end, e.g. in the case
of automatic channel assignment.

The back-end subsystem also collects real-time and periodic
statistics from APs, stores the statistics in a time-series database,
post-processes this data, and generates automated reports. The front-
end UI displays collected statistics for clients, APs, and networks
based on user requests.

Wireless client devices (laptops, mobile phones, &c.) discover
and associate with APs, which relay wireless traffic between the
client and the local wired network. Client traffic does not go through
the back-end subsystem.

All Meraki hardware platforms incorporate at least one 802.11
radio. Most models contain additional radios for multi-band opera-
tion, scanning, or alternative protocols. Most models (including all
802.11ac APs) are equipped with a single-antenna scanning radio,
which scans all available channels over 150 ms intervals, gathering
neighbor and channel information. All APs run the Linux kernel, with
proprietary vendor radio drivers and the Click Modular Router [29]
for packet processing. Various aspects of 802.11 are implemented in
the wireless driver, Click, and third-party software, e.g. hostapd for
configuration, advertisement, and authorization.

Because 802.11ac radios are able to process packets at Very
High Throughput (VHT), the radio itself is often programmable and
timing-sensitive features are implemented in microcode, which is a
black box from Meraki’s perspective. Some platforms also support
offload features that allow packets to bypass the host CPU processing

altogether, increasing performance at the expense of flexibility. This
means that features critical for high performance (frame aggregation,
power save, bit rate selection, &.) are inaccessible without significant
vendor interaction.

2.2 Data Collection Methodology
Each Meraki AP keeps track of various statistics about itself, client
devices associated to it, and the RF environment. Some statistics are
only stored in memory. Others are sent to backend, which aggregates
raw data and stores the results in a time-series database called
LittleTable [42]. For the network behavior study, we leverage the
ability of Meraki’s cloud to collect live statistics from APs in addition
to querying historical data.

3 WIRELESS BEHAVIOR
3.1 Related Work
Past wireless measurement work is significant. Customized firmware
and hardware [36, 44] has been developed to accurately monitor
802.11 characteristics. Passive monitoring [20, 30] uses additional
hardware sniffers to understand the wireless environment and does not
require modifications to existing network infrastructure. However,
these custom deployments can only be evaluated at small-scale
without the help from industry. WiFiSeer [45] presents a campus-
level measurement study over 47,000 unique clients by using a
practical software approach. They conclude that using RSSI to
select AP is inadequate and develop ML algorithms based on radio
factors (e.g. channel utilization) to choose a low-latency AP. It
requires the client device to pre-install their software to obtain the AP
recommendation. Our previous work [18] studied enterprise wireless
networks at a large scale for the first time. This paper focuses more
on metrics related to performance and provides insights on how
to improve performance. BeHop [51] is presented as a testbed for
characterizing dense networks and relies on TCP latency as a key
metric, showing the effect of band-steering on this measurement.

3.2 Network Trends
In our measurement-based study, we look at trends in several key
categories, including capabilities of both access points and client
devices, channel utilization on both 2.4 GHz and 5 GHz bands,
network density with respect to access points and client devices, as
well as traffic characteristics.

3.2.1 Device Trends. For better understanding, we classify the
device trends by looking at both access points and clients separately.
Access Point Perspective: Meraki manages several million APs in
a variety of enterprise deployments. Because these devices regularly
check in to the back-end, we are able to tell how many APs are active
at any given time. World-wide, roughly 52% of active Meraki APs
are 802.11ac, 47% are 802.11n, and 1% are 802.11g. We expect the
percentage of 802.11ac APs to continue increasing rapidly before
newer 802.11 standards will be adopted by the enterprise wireless
market. Of all the APs, fewer than 1% have a single antenna chain,
73% have two, 24% have three, and 2% have four. Meraki APs are
deployed indoors 93% of the time vs. 7% outdoors.
Client Device Perspective: Figure 1 shows the trend in capabilities
advertised to the APs by 1.7 million client devices. Since 2015 [18],
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802.11ac-capable clients have grown significantly, from 18% to 46%
of devices, corresponding with an increase in the number of devices
that can utilize 40 MHz and 80 MHz channel widths. Surprisingly,
the relative number of devices supporting 2.4 GHz but not 5 GHz
has remained steady at around 40%. Number of devices supporting
2-stream MIMO has increased from 19% to 37%.

Figure 1: Advertised client capabilities

3.2.2 Channel Trends. Figure 2 tracks channel utilization trends
for enterprise networks in both 2.4 GHz and 5 GHz. We first consider
all APs in networks with at least 10 APs, which shows a median
utilization of 20% for 2.4 GHz and 3% for 5 GHz; this is similar to
the trend in [18], where we observed median utilization of 22% on
2.4 GHz band and 2% on 5 GHz band. It is important to note that
utilization depends on actual deployment scenarios. As a comparison
we collect the information from Meraki HQ office network as a single
office network where we have around 31 – 35 APs and 300 – 400
clients in a floor during regular office hours. We see dramatically
higher numbers with median utilization at 82% for 2.4 GHz and 23%
for 5 GHz. This suggests an effective channel assignment algorithm
is critical for network capacity in high density deployments.
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Figure 2: CDF of utilization seen by APs in networks with 10 or
more APs vs. Meraki HQ office

3.2.3 Network Density Trends. Network density is a good way
to gauge medium interference, and we look at the density numbers
for both the APs and client devices.
Access Point Density: For any AP, there may be other APs within
transmission range on the same channel, which we label interferers

and show in Figure 3. On 2.4 GHz, APs see a median of 7 interferers
and 90% see fewer than 29. On 5 GHz, it is less crowded, with a
median of 5 and 90% seeing fewer than 14.
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Figure 3: CDF of interfering APs

Client Density: To measure client density we selected a 1000 net-
works, each with more than 10 active 802.11ac APs, comprising
41,000 APs in total. We then record the maximum number of associ-
ated clients for each AP in March 2017.

Of these APs, 33% had a client density of 5 or fewer, 22% had a
density of 6–10, 20% had a density of 11–20, and 25% had a density
of 21 or greater. The most heavily loaded AP in the data set had 338
unique, associated clients.

3.2.4 Traffic Trends. To understand traffic trends, we inspect
packet-level details which provide insight into access categories and
bit rate usage seen in real-world deployments.
Quality of Service: The 802.11e standard defines four separate
Access Categories (ACs), which affect how aggressively an AP
should attempt to transmit a frame. From least to most aggressive,
the ACs are Background (BK), Best Effort (BE), Video (VI), and
Voice (VO). Frames in a more aggressive AC have faster, longer access
to the medium but also exhaust retry attempts more quickly. The AC
is often mapped from other QoS markings, typically Differentiated
Services Code Point (DSCP) bits in an IP header.

Figure 4 describes the latency experienced by packets in different
ACs. Here, the latency is the time interval between transmission of a
frame and reception of its link layer acknowledgment. Overall, we
see 14% BK traffic and 86% BE, with little use of VI and VO. This
varies greatly among deployments and depends on gateway routers
to set or preserve DSCP marks.1In a specific but typical enterprise
office environment, we found 10% VO and 90% BE with little BK or
VI in the middle of a work day.We also note the lack of significant
VI or VO traffic in the field, and our intuition is that incorrect DSCP
markings by the upstream devices are the root cause of this.

Each AC experiences loss differently, where loss means failure
after exhausting retransmission attempts. In this data set, 5.0% of
BK packets were lost, 2.7% of BE, 0.2% of VI, & 0.9% of VO, with
overall loss of 3.0%.
Bit Rate Usage: Wireless standards specify sets of rates at which
data may be transmitted over-the-air, dependent upon hardware
1If clients set DSCP marks on uplink traffic, Meraki APs can be configured to mirror
that same mark on the downlink.
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capabilities and signal quality. The rate of a transmission is important
because it inversely affects the total air time of a transmission. Bit
rate can be increased in various ways, often with trade-offs. Utilizing
a wider channel comes at the expense of spectrum contention and
spreads power across the channel. Denser modulations both require
better linearity in the power amplifier, resulting in lower gain and
therefore shorter range, and are subject to higher bit-error rates.
Multiple streams require a better signal-to-noise ratio and good
spatial diversity. As the bit rate increases, the chance of additional
latency due to retransmission or loss increases. Bit rate selection
algorithms are expected to adapt to changing conditions and have
been extensively studied [47, 49]. With 80% of clients supporting

Figure 4: Latency experienced by Access Category

40MHz channels and 36% supporting 2 streams, typical 802.11n/ac
clients will have maximum bit rates of 300 Mbps and 867 Mbps
respectively.2Figure 5 shows bit rate usage for all the clients in the
field over the course of one day over the 5 GHz band, with most rates
between 256–512 Mbps.

In Section 4.6.2, we argue for bit rate usage as a metric for network
performance.

Figure 5: Bit rate distribution for all clients in the 5 GHz band

4 AUTO-CHANNEL ASSIGNMENT
As 802.11ac devices become more widely deployed, channel as-
signment becomes more complicated. In this section we examine
the challenges of developing an efficient and practical automatic
channel assignment solution. We then present our solution, TurboCA,
deployed in late 2016, and evaluate its performance in large networks
(university & museum).

2Assuming a short guard interval (SGI) of 400ns.

4.1 What’s new in 802.11ac
4.1.1 Extended Channel Width. One major improvement in re-

cent 802.11 standards is channel bonding. With no spectrum con-
tention, wider channels generally imply higher potential throughput
due to increased capacity. The 802.11n standard allows two adja-
cent 20MHz channels to be bonded into a single 40MHz channel.
Continuing this trend, 802.11ac allows for 80MHz, 160MHz, and
80+80MHz (non-adjacent) configurations.

In the US, the Federal Communications Commission [2] currently
allows unlicensed use of twenty-five 20MHz, twelve 40MHz, six
80MHz, and two 160MHz channels in 5 GHz bands. In contrast, only
3 non-overlapping are available in the 2.4 GHz. The 8× difference
in available spectrum and the flexibility in choosing channel width
greatly increases the complexity of channel assignment.

Higher potential throughput comes at the expense of contention.
For an 80MHz transmission, interference on any of the four 20MHz
sub-channels can causes contention or corruption. Examining 80MHz-
capable APs in our deployments, Table 1 shows that 34% are manually
configured to decrease the channel width. For networks with more
than 10 APs, 37% have had administrators decrease channel width
for the entire network.

Channel Width All APs Large Networks(> 10 APs)
20MHz 14.9% 17.3%
40MHz 19.1% 19.4%
80MHz 66.0% 63.3%

Table 1: Channel width for individual 802.11ac APs and for
large networks, prior to TurboCA auto-channel assignment

4.1.2 Virtual Carrier Sense. It is well known that neighboring
APs on overlapping channels not only increase medium access
contention but can also introduce the hidden node problem [19].
To mitigate this, 802.11 provides request to send, clear to send
(RTS/CTS) as a virtual carrier sense mechanism.

With RTS/CTS, nearby APs operating on overlapping channels
would ideally share the wireless medium, with each consuming a
fair share of the airtime. This behavior, verified in Section 5.6.3,
motivates us to model the performance of such APs in Section 4.4.

4.2 Related Work
Channel assignment has been extensively studied in the literature.
[21] provides an survey on some of proposed approaches. They
can be broadly divided into following categories: (i) Centralized
Approaches [8, 17, 24, 37, 39, 44, 48]. They rely on a central WLAN
controller to perform channel assignment. For example, PIE [44]
presents online interference estimation by collecting information
from the various APs to a WLAN controller and infer the interfering
patterns. (ii) Decentralized Approaches [7, 23, 28, 31, 38]. In these
approaches, an AP selects the channel itself by using information
from its neighbors. A key limitation of these approaches is that
they do not allow for lightly loaded APs to give up good-quality
channels for overall network optimization. (iii) Channel Hopping
Approaches [10, 16, 22, 32, 46, 50]. In this scheme, APs hop between
different channels based on a hopping sequence. The benefit is that
it could utilize channel diversity and prevent an AP from getting
stuck in a low throughput channel. However, the limitation is that
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it needs accurate knowledge of interfering APs and their traffic
dynamic to be effective. Deciding on a hopping sequence in advance
without this information is undesirable. While IQ-Hopping [16] takes
into account these considerations, it does not take into account the
side effects associated with a channel switch. (iv) Flexible Channel
Widths Approaches [11, 34, 41]. Flexible channelization gives each
transmission the flexibility of choosing center frequency and channel
width. If not designed carefully, it could incur significant overhead.

4.3 Motivation for TurboCA
Several channel assignment solutions have been proposed over the
past decade. In realistic deployments, we found that they fell short of
Meraki’s need for an efficient, high-speed, channel-bonding aware
automatic assignment algorithm.

Figure 6: 802.11ac 3x3 AP snapshot in an office environment

4.3.1 Performance vs. Stability. Figure. 6 shows a snapshot of an
802.11ac AP with three antennas, placed at Meraki HQ, operating
on channel 36 with 20MHz width, taken on a weekday. While the
number of associated clients passing traffic change gradually during
the day, both data-usage and channel utilization change more rapidly.
For example, around 2:00pm, there is a sudden burst of traffic for 30
minutes. This coincides with a spike in channel utilization. A good
channel assignment scheme should be able to react to such events.

Such trends are typical and not anomalies in today’s networks.
Network usage depends on user demands, which is hard to predict.
Events over the course of the day can affect the location of devices,
and therefore wireless conditions. During lunch, a cafeteria is likely to
experience higher load. Network usage is likely higher in a conference
room when a meeting is in progress. In a school, the network trends
are likely to correlate with class schedules and enrollment.

Because conditions that affect the performance of a network can
change rapidly, we believe that a channel assignment algorithm
that adapts to RF changes frequently is necessary to ensure good
real-world performance.

On the other hand, it is unrealistic to react to channel conditions
instantly, since channel changes can disrupt client traffic. Without
a notification that an AP is changing channels, clients have to first
detect that the AP is no longer responding, then go through a scanning
process to find an appropriate AP and re-associate3. Our tests show

that this process usually takes around 5 seconds for laptops, and
around 8 seconds for mobile devices. This can be especially disruptive
for latency-sensitive applications, like Voice-over-IP.

To reduce the overhead of switching channels, 802.11h standard-
izes Channel Switch Announcements (CSAs). Prior to a channel
switch, the AP broadcasts several beacons announcing it’s intention
to move to a target channel. Clients can then follow the AP to the
target channel without scanning. Unfortunately, not all clients re-
spond to CSAs and the beacons might be missed even by clients that
do support CSAs4. Thus, a goal of TurboCA is to avoid too many
channel switches.

4.3.2 Optimality vs. Complexity. Suppose there are k available
channels and n APs. The number of all possible channel assignments
is kn . It is well known that channel assignment can be modeled as
a graph coloring problem, which is NP-complete, so any practical
solution has to be a heuristic solution. A greedy approach is straight-
forward. All APs choose a best channel sequentially, which can result
in a locally optimal solution for any single AP. However, there may
be a better network-wide (globally optimal) solution.

For example, assume two APs, A and B, are near each other and
only channels 36 and 149 are available. Initially both channels are
clean, i.e. low interference, A is on channel 36, and B is on channel
149. Then an interferer close to B (but not A) starts operating on
channel 149. With sequential assignment,A may still choose channel
36, to avoid channel switch. To avoid interfering with A, B continues
choosing channel 149. Each AP sees this assignment as locally
optimal. However, considering the whole network, a globally optimal
assignment is A on channel 149 and B on channel 36.

This limitation exists for all distributed channel assignment ap-
proaches. Even with a centralized approach, it is still impractical to
search the entire solution space, so we must balance the optimality
of channel plan and the computational overhead of the algorithm.

4.4 System Design
In this section we present the design and architecture of TurboCA. The
Meraki back-end system collects the required data from all the APs
periodically, including neighbor reports, channel utilization, traffic
load, clients capability, etc. The TurboCA service then generates a
new channel plan, both periodically and event-based, and delivers
the updated configuration to the participating APs. Fundamentally,
TurboCA treats each network as a unit.

4.4.1 Performance Metrics. First, we present two metrics used
byTurboCA : (i) NodeP and (ii) NetP . (i) represents the effectiveness
of a single AP with a potential channel assignment. A higher value
of NodeP implies that the clients associating to this AP will have
a better wireless experience. (ii) is the target function of the entire
TurboCA algorithm over the entire network. Higher values imply
that the network has a better channel assignment. We now explain
these metrics in more detail.

3802.11k Neighbor Reports may reduce the need to scan by providing a good heuristic
for nearby APs in the same network.
4Other steering mechanisms exist but also require client support.
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NodeP(c, cw): estimates the performance on channel c with channel
width cw as:

NodeP(c, cw) =
cw∏

b=20MHz

channel_metric(c,b)load (b)

where

channel_metric(c,b) = [airtime(c,b) × capacity(c,b)]− penaltyc

airtime(c,b) represents the estimated proportion of airtime an
AP can expect on channel c with channel width b and is calculated
based on the channel utilization and the neighboring APs’ reports.
capacity(c,b) of channel c is estimated using the channel quality, non-
wifi interference, and channel width b. load(b) represents the weight
of the channel_metric. It is proportional to the number of associated
clients with maximum channel widthb and their corresponding usage.
penaltyc is used to characterize the negative effect associated clients
experience on switching to channel c. It is channel and hardware
related. For example, for 2.4 GHz radios, since many client devices
do not support CSA, penalty is set to a very high value to avoid
disassociation for connected clients.

NodeP has two important properties; (i) If channel c is heavily
utilized or there are many neighboring APs on the same channel,
NodeP will quickly approach 0. (ii) If associated clients do not
support wider channel widths, NodeP will not increase for wider
channels. In this case, an AP can avoid adjusting its channel width
according to the clients’ capabilities.
NetP : estimates overall network performance and is the product of
NodeP over the entire setV of APs in the network, given a proposed
channel plan.

NetP =
∏
v ∈V

NodeP

These performance functions provide several benefits. First, the
metric prefers to assign wider channels to APs with higher client
density and usage. This encourages enhanced wireless experience
for each connected client. Further, by incorporating penalty, APs
with few/zero associated clients are more likely to change channel
to achieve neighbor channel isolation. Second, single node failure
is avoided. If spectrum coverage or the total network throughput is
the performance function, it is easy to have a high metric despite
assigning poor channels to several APs. In contrast, NetP will
approach 0 as a single NodeP approaches 0.

4.4.2 AP Channel Calculation (ACC). The AP Channel Calcu-
lation (ACC(v,ψ )) is the basic channel computation in TurboCA. It
produces a channel assignment for a target AP v that maximizes
NetP . Since the only potential channel switch is forv, NodeP is only
affected for n and it’s neighbors.

The parameterψ denotes a set of APs thatACC should not consider
in the current calculation. By ignoring the current channel of these
APs, in essence presuming a channel change, TurboCA avoids locally
optimal solutions as mentioned in 4.3.2.

4.4.3 Network Basic Operation (NBO). Network Basic Operation
(NBO) is an operation (Algorithm 1) in TurboCA that iterates through
the entire AP setV , once to perform the channel assignment. It takes
the scan results, current channel assignment and load information
as the input and uses parameter i to determine how much the new

assignment is affected by the current channel assignment. Initially,
NBO starts with no assignments in the proposed channel plan (PCP).
At each step, NBO picks a random AP without a assignment in the
PCP (line 4) and forms a candidate set of nodes (CSN) up to i hops
away, also without PCP assignment. The algorithm then randomly
removes a node n from the CSN and adds ACC(n,CSN ) to the PCP
(line 10) until the CSN is empty.

Algorithm 1: Network Basic Operation
1 Input: Scanning results, current load for all APs in the network, current

channel plan, hop limit i .

2 S ← V , PCP ← ϕ // whole network AP set
3 while S , ϕ do
4 Randomly pick AP n ∈ S
5 Sдroup ← n and APs within i hops of n
6 S ← S − Sдroup
7 while Sдroup , ϕ do
8 Randomly pick AP m ∈ Sдroup
9 Sдroup ← Sдroup − {m }

10 PCP ← PCP ∪ {(m, ACC(m, Sдroup ))}
11 endwhile
12 endwhile

13 Output: PCP : A proposed channel plan for all APs in the network

The hop limit i controls how much the new assignment is affected
by the initial assignment. If i = 0, NBO iterates over all APs, and
assigns a channel for each AP considering only it’s interfering neigh-
bors, in effect considering all initial neighboring channel assignments.
However, if i is sufficiently large, the first Sдroup includes all the
APs, and their initial channel assignment is completely ignored.

When i > 0, the first AP evaluated by ACC has the chance to pick
a relatively clean channel. More generally, it allows NBO to assign
better channels to APs evaluated earlier in the process. Therefore, the
probability of picking any AP (line 8) is weighted proportionally to
the load on that AP to encourage better assignment to more heavily
loaded APs.

4.4.4 Run-Time Schedule. As mentioned in Section 4.3.1, one
of the biggest challenges of TurboCA is maintaining a mostly sta-
ble channel assignment while increasing the frequency of channel
assignment computation. To achieve this, TurboCA runs multiple
rounds of NBO and picks the best proposed channel plan. The actual
number of runs is proportional to the network size. Whenever a
single run of NBO increases NetP , the new proposed channel plan
replaces the assigned channel plan for the following rounds.

In practice, we run NBO with different i values on different
schedules. By default we run NBO with i = 0 every 15 minutes.
Every 3 hours, we run NBO with i = 1 followed by i = 0. Once a
day, we run i = 2, then i = 1, then i = 0. This allows TurboCA to
adapt to volatile channel conditions within 15 minutes. The longer
schedules avoid getting stuck in local optima.

All schedules end with i = 0, since that guarantees that NetP will
increase unless a local optimum is found in previous rounds. When
a local optimum is found in i > 0, we are able to avoid unnecessary
channel switches in the final round.
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4.5 Practical Deployment Issues
4.5.1 5 GHz band vs. 2.4 GHz band. TurboCA manages both 5

GHz and 2.4 GHz channel planning. Though there are many more
available channels for 5 GHz band, higher utilization in 2.4 GHz
results in more channel switches on that band. When utilization is
above 90%, even small variations can reduce NetP by half. TurboCA
adds a relatively large channel switch penalty to theNodeP expression
in such cases.

4.5.2 DFS Channels. Many of the available 5 GHz channels are
subjected to Dynamic Frequency Selection (DFS) and users must
vacate the channel if radar signals are detected during operation.
Furthermore, access points on DFS channels must perform a 1-
minute Channel Availability Check (CAC) before transmitting. In the
US, devices not certified for DFS have only nine 20MHz channels,
four 40MHz, two 80MHz, and zero 160MHz channels to choose
from, increasing the difficulty of selecting a good channel plan.

We have added several features regarding the DFS channel assign-
ment. First, no AP can switch to a DFS channel if there are connected
clients. This prevents clients from having to wait for the AP to com-
plete CAC. Second, since radar events on DFS channels mandate a
channel switch, TurboCA maintains an appropriate fallback channel
setting whenever an AP is using a DFS channel.

4.6 Evaluation
In this section, we evaluate the performance of TurboCA as observed
from our experience in large real-word deployments.

4.6.1 Data Set. Prior to TurboCA deployment, Meraki used an-
other dynamic channel assignment service referred to as ReservedCA
here. The data collection process is similar to TurboCA, capturing
both the neighbor information and channel utilization data. The key
difference lies in the operation of the main algorithm. ReservedCA
iterates through all the APs in sequence. Based on channel qual-
ity, for each AP ReservedCA then computes a channel assignment
maximizing that AP’s isolated performance. Further, ReservedCA
only uses fixed channel widths, and re-evaluates the network every 5
hours.

We collect four different types of metrics: signal strength, usage,
TCP latency, and bit rate efficiency. We test both channel assignment
algorithms in two large deployments: UNet, a university campus
with ≈600 APs and 40,000 daily active users; and MNet, a national
museum with ≈300 APs and 10,000 daily active users. ReservedCA
is enabled on both networks on 03/25/17 and data is collected from
04/01/17 to 04/15/17. TurboCA is then enabled on 04/16/17, and data
is collected from 04/23/17 to 05/07/17. All the weekends data are
filtered out and the daily network wireless usage is relatively stable
within each network and period (refer to usage result in Section 4.6.2).
Although both algorithms can stabilize themselves within 1 day, we
still skip the first week of each algorithm for reliable comparison.

4.6.2 Results. To study the efficiency of TurboCA we look at
several key parameters like signal strength, data-usage, TCP latency
and bit rate selection.
Signal Strength: Received Signal Strength Indicator (RSSI) is a
commonly used measure of signal strength based on the power of
a signal as seen by the receiver5. However, a client might lower
transmission power intentionally, e.g. to improve linearity in the

amplifier or to increase battery life. This makes it hard to use RSSI
as an indicator for network health. Figure 7 shows separate hour-long
RSSI measurements from MNet on 5 GHz, during non-peak and
peak hours. We observe that the RSSI distribution is similar for both
peak and non-peak hours for different levels of RSSI. However, the
usage (not shown in the figure) doubled from 12GB during non-peak
hours to more than 25GB during peak-hours.This observation is
similar for both TurboCA and ReservedCA.

Figure 7: PDF of RSSI distribution at peak & non-peak hours

Usage: Aggregate throughput achieved under maximum load is
routinely used to measure network performance. However, in real-
world deployments, we cannot saturate the medium to measure
throughput. Instead, we rely on the observed data-usage during
a given time period. However, using usage as a metric towards
evaluating the efficacy of different network settings has two key
practical limitations: First, network usage is traffic-oriented and
therefore depends on client behavior. Second, the network uplink
often has significantly less capacity than the local network and ends
up being the limiting factor of achievable usage.

Table 2 records usage from UNet and MNet under both solutions:
ReservedCA and TurboCA. We calculate the daily usage variance
σdaily , and observe that it is relatively small in all the scenarios
and both networks show similar daily network usage with different
algorithms. Peak hour usage at UNet is also similar since its usage is
limited by the network uplink setting most of the time. However, at
MNet we observe that the usage is not limited by the uplink capacity,
and consequently notice that TurboCA improves the usage by 27%
over ReservedCA.

Network ReservedCA TurboCA

Daily σdaily Peak Daily σdaily Peak

UNet 11.3 0.830 0.584 10.7 0.396 0.542
MNet 0.562 0.171 0.0588 0.564 0.142 0.0748

Table 2: Daily and peak hour average usage (TB)

TCP Latency: TCP latency has been evaluated as a metric for
network performance [51]. It is measured at the AP as the interval
between processing a TCP data packet and processing the correspond-
ing TCP ACK. Figure 8 shows the change in latency distribution
at MNet. With TurboCA, the median latency drops by 40% when
5Received Channel Power Indicator (RCPI) [1] is an attempt to standardize power-based
signal strength
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compared to ReservedCA. Similar results are seen at UNet. Lower
TCP latency implies that APs and clients experience less contention
for wireless medium, suggesting TurboCA improves efficiency of
medium usage and therefore overall network capacity. Another obser-
vation from the result is that the distribution of latency over 400ms
is similar for both TurboCA and ReservedCA. This occurs as certain
client devices have arbitrarily become slow/non-responsive to the
AP while being connected. We believe this is an orthogonal problem
with no relation to medium availability and are investigating this as
part of another ongoing issue.

Figure 8: CDF of TCP latency distribution

Bit Rate Efficiency: Unlike RSSI or RCPI, bit rate usage can be
measured at the transmitter. Successful transmissions at high bit rates
are desirable to improve the medium efficiency. Enterprise networks
often experience downlink-dominated traffic, so the bit rates selected
by an AP directly affects network performance as perceived by the
client in the current environment.

Since bit rate selection depends on client and AP capabilities
amongst other factors like channel quality, distance, etc., we normal-
ize recorded rates by the maximum possible rate supported by both
for a particular association and call this metric: bit rate efficiency.
Figure 9 plots this metric as a CDF and it shows that TurboCA
achieves a 15% gain in bit rate efficiency at MNet. We observe a
similar trend at UNet and omit the graph for brevity. Based on this
evidence, we again infer that TurboCA is able to reduce medium
contention, thus enabling both the APs and clients to use higher bit
rates.

Besides demonstrating the improvement of TurboCA over Re-
servedCA, our results suggest that TCP latency and bit rate efficiency
offer key insight into network performance, as compared to more
commonly used indicators of usage and signal strength, especially in
real-world deployments.

Figure 9: CDF of bit rate efficiency

4.7 Discussion
While there has been significant work in the area of channel as-
signment, evaluating those works against TurboCA in production
networks is not practical. The key reason is that most existing work
focuses directly on the optimality of the channel assignment itself,
rather than overall stability [21]. Also, as discussed in section 4.5,
practical considerations like frequent channel switches and regula-
tory challenges make it hard to deploy existing solutions in real-word
networks. Further, Meraki being an enterprise networking company,
we direct our focus primarily to large-scale networks with potentially
hundreds of APs. Replicating such a setup in a lab environment is
not a viable solution either. As a result, we do not have a quantifiable
comparison of TurboCA against some of the works in literature.
Having said that, we have detailed some of these works in Section 4.2
and our reasons for a new approach. Further, it will be an exaggeration
to suggest that TurboCA is the most optimal channel assignment
solution for all scenarios. It is important to consider that the nature
of our deployments coupled with our system architecture played a
critical role in the design of TurboCA. While we understand that
throughput optimality is the objective of most proposed approaches,
with the inherent dynamic nature of network demand and wireless
environment such optimality is transient and will soon disappear.
Continued iterations to follow the optimal assignment at any moment
is likely to sacrifice the stability of any ongoing transmissions. We
instead believe TurboCA should focus on overall client experience
and the balance between the network performance and stability.

5 TCP FASTACK
With the continuous adoption of high-speed wireless standards like
802.11ac, the interaction between wireless links and TCP needs to
be reconsidered. In this section, we explain the need for this and
propose a mechanism towards improving the performance of TCP
atop 802.11ac wireless networks.

5.1 The Problem of TCP over 802.11ac
TCP is a self-clocking protocol, i.e. data is generated by the TCP
sender when the corresponding TCP acknowledgement (ACK) is
received from the client, and vice-versa [25]. On the wireless link,
802.11 mandates the use of Carrier-Sense Medium Access with
Collision Avoidance (CSMA/CA) as the channel access mechanism.
In practice this means that TCP ACKs, like TCP data, have to contend
for the medium prior to transmission.

Since gaining access to the wireless medium is so expensive,
high-speed wireless protocols like 802.11ac rely heavily on packet
aggregation to achieve high performance, i.e. the ability to amortize
overhead by sending more than one packet6on a transmit opportunity.
In 802.11, there are two types of aggregation: A-MPDU (Aggregate
MAC Protocol Data Unit) and A-MSDU (Aggregate MAC Service
Data Unit). In practice, A-MPDUs are the primary factor in reducing
CSMA/CA overhead and are required by 802.11ac. We therefore
focus on A-MPDUs here and refer to the number of individual packets
in an A-MPDU frame as the aggregate size.

There are three major problems in achieving large aggregates for
TCP data traffic. First, a transmitter must queue packets destined for

6802.11ac wave-2 allows up to 5.3ms worth of data in a single transmission.
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the same receiver7, inducing latency. Due to the additional TCP ACK
latency variation over wireless links, and the self clocking aspect of
TCP senders, the sender releases its subsequent data segments with
similar latency variations. In turn, this results in the formation of
small aggregates at the 802.11 layer, negatively impacting airtime
efficiency of the wireless medium. This results in poor utilization,
widening the gap between achievable and actual end-to-end TCP
throughput.

Second, in multi-client scenarios, airtime efficiency is impacted by
medium access contention faced by the TCP ACKs. This manifests
as additional variation in latency experienced at the TCP sender,
further inhibiting the achieved aggregation size. Figure 10 shows
that for a moderately busy network (25 clients), it takes 85 ms on
average for TCP ACKs to arrive at the sender. We have found that
many client devices take over 2 ms to even begin transmitting TCP
ACKs. Section 3.2.3 shows evidence of increasing network density.
This, combined with increasing adoption of 802.11ac, calls for a new
mechanism to achieve high TCP throughput over the air.

Third, TCP congestion control treats latency spikes as loss; when
loss is detected, the congestion window shrinks in order to avoid
overwhelming the network. Aggregation by the receiver causes bursts
of TCP ACKs at the sender, narrowing the acceptable variation
in latency before loss is assumed. Wireless latency variation is
affected by fluctuating channel conditions, making it more likely
that TCP congestion control will back off erroneously, reducing
performance and hurting aggregation. Section 5.6.2 quantifies the
achieved aggregation in our testbed.

Figure 10: 802.11 latency vs. TCP latency

5.2 FastACK: Key Idea
The 802.11 standard mandates the use of layer-2 (MAC) acknowledge-
ments (ACKs) and provides a mechanism for transmitting multiple
packet ACKs in a single wireless frame. Both types are collectively
referred to as 802.11 ACKs here and apply to individual packets, not
the wireless frame itself. They indicate that an individual data packet
was received correctly at the 802.11 layer, even in the presence of
corruption affecting other packets in the aggregate.

Unlike TCP ACKs, CSMA/CA protects 802.11 ACKs, which
do not contend for the wireless medium. Receivers respond with
802.11 ACKs after a Short Interframe Space (SIFS) delay.8Figure 10
compares the mean 802.11 latency vs. TCP latency in a testbed
with a varied numbers of traffic-generating clients. 802.11 latency
is measured as the interval between receiving a packet on the wire

7We use TCP receiver and wireless client interchangeably.

and receipt of an 802.11 ACK for that packet; this includes delay
due to queuing, media contention, and retransmission. TCP latency
measurement is described in Section 4.6.2.

We make two observations here. First, TCP latency is much higher
than 802.11 latency, by up to 75% for 30 clients. Second, as the
number of clients increase, the gap between 802.11 latency and TCP
latency increases due to increased medium contention experienced
by TCP ACKs from clients.

We propose that receiving of an 802.11 ACK is a reliable hint
that the corresponding TCP segments will eventually be processed
by the receiver’s transport layer. On receipt of an 802.11 ACK from
the wireless client, the AP will proactively generate a fake TCP ACK
on behalf of the TCP receiver, forwarding it to the TCP sender. This
results in the TCP ACKs arriving sooner at the sender, eliminating
the delay variation induced by medium contention at the receiver.
Since the receiver will still send a TCP ACK, these now-duplicate
TCP ACKs should be suppressed by the AP.

The TCP sender is thus shielded in the reverse direction from
the busy and unreliable wireless medium. The sender continues
to transmit TCP data, filling up the queues at the AP. Variation in
latency is also avoided, preventing the congestion window from
shrinking unnecessarily. This in turn allows an 802.11ac AP to form
larger aggregates, thereby increasing medium efficiency.

5.3 Related Work
Many techniques have been proposed to improve the performance
of TCP over wireless medium. Most were proposed more than
a decade ago, when there was significant mismatch between the
wired and wireless speeds. The split connection (or indirect-TCP)
approach [12, 13] involves splitting the TCP connection into two
separate connections. FastACK instead is much simpler9and does not
maintain any TCP retransmission timers. Unlike most proxy-based
architectures, FastACK maintains end-to-end flow control.

Like FastACK, [14, 40], and [33] also cache packets on the AP
and perform local retransmissions over wireless links. However,
unlike FastACK, their motivation is to mainly reduce end-to-end
TCP retransmissions. The work closest to ours is TCP-Snoop [14],
but the fundamental difference lies in the motivation. FastACK aims
to increase the aggregation achieved over the air, and leverages 802.11
ACKs as a hint for impending TCP ACKs. This is more aggressive
than TCP-Snoop which primarily aimed to hide the wireless losses
from affecting the TCP congestion window. While FastACK is
complimentary to the above techniques, the main motivation here
is to generate large aggregates, in order to take full advantage
of high-throughput wireless protocols like 802.11ac. FastACK is
also compatible with link-layer retransmission schemes [9, 27, 35].
Performance-enhancing proxies, such as ACK-spoofing [15], have
also been proposed in the context of satellite links. FastACK uses
a similar philosophy, but focuses on increasing aggregate size in
the context of high throughput wireless links. Finally, [43] details
the effects of greedy TCP receivers optimistically acknowledging
TCP data. While FastACK preemptively sends a TCP ACK based on
the 802.11 ACK, the techniques in [43] can be used against greedy
receivers when the TCP ACKs arrive later.

8SIFS is 10µs or 16µs based on the underlying 802.11 protocol.
9FastACK is ≈ 2k lines of code including additional handlers and debug switches.
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5.4 System Design
This section details the overall design for FastACK. We discuss the
case for TCP data flow and the case for 802.11 ACK flow.
TCP Data Flow: Figure 11 depicts the flow of TCP data through the
AP. For each packet, p, the corresponding flow entry is determined. A
decision is made to determine if the flow, f , is/should be fast-acked.10

The state, S , for f is initialized, if needed. Table 3 shows the state
information held. Depending on the sequence number of p, seqin ,
one of these four cases can occur (note that seqf ack < seqexp ):

(i) if (seqin < seqf ack ), then p is a spurious retransmission, and
it is simply dropped by the AP,

(ii) if (seqf ack <= seqin < seqexp ), then p is an end-to-end
retransmission from the TCP sender, in which case p is forwarded
after priority elevation to allow it to be transmitted before the other
packets at the head of the queue,

(iii) if (seqin == seqexp ), then p is inserted into the local retrans-
mission cache and forwarded downstream after updating S ,

(iv) if (seqin > seqexp ), it implies that a queue upstream of this
AP has dropped some packets. In this case, an entry is added to
holesvec indicating a TCP hole, followed by steps in (iii).

holesvec TCP holes vector
seqhiдh highest TCP data seqno seen
seqexp expected TCP data seqno from the sender
seqf ack last fast acked TCP data seqno by the AP
seqTCP last TCP data seqno ACKed at the TCP layer
qseq queue of TCP data seqno waiting to be fast-ACKed

Table 3: FastACK flow state information, S

Figure 11: TCP Data flow with FastACK

802.11 ACK Flow: The overall 802.11 ACK flow is show in Figure 12.
First, the 802.11 ACK, ack80211i is inspected to see if it corresponds to
a FastACK TCP flow. This can be achieved by mapping the ack80211i
to the data packet pi for which it was intended. If not, then normal

10This decision can be made based on the length of the f or alternatively every flow can
be marked as fast-acked.

processing resumes. Otherwise, both the flow information S, and
sequence number seqi are extracted from pi and sent to the FastACK
agent. seqi is the TCP sequence number corresponding to ack80211i .

FastACK agent then enqueues seqi into qseq , a queue maintained
at the AP which contains all the TCP sequence numbers acknowl-
edged at the 802.11 layer (but not fast-ACKed) in a contiguously
sorted order. This is required as 802.11 ACKs often arrive in a
non-contiguous order (i.e. client might acknowledge seqi and seqi+2,
but not seqi+1 immediately due to error in reception), but TCP
ACKs are cumulative11in nature. To ensure similar continuity before
fast-ACKing TCP data, FastACK compares seq0, the first entry in
qseq , with seqf ack , the last TCP data acknowledged at the 802.11
layer. A match ensures continuity, resulting in the AP sending a fast
ACK for seq0 + seqlen , where seqlen is the length (in bytes) of the
TCP data segment. Next, seq0 is removed from the qseq . This process
is then repeated over the other entries in qseq until the continuity is
broken, at which point we wait until the missing 802.11 ACKs arrive
from the wireless client.

Figure 12: 802.11 ACK flow with FastACK

TCP ACK flow: When a TCP ACK with sequence number seqTCP
is received by the AP from the client, the processing is much
simpler. Since the TCP ACK follows the 802.11 ACK and the
corresponding fast ACK has already been sent to the sender, this
TCP ACK is dropped by the AP. Further, the corresponding TCP
DATA segments acknowledged by it, i.e. all segments with sequence
numbers (seqi ≤ seqTCP ), are removed from FastACK agent’s
retransmission cache and the flow state S is updated.

11If a TCP ACK with seqi is received, then all segments up to seqi -1 are automatically
acknowledged.
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5.5 Implementation Details
Given the above design for FastACK, significant challenges emerge
in terms of the actual implementation, the most notable being:
• What is the TCP retransmission strategy? What is the role of

the retransmission cache?
• How to ensure that the TCP receiver does not run out of buffer

space?
• There might be multiple devices (e.g. switches) between the

actual TCP sender and the wireless AP, with varying buffer
space. This might result in packets getting dropped on the
intermittent devices, resulting in holes in the TCP sequence
numbers. How can the AP handle these holes effectively?
• How is client roaming handled when in the middle of a

FastACK TCP session?

5.5.1 Retransmission Strategy. There are 3 types of TCP retrans-
missions, (i) in response to duplicate acks, (ii) selective-ack based,
and (iii) timeout-based. In FastACK, (i) and (ii) are handled by the
FastACK agent on the AP, and (iii) by the TCP sender endpoint.
FastACK retransmissions. These are triggered by the FastACK
agent on the AP when it receives a duplicate ACK from the client,
and is the rationale behind having a retransmission cache at the AP.
The obvious question here is: "Why not let the TCP sender handle
these retransmissions?" The answer is two pronged. First, while the
802.11 ACK is a strong hint that the corresponding data segment
was received at the transport layer, it is not always the case.12

The receipt of an 802.11 ACK at the AP triggers it to send the
corresponding fast ACK to the TCP sender, thereby moving it past the
current sequence number. The client on the other hand would send a
duplicate ACK for this lost segment. This is a problem since the TCP
sender might not hold that packet anymore in its outgoing buffer,
thereby disrupting the TCP session. To avoid this, the FastACK agent
inserts each data packet into its local cache before forwarding it
downstream. A duplicate ACK from the client then triggers local
retransmissions from this cache, on behalf of the TCP sender. Second,
local retransmissions are cheaper (and low-overhead) as compared
to the end-to-end retransmissions. Further, it also avoids lowering
the congestion window of the TCP sender, and maintaining the high
end-to-end data flow.

Selective-ack based retransmissions are handled similarly by the
FastACK agent, by retransmitting the missing sequence numbers.
Timeout-based retransmissions. To reduce complexity, the Fas-
tACK agent does not maintain any retransmission timers and leaves
the timeout-based retransmissions to the TCP sender endpoint. The
only reason these retransmissions will occur is due to wireless loss.
If no 802.11 ACKs are received, then the FastACK agent will not
transmit any fast ACKs to the TCP sender. This might cause the
sender’s retransmission timer to timeout, resulting in end-to-end
retransmissions. This reduces the congestion window at the TCP
sender, resulting in fewer release of data packets. While this nega-
tively affects aggregation in the short term, we believe it is desirable
as the medium is not ideal for high throughput transmission.

5.5.2 TCP Receiver Window (rxwin ). The rxwin field in the TCP
ACKs from the wireless clients specifies the amount of buffer space
that they have for incoming packets. This translates to the amount of
12This behavior can be observed in client devices, e.g. Macbooks running BCM43XX.

data they can accept without sending an ACK back to the sender. If
the TCP sender transmits more data than advertised by rxwin , the
receiver will drop those packets due to buffer overflow, resulting
in poor performance. With FastACK, data packets from the TCP
sender are released at a rapid rate to fill up the driver queues to assist
aggregation. While this is the desired objective, it can lead to rxwin
overflow if not handled explicitly. The driver queues on the AP might
have outstanding packets, and including the unacknowledged bytes
(bytes in flight), could account for a large number of outstanding
bytes, outbytes , potentially exceeding rxwin . To avoid this, FastACK
agent at the AP advertises the modified rx ′win in the fast ACKs to
the TCP sender as follows,

rx ′win = rxwin − outbytes ,where
outbytes = seqhiдh − seqTCP

5.5.3 TCP Holes. While the TCP sender itself does not drop
(or skip over) any segments, gaps in TCP seqnum are observed at
the AP. This most likely implies some packets are getting dropped
en-route between the TCP sender and the AP. FastACK combats this
by emulating the wireless client and sending back a duplicate ACK
back to the TCP sender corresponding to the lost TCP segments. This
also avoids an end-to-end re-transmission later on, if this lost TCP
segment was discovered by the wireless client instead. The FastACK
agent can also use the selective acks option (if enabled) to ask for
specific segments.

5.5.4 Roaming. In enterprise networks, the ability for clients to
roam between APs without significant disruption to existing flows
is crucial. Many enterprises now rely on controller-less networks,
which complicates roaming in the presence of FastACK.

The local packet cache resolves the discrepancy between the state
of the TCP sender and the proxied TCP receiver. If an 802.11 ACK
from the client indicated that the packet would always be received by
the transport layer, the TCP sender might receive a duplicate ACK
originating from the roam-to AP in the worst case. As noted above,
this is not always the case. Therefore FastACK must implement a
mechanism to detect the roam and to transfer state from the roam-
from AP to the roam-to AP. This mechanism is outside the scope of
this paper and we omit it for brevity.

5.6 Evaluation
5.6.1 Methodology. Since FastACK has not been released yet

to customer networks, we do not currently have numbers for large
scale deployment. Having said that, we have exhaustively tested
the performance of FastACK in our performance testbed. Figure 13
shows the testbed map comprising of 2 APs and 40 clients, and
tries to mimic a realistic enterprise multi-client environment like
an office. Each of the client machines is a MacBook Pro equipped
with a 802.11ac wireless card supporting 3x3 MIMO, and running
OSX El Capitan . The AP supports 802.11ac wave-2 and 3x3 MIMO.
The TCP sender is connected to the AP via a MGig switch and is
a HP Compaq Elite 8300 machine with a 2.3 GHz CPU and 16
GB of RAM running Windows 7. We run all the performance tests
using ixChariot [4], which is a commonly used industry-wide live
network performance testing tool. We compare FastACK with the
TCP implementation running on the host and refer to it as TCP
Baseline.
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Figure 13: Testbed map
5.6.2 Micro-benchmarks. We focus on the effect of using Fas-

tACK on the resulting TCP congestion window and the achieved
802.11 aggregation size.
TCP congestion window: We use tcp_probe [5] to observe the
sender’s TCP congestion window cwnd. We associate 10 clients to
the AP, and run one TCP flow from sender to each wireless client.
Figure 14 shows the results. The key observation is that for baseline
TCP, not all flows increase cwnd to the maximum allowed value of
770 segments13. On the other hand, in FastACK, the cwnd for each
flow opens up quickly, which facilitates the release of data segments
from the TCP sender when fast ACKs arrive.

Figure 14: Comparison of TCP cwnd size

802.11 aggregation size: In this test, we associate 30 clients to the
same AP, and run one downlink flow to each client. We then extract
the average 802.11 aggregation achieved by each client and the result
is shown in Figure 15. We note that FastACK enables significantly
larger aggregate sizes ranging from 33 to 56, while baseline TCP’s
aggregation ranges from 17 to 41, an improvement of 36-94%. To
get an approximate upper bound, we evaluate aggregate sizes of
UDP traffic, owing to its connection-less characteristic. While we
predicted UDP would approach the maximum aggregation size14for
each flow, we suspect that limitations in the microcode running on
the radio prevented us from achieving that.

5.6.3 Testbed Results. In our testbed, we run FastACK and
compare against TCP baseline with varying number of clients. We
measure the performance for both single and multi-AP deployments.
Aggregate throughput: Figure 16 shows the throughput comparison
between baseline TCP and FastACK under varying number of
connected clients. We make the following observations. (i) FastACK
outperforms baseline TCP for each scenario, with throughput benefits
of up to 38%, (ii) both the aggregation achieved and the throughput
benefits improve in general as the number of associated clients
increase. The reason is that contention on the medium increases with
13OS default value
14A-MPDU will aggregate up to 64 packets in one frame.

Figure 15: Comparison of 802.11 aggregation size

the number of clients (seen in Figure 10), thus giving more room for
FastACK to improve upon.

Figure 16: Comparison of aggregate client throughput
Throughput fairness: We also evaluate the effect of FastACK on
throughput fairness when compared against baseline TCP. Figure 17
shows the throughput achieved by each of the clients in a 30 client test
instance. The clients are sorted in increasing order of their throughput
for ease of understanding. The figure shows that around 80% of the
clients achieve within 70% of the maximum throughput achieved
by the top-performing client. This compares favorably to baseline
TCP, where only 25% of the clients are in this bracket. The Jain’s
fairness index [26] is 0.94 for FastACK as compared to 0.88 for TCP
baseline. The reason for relatively low throughput for the lowest
performing clients is the low data rates served for these clients owing
to their distance from the AP. It is further interesting to note that the
fairness index for the top 80% of the clients is 0.99 for FastACK vs.
0.88 for TCP baseline. This shows that FastACK does not achieve
higher performance by greatly improving just a few clients, instead
increasing the performance of most clients.

Figure 17: Comparison of throughput fairness
Multi-AP deployment: In these tests, we consider the combined
throughput of multiple APs placed in the same collision domain.
Given the increasing density of networks, as seen in Section 3.2.3,
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this is a common scenario. We consider 2 APs here, with 10 clients
associated to each AP, and run the TCP performance tests. Both APs
are serving TCP traffic from a separate TCP sender, and are placed
on the same wireless channel so that they need to contend for the
medium using CSMA. We change the TCP algorithms on both the
APs, so that we have three tests cases: (i) both AP1 and AP2 run
baseline TCP, (ii) AP1 runs baseline TCP and AP2 runs FastACK,
and (iii) both AP1 and AP2 run FastACK. The resulting performance
is show in Figure 18.

We note that the performance improvement is highest when both
AP1 and AP2 are running FastACK, resulting in an average combined
throughput of 395 Mbps. Compared to (i) with an average throughput
of 251 Mbps, we see a net benefit of 51%.

Figure 18: Multi-AP deployment results

Note that FastACK does not suffer if enabled in isolation, as
shown in (iii). In fact, the throughput of AP2 (running FastACK)
improves from 132 Mbps to 240 Mbps, while AP1 (running baseline)
drops from 127 Mbps to 85 Mbps. Still, the combined network
performance increases to 325 Mbps, an improvement over (i). The
decrease in AP1’s throughput is attributed to better airtime utilization
by AP2 each time it gets a transmission opportunity. This shows the
FastACK-enabled APs experience significant uptick in throughput
even when the neighboring APs are running baseline TCP.

FastACK can be toggled at run-time and in our tests the perfor-
mance characteristics described above manifest within seconds.

5.7 Discussion
While there have been a few proposals made for improving perfor-
mance of TCP over the wireless medium, FastACK is, to the best of
our knowledge, the first mechanism that aims to improve aggregate
size. There are also further optimizations possible, especially related
to fairness among flows.

FastACK relies on 802.11 ACKs, which are sometimes inaccurate
due to idiosyncrasies in wireless drivers. This implies that at times,
an 802.11 ACK does not always imply an impending TCP ACK.
While we are yet to ascertain the root cause for this, we believe this
is a client driver bug15. As we have seen in our tests, this inaccuracy
causes unnecessary retransmissions. We expect these issues to be
fixed by wireless chipset vendors soon. Also, as wireless capacity
increases, the host CPU becomes a bottleneck between wired and
wireless. Hardware offload engines are a popular solution to this
problem but contain limited resources and are unlikely to implement
the full TCP stack required for split connection.

15In our setup, bad hints occur ≈ 1.5%.

FastACK also relies on packet inspection, and will not work when
payload is encrypted. However, in our networks, we do not currently
see an extensive use of encryption techniques like IPSec. FastACK
is also completely transparent to the TCP endpoints, requiring
no changes to either. It is currently running in our test networks
and will be deployed in production networks soon, where we will
measure its impact on key real-world metrics like TCP latency
and medium efficiency. We intend to release results under more
large-scale scenarios, once available.

6 CONCLUSION
Enterprise wireless networks continue to grow at a rapid rate and are
deployed under various scenarios. Large-scale studies focusing on
wireless behavior have been infrequent but we believe such an exercise
is imperative towards understanding network behavior as standards
evolve. Through the unique vantage point offered by Meraki, we note
the gradual shift towards high-speed wireless protocols like 802.11ac.
In the last two years, client support for wider channels has increased
significantly, enabling the capacity required to feed high-bandwidth
applications like video, voice, and gaming. While overall utilization
shows little variation from 2015, it can vary significantly between
various deployment scenarios. Networks are getting crowded, which
is reflected both by high per-AP associated client counts and also the
number of interferers seen by APs.

We argue that throughput alone is an insufficient and difficult
metric to measure, especially in large-scale deployments. We propose
using a variety of metrics, such as achieved bit rates and latency
experienced by different classes of traffic, as important indicators
to measure the health of the network. Based on our experience
deploying large-scale, enterprise networks, we also propose two
techniques towards improving performance.

First, we argue for a new auto-channel assignment algorithm
TurboCA, which results in lower TCP latency and improved bit rate
usage in the networks we have observed, as seen by the results in
Section 4. We propose that this experiment shows that bit rate usage
is a promising metric for network performance.

Second, we revisit the performance of TCP in wireless networks,
driven by the adoption of 802.11ac, and propose FastACK, discussed
in Section 5, as a method to achieve better aggregation over-the-air.
In initial testbed experiments, we have seen up to 35% increase in
throughput for single APs and up to 51% in multi-AP deployments.
These results are promising and we expect to see similar performance
improvement in the field.

Both techniques we propose have evolved from the results of our
large-scale study, which shows the importance of such an exercise
towards shaping the networks of the future.
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