
Complexity vs. Performance: Empirical Analysis of Machine
Learning as a Service

Yuanshun Yao
ysyao@cs.uchicago.edu
University of Chicago

Zhujun Xiao
zhujunxiao@cs.uchicago.edu

University of Chicago

Bolun Wang
bolunwang@cs.ucsb.edu

UCSB/University of Chicago

Bimal Viswanath
viswanath@cs.uchicago.edu

University of Chicago

Haitao Zheng
htzheng@cs.uchicago.edu
University of Chicago

Ben Y. Zhao
ravenben@cs.uchicago.edu

University of Chicago

ABSTRACT
Machine learning classifiers are basic research tools used in numer-
ous types of network analysis and modeling. To reduce the need for
domain expertise and costs of running local ML classifiers, network
researchers can instead rely on centralized Machine Learning as a
Service (MLaaS) platforms.

In this paper, we evaluate the effectiveness of MLaaS systems
ranging from fully-automated, turnkey systems to fully-customizable
systems, and find that with more user control comes greater risk.
Good decisions produce even higher performance, and poor deci-
sions result in harsher performance penalties. We also find that
server side optimizations help fully-automated systems outperform
default settings on competitors, but still lag far behind well-tuned
MLaaS systemswhich compare favorably to standaloneML libraries.
Finally, we find classifier choice is the dominating factor in deter-
mining model performance, and that users can approximate the
performance of an optimal classifier choice by experimenting with
a small subset of random classifiers. While network researchers
should approach MLaaS systems with caution, they can achieve
results comparable to standalone classifiers if they have sufficient
insight into key decisions like classifiers and feature selection.

CCS CONCEPTS
• Computing methodologies→Machine learning; • Applied
computing;

KEYWORDS
Machine Learning; Cloud Computing

ACM Reference Format:
Yuanshun Yao, Zhujun Xiao, Bolun Wang, Bimal Viswanath, Haitao Zheng,
and Ben Y. Zhao. 2017. Complexity vs. Performance: Empirical Analysis of
Machine Learning as a Service. In Proceedings of IMC ’17. ACM, New York,
NY, USA, 14 pages.
https://doi.org/10.1145/3131365.3131372

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IMC ’17, November 1–3, 2017, London, United Kingdom
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5118-8/17/11. . . $15.00
https://doi.org/10.1145/3131365.3131372

1 INTRODUCTION
Machine learning (ML) classifiers are now common tools for data
analysis. They have become particularly indispensable in the con-
text of networking, where characterizing the behavior of protocols,
services, and users often requires large scale data mining andmodel-
ing. ML tools have pervaded problems from all facets of networking,
with examples ranging from network link prediction [43, 54], net-
work localization [41, 77], user behavior analysis [71, 72], conges-
tion control protocols [59, 74], performance characterization [8, 76],
botnet detection [31], and network management [1].

As ML tools are increasingly commoditized, most network re-
searchers are interested in them as black box tools, and lack the
resources to optimize their deployments and configurations of
ML systems. Without domain experts or instructions on building
custom-tailoredML systems, some have tried developing automated
or “turnkey” ML systems for network diagnosis [42]. A more ma-
ture alternative is ML as a Service (MLaaS), with offerings from
Google, Amazon, Microsoft and others. These services run on the
cloud, and provide a query interface to an ML classifier trained
on uploaded datasets. They simplify the process of running ML
systems by abstracting away challenges in data storage, classifier
training, and classification.

Given the myriad of decisions in designing any ML system, it is
fitting that MLaaS systems cover the full spectrum between extreme
simplicity (turn-key, nonparametric solutions) and full customiz-
ability (fully tunable systems for optimal performance). Some are
simple black-box systems that do not even reveal the classifier used,
while others offer users choice in everything from data preprocess-
ing, classifier selection, feature selection, to parameter tuning.

MLaaS today are opaque systems, with little known about their
efficacy (in terms of prediction accuracy), their underlying mecha-
nisms and relative merits. For example, howmuch freedom and con-
figurability do they give to users?What is the difference in potential
performance between fully configurable and turnkey, “black-box”
systems? Can MLaaS providers build in better optimizations that
outperform hand-tuned user configurations? Do MLaaS systems
offer enough configurability to match or surpass the performance
of locally tuned ML tools?

In this paper, we offer a first look at empirically quantifying
the performance of 6 of the most popular MLaaS platforms across
a large number (119) of labeled datasets for binary classification.
Our goals are three-fold. First, we seek to understand how MLaaS
systems compare in performance against each other, and against a
fully customized and tuned local ML library. Our results will shed

https://doi.org/10.1145/3131365.3131372
https://doi.org/10.1145/3131365.3131372

Preprocessing Feature

Selection

Classi ier

Choice

Parameter

Tuning

Program

Implementation

Trained

Model

ABM

Google

Amazon

PredictionIO

BigML

Microsoft

Training

 Data

Query

Data

Prediction

Results

Figure 1: Standard ML pipeline and the steps that can be controlled by different MLaaS platforms.

light on the cost-benefit tradeoff of relying on MLaaS systems in-
stead of locally managing ML systems. Second, we wish to better
understand the correlations between complexity, performance and
performance variability. Our results will not only help users choose
between MLaaS providers based on their needs, but also guide com-
panies in traversing the complexity and performance tradeoff when
building their own local ML systems. Third, we want to understand
which key knobs have the biggest impact on performance, and try
to design generalized techniques to optimize those knobs.

Our analysis produces a number of interesting findings.

• First, we observe that current MLaaS systems cover the full range
of tradeoffs between ease of use and user-control. Our results
show a clear and strong correlation between increasing config-
urability (user control) and both higher optimal performance and
higher performance variance.

• Second, we show that classifier choice accounts for much of
the benefits of customization, and that a user can achieve near-
optimal results by experimenting with a small random set of
classifiers, thus dramatically reducing the complexity of classifier
selection.

• Finally, our efforts find clear evidence that fully automated (black-
box) systems like Google and ABM are using server-side tests
to automate classifier choices, including differentiating between
linear and non-linear classifiers. We note that their mechanisms
occasionally err and choose suboptimal classifiers. As a whole,
this helps them outperform other MLaaS systems using default
settings, but they still lag far behind tuned versions of their
competitors. Most notably, a heavily tuned version of the most
customizable MLaaS system (Microsoft) produces performance
nearly-identical to our locally tuned ML library (scikit-learn).

To the best of our knowledge, this paper is the first effort to
empirically quantify the performance of MLaaS systems. We believe
MLaaS systems will be an important tool for network data analysis
in the future, and hope our work will lead to more transparency
and better understanding of their suitability for different network
research tasks.

2 UNDERSTANDING MLAAS PLATFORMS
MLaaS platforms are cloud-based systems that provide machine
learning as a web service to users interested in training, building,
and deploying ML models. Users typically complete an ML task
through a web page interface. These platforms simplify and make
ML accessible to even non-experts. Another selling point is the

affordability and scalability, as these services inherit the strengths
of the underlying cloud infrastructure.

For our analysis, we choose 6 mainstream MLaaS platforms, in-
cluding Amazon Machine Learning (Amazon1), Automatic Business
Modeler (ABM2), BigML3, Google Prediction API (Google4), Mi-
crosoft Azure ML Studio (Microsoft5), and PredictionIO6. These are
the MLaaS services widely available today.
The MLaaS Pipeline. Figure 1 shows the well-known sequence
of steps typically taken when using any user-managed ML software.
For a given ML task, a user first preprocesses the data, and identifies
the most important features for the task. Next, she chooses an ML
model (e.g. a classifier for a predictive task) and an appropriate im-
plementation of the model (since implementation difference could
cause performance variation [9]), tunes parameters of the model
and then trains the model. Specific MLaaS platforms can simplify
this pipeline by only exposing a subset of the steps to the user
while automatically managing the remaining steps. Figure 1 also
shows the steps exposed to users by each platform. Note that some
(ABM and Google) expose none of the steps to the user but provide
a “1-click” mode that trains a predictive model using an uploaded
dataset. At the other end of the spectrum, Microsoft provides control
for nearly every step in the pipeline.
Control and Complexity. It is intuitive that more control over
each step in the pipeline allows knowledgeable users to build higher
quality models. Feature, model, and parameter selection can have
significant impact on the performance of anML task (e.g. prediction).
However, successfully optimizing each step requires overcoming
significant complexity that is difficult without in-depth knowledge
and experience. On the other hand, when limiting control, it is
unclear whether services can perform effective automatic man-
agement of the pipeline and parameters, e.g. in the case of ABM
and Google. Current MLaaS systems cover the whole gamut in
terms of user control and complexity and provide an opportunity
to investigate the impact of complexity on performance.

We summarize the controls available in the pipeline for classifica-
tion tasks in each platform. More details are available in Section 3.
• Preprocessing: The first step involves dataset processing. Com-
mon preprocessing tasks include data cleaning and data trans-
formation. Data cleaning typically involves handling missing

1https://aws.amazon.com/machine-learning
2http://e-abm.com
3https://bigml.com
4https://cloud.google.com/prediction
5https://azure.microsoft.com/en-us/services/machine-learning
6https://predictionio.incubator.apache.org

https://aws.amazon.com/machine-learning
http://e-abm.com
https://bigml.com
https://cloud.google.com/prediction
https://azure.microsoft.com/en-us/services/machine-learning
https://predictionio.incubator.apache.org

feature values, removing outliers, removing incorrect or dupli-
cate records. None of the 6 systems provides any support for
automatic data cleaning and expects the uploaded data to be
already sanitized with errors removed. Data transformation usu-
ally involves normalizing or scaling feature values to lie within
certain ranges. This is particularly useful when features lie in
different ranges, where it becomes harder to compare variations
in feature values that lie in a large range with those that lie in
a smaller range. Microsoft is the only platform that provides
support for data transformation.

• Feature selection: This step selects a subset of features most rel-
evant to the ML task, e.g. those that provide more predictive
power for the task. Feature selection helps improve classification
performance, and also simplifies the problem by eliminating ir-
relevant features. A popular type of feature selection scheme is
Filter method, where a statistical measure (independent of the
classifier choice) is used to rank features based on their class
discriminatory power. Only Microsoft supports feature selection
and provides 8 Filter methods. Some platforms, e.g. BigML, pro-
vide user-contributed scripts for feature selection. We exclude
these cases since they are not officially supported by the platform
and require extra effort to integrate them into the ML pipeline.

• Classifier selection: Different classifiers can be chosen based on
the complexity of the dataset. An important complexity measure
is the linearity (or non-linearity) of the dataset, and classifiers
can be chosen based on their capability of estimating a linear or
non-linear decision boundary. Across all platforms, we experi-
ment with 10 classifiers. ABM and Google offer no user choices.
Amazon only supports Logistic Regression7. BigML provides 4
classifiers, PredictionIO provides 8, while Microsoft gives the
largest number of choices: 9.

• Parameter tuning: These are parameters associated with a clas-
sifier and they must be tuned for each dataset to build a high
quality model. Amazon, PredictionIO, BigML, and Microsoft all
support parameter tuning. Usually each classifier allows users to
tune 3 to 5 parameters. We include detailed information about
classifiers and their parameters in Section 3.

Key Questions. To help understand the relationships between
complexity, performance, and transparency in MLaaS platforms,
we focus our analysis around three key questions and briefly sum-
marize our findings. Figure 2 provides a simple visualization to aid
our discussion.

• How does the complexity (or control) of ML systems correlate with
ideal model accuracy? Assuming we cover the available config-
uration space, how strongly do constraints in complexity limit
model accuracy in practice? How do different controls compare
in relative impact on accuracy?
Answer : Our results show a clear and strong correlation between
increasing complexity (user control) and higher optimal per-
formance. Highly tunable platforms like Microsoft outperform
others when configurations of the ML model are carefully tuned.

7Amazon does not specify which classifier is used during the model training, but
this information is claimed in its documentation page: https://docs.aws.amazon.com/
machine-learning/latest/dg/types-of-ml-models.html.

Control

P
e

rf
o

rm
a

n
c
e

a

n
d

 R
is

k

MoreLess

L
o

w
H

ig
h

GoogleABM

Amazon

BigMLPredictionIO

Microsoft

Local

Figure 2: Overview of control vs. performance/risk tradeoffs
in MLaaS platform.

Among the three control dimensions we investigate, classifier
choice accounts for the most benefits of customization.

• Can increased control lead to higher risks (of building a poorly
performing ML model)? Real users are unlikely to fully optimize
each step of the ML pipeline. We quantify the likely performance
variation at different levels of user control. For instance, how
much would a poor decision in classifier cost the user in practice
on real classification tasks?
Answer: We find higher configurability leads to higher risks of
producing poorly performing models. The highest levels of per-
formance variation also come from choices in classifiers. We also
find that users only need to explore a small random subset of
classifiers (3 classifiers) to achieve near-optimal performance
instead of experimenting with an entire classifier collection.

• How much can MLaaS systems optimize the automated portions
of their pipeline? Despite their nature as black boxes, we seek
to shed light on hidden optimizations at the classifier level in
ABM and Google. Are they optimizing classifiers for different
datasets? Do these internal optimizations lead to better perfor-
mance compared to other MLaaS platforms?
Answer: We find evidence that black-box platforms, i.e. Google
and ABM, are making a choice between linear and non-linear
classifiers based on characteristics of each dataset. Results show
that this internal optimization successfully improves these plat-
forms’ performance, when compared to other MLaaS platforms
(Amazon, PredictionIO, BigML andMicrosoft) without tuning any
available controls. However, in some datasets, a naive optimiza-
tion strategy that we devised makes better classifier decisions
and outperforms them.

3 METHODOLOGY
We focus our efforts on binary classification tasks, since that is
one of the most common applications of ML models in deployed
systems. Moreover, binary classification is one of the two learning
tasks (the other being regression) that are commonly supported
by all 6 ML platforms. Other learning tasks, e.g. clustering and
multi-class classification, are only supported by a small subset of
platforms.

https://docs.aws.amazon.com/machine-learning/latest/dg/types-of-ml-models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/types-of-ml-models.html

Lif e Science : 44

Compute r & Games : 18

Synthe tic : 17

Social Science : 10

Physical Science : 10

Financial & Business : 7

N/A : 13

Financial & Business: 7

Other: 13

Physical Science: 10

Social Science: 10

Synthetic: 17
Computer & Game: 18

Life Science: 44

(a) Breakdown of application domains.

 0

 0.2

 0.4

 0.6

 0.8

 1

10 100 1k 10k 100k

C
D

F
 o

f
D

a
ta

s
e

ts

Number of Samples

(b) Distribution of sample numbers.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 10 100 1k 4.7k

C
D

F
 o

f
D

a
ta

s
e

ts

Number of Features

(c) Distribution of feature numbers.

Figure 3: Basic characteristics of datasets used in our experiments.

3.1 Datasets
We describe the datasets we used for training ML classifiers. We use
119 labeled datasets from diverse application domains such as life
science, computer games, social science, and finance etc. Figure 3(a)
shows the detailed breakdown of application domains. The major-
ity of datasets (94 out of 119) are from the popular UCI machine
learning repository [3], which is widely adopted for benchmarking
ML classifiers. The remainder include 16 popular synthetic datasets
from scikit-learn8, and 9 datasets used in other applied machine
learning studies [5, 13, 17, 18, 32, 33, 70, 73]9. It is also important
to highlight that our datasets vary widely in terms of the number
of samples and number of features, as shown in Figure 3(b) and
Figure 3(c). Datasets vary in size from 15 samples to 245, 057 sam-
ples, while the dimensionality of datasets ranges from 1 to 4, 702.
Note that we limit the number of extremely large datasets (with size
over 100k) due to the high computational complexity incurred in
using them on MLaaS platforms. We include complete information
about all datasets separately10. As none of the MLaaS platforms
provides any support for data cleaning, we perform the following
data preprocessing steps locally before uploading to MLaaS plat-
forms. Our datasets include both numeric and categorical features.
Following prior conventions [23], we convert all categorical fea-
tures to numerical values by mapping {C1, ...,CN } to {1, ...,N }. We
acknowledge that this may impact performance of some classifiers,
e.g. distance-based classifiers like kNN [45]. But since our goal is to
compare performance across different platforms instead of across
classifiers, this preprocessing is unlikely to change our conclusions.
For datasets with missing values, we replace missing fields with
median values of corresponding features, which is a common ML
preprocessing technique [62]. Finally, for each dataset, we randomly
split data samples into training and test set by 70%–30% ratio. We
train classifiers on each MLaaS platforms using the same training
and held-out test set. We report classification performance on the
test set.

3.2 MLaaS Platform Measurements
In this section, we describe our methodology for measuring classi-
fication performance of MLaaS platforms when we vary available
controls.

8http://scikit-learn.org
9There are two datasets used in [73].
10http://sandlab.cs.uchicago.edu/mlaas

Choosing Controls of an ML System. As mentioned in Sec-
tion 2, we break down an ML system into 5 dimensions of con-
trol. In this paper, we consider 4 out of 5 dimensions by excluding
Program Implementation which is not controllable in any plat-
form. The remaining dimensions are grouped into three categories,
Preprocessing (data transformation) and Feature Selection (FEAT),
Classifier Choice (CLF), and Parameter Tuning (PARA). Note that
we combine Preprocessing with Feature Selection to simplify our
analysis, as both controls are only available in Microsoft. In the
rest of the paper, we interchangeably use the term Feature Selec-
tion and FEAT to refer to this combined category. Overall, these
three categories of control present the easiest and most impactful
options for users to train and build high quality ML classifiers. As
baselines for performance comparison, we use two reference points
that represent the extremes of the complexity spectrum, one with
no user-tunable control, and one where users have full control over
all control dimensions. To simulate an ML system with no control,
we set a default choice for each control dimension. We refer to
this configuration as baseline in later sections. Since not all of
the 6 platforms we study have a default classifier, we use Logistic
Regression as the baseline, as it is the only classifier supported by
all 4 platforms (where the control is available). All MLaaS platforms
select a default set of parameters for Logistic Regression (values
and parameters vary across platforms), and we use them for the
baseline settings. We perform no feature selection for the baseline
settings. To simulate an ML system with full control, we use a local
ML library, scikit-learn, as this library allows us to tune all control
dimensions. We refer to this configuration as local in later sections.
Performing Measurements by Varying Controls. We evalu-
ate performance of MLaaS platforms on each dataset by varying
available controls. Table 1 provides detailed information about avail-
able choices for each control dimension. We vary the FEAT and CLF
dimensions by simply applying all available choices listed for each
system in Table 1. It is interesting to note that the CLF choices
vary across platforms even though all platforms are competing to
provide the same service, i.e. binary classification. For example,
Random Forests and Boosted Decision Tree, best performing classi-
fiers based on prior work [14, 15], are only available on Microsoft.
The PARA dimension is varied by applying grid search. We explore
all possible options for categorical parameters. For example, we
include both L1 and L2 in regularization options from Logistic Re-
gression. For numerical parameters, we start with the default value

http://scikit-learn.org
http://sandlab.cs.uchicago.edu/mlaas

Platform FEAT CLF (# of parameter tuned: parameter list (PARA))
Amazon × Logistic Regression (3: maxIter, regParam, shuffleType)

PredictionIO ×
Logistic Regression (3: maxIter, regParam, fitIntercept), Naive Bayes (1:lambda),
Decision Tree (2: numClasses, maxDepth),

BigML ×

Logistic Regression (3: regularization, strength, eps), Decision Tree (3: node threshold, ordering,
random candidates), Bagging [11] (3: node threshold, number of models, ordering),
Random Forests [12] (3: node threshold, number of models, ordering)

Microsoft

Fisher LDA,
Filter-based
(using Pearson,
Mutual, Kendall,
Spearman, Chi,
Fisher, Count)

Logistic Regression (4: optimization tolerance, L1 regularization weight, L2 regularization weight,
memory size for L-BFGS), Support Vector Machine (2: # of iterations, Lambda), Averaged Percep-
tron [27] (2: learning rate, max. # of iterations), Bayes Point Machine [34] (1: # of training iteration),
Boosted Decision Tree [28] (4: max. # of leaves per tree, min. # of training instances per leaf,
learning rate, # of trees constructed), Random Forests (5: resampling method, # of decision trees,
max. depth of trees, # of random splits per node, min. # of samples per leaf),
Decision Jungle [58] (5: resampling method, # of DAGs, max. depth of DAGs, max. width of DAGs,
of optimization step per DAG layer),

scikit-learn

FClassif,
MutualInfoClassif,
GaussianNorm,
MinMaxScaler,
MaxAbsScaler,
L1Normalization,
L2Normalization,
StandardScaler

Logistic Regression (3: penalty, C, solver), Naive Bayes (1: prior), Support Vector Machine
(3: penalty, C, loss), Linear Discriminant Analysis (2: solver, shrinkage), k-Nearest Neighbor
(3: n_neighbors, weights, p), Decision Tree (2: criterion, max_features), Boosted Decision Tree
(3: n_estimators, criterion, max_features), Bagging (2: n_estimators, max_features), Random Forests
(2: n_estimators, max_features), Multi-Layer Perceptron [52] (3: activation, solver, alpha)

Table 1: Detailed configurations forMLaaS platforms and local librarymeasurement experiments. For each control dimension,
we list available configurations (feature selection methods, classifiers, and tunable parameters).

Platform # Feature
Selections

Class-
ifiers

Para-
meters

Measu-
rements

ABM - 1 (1) - 119
Google - 1 (1) - 119
Amazon - 1 (1) 3 (3) 4,284

PredictionIO - 3 (8) 6 (25) 3,719
BigML - 4 (4) 12 (46) 12,838

Microsoft 8 (8) 7 (9) 23 (34) 1,728,791
scikit-learn 8 (14) 10 (14) 32 (111) 2,137,410

Table 2: Scale of the measurements. The last column shows
total number of configurations we tested on each platform.
Numbers in parenthesis in column#2 to #4 show thenumber
of available options shown to users on each platform, while
numbers outside parenthesis show the number of options
we explore in experiments.

provided by platforms and scan a range of values that are two orders
of magnitude lower and higher than the default. In other words, for
each numerical parameter with a default value of D, we investigate
three values: D

100 , D, and 100 × D. For example, we explore 0.0001,
0.01 and 1 for the regularization strength parameter in Logistic Re-
gression, where the default value is 0.01. We also manually examine
the parameter type and its acceptable value range to make sure the
parameter value is valid.

Table 2 shows the total number of measurements we perform
for each platform and the number of choices for each control di-
mension. All experiments were performed between October 2016
and February 2017. For platforms with no control, we perform one
measurement per dataset, giving us 119 prediction results (ABM
and Google). At the other extreme, Microsoft requires over 1.7M
measurements, given the large number of available controls. Note
that numbers in the last column is much larger than the product
of numbers in previous columns, because for each parameter we

tune, we explore multiple values, resulting in a larger number of
total measurements. To set up experiments, we leverage web APIs
provided by the platforms, allowing us to automate experiments
through scripts. Unfortunately, Microsoft only provides an API for
using preconfigured ML models on different datasets, and there is
no API for configuring ML models. Hence, in the case of Microsoft,
we manually configure ML models (over 200 model configurations)
using the web GUI, and then automate the application of the models
to all datasets.
EvaluationMetrics. Wemeasure the performance of a platform
by computing the average F-score across all datasets. F-score is a
better metric compared to accuracy as many of our datasets have
imbalanced class distributions. It is defined as the harmonic mean
of precision and recall. Precision is the fraction of samples predicted
to be positive that are truly positive and recall is the fraction of
positive samples that are correctly predicted. Note that other met-
rics like Area Under Curve or Average Precision are also not biased
by imbalanced datasets, but unfortunately cannot be applied, as
PredictionIO and several classifiers on BigML do not provide a
prediction score.

To validate whether a single metric (Average F-score) is repre-
sentative of performance across all the datasets, we compute the
Friedman ranking [55] of platforms across all the datasets. Friedman
ranking statistically ranks platforms by considering a given metric
(e.g. F-score) across all datasets. A platform with a higher Friedman
rank exhibits statistically better performance when considering all
datasets, compared to a lower ranked platform. We observe that the
platform ranking based on average F-score is consistent with the
Friedman ranking (using F-score), suggesting that average F-score
is a representative metric. In the rest of the paper, the performance
of a platform refers to the average F-score across datasets.

4 COMPLEXITY VS. PERFORMANCE
We have shown that MLaaS platforms represent ML system designs
with different levels of complexity and user control. In this section,

 0.6

 0.7

 0.8

 0.9

 1
G

o
o

g
le

A
B

M

A
m

a
z
o

n

B
ig

M
L

P
re

d
ic

ti
o

n
IO

M
ic

ro
s
o

ft

L
o

c
a

l

A
v
e

ra
g

e
 F

-s
c
o

re Baseline Optimized

ComplexityLow High

Figure 4: Optimized and baseline performance (F-score) of
platforms and local library.

 0

 10

 20

 30

 40

A
m

a
z
o

n
B

ig
M

L
P

re
d

ic
ti
o

n
IO

M
ic

ro
s
o

ft
L

o
c
a

l

A
m

a
z
o

n
B

ig
M

L
P

re
d

ic
ti
o

n
IO

M
ic

ro
s
o

ft
L

o
c
a

l

A
m

a
z
o

n
B

ig
M

L
P

re
d

ic
ti
o

n
IO

M
ic

ro
s
o

ft
L

o
c
a

l

F
-s

c
o

re
 I
m

p
ro

v
e

m
e

n
t
(%

)

Feature
Selection

Classifier
Selection

Parameter
Tuning

N
o

 D
a

ta

N
o

 D
a

ta

Figure 5: Relative improvement in performance (F-score)
over baseline as we tune individual controls (white boxes in-
dicate controls not supported).

we try to answer our first question: How does the performance of
ML systems vary as we increase their complexity?

4.1 Optimized Performance
First we evaluate the optimized performance each MLaaS platform
can achieve by tuning all possible controls provided by the platform,
i.e. FEAT, CLF, and PARA. In this process, we train individual models
for all possible combinations of the 3 controls (whenever available)
and use the best performing model for each dataset. We report
the average F-score across all datasets for each platform as its
performance. We refer to these results as optimized. Note that
the optimized performance is simply the highest performance on
the test set that is obtained by training different models using all
available configurations. We do not optimize the model on test set.

We also generate the corresponding reference points, i.e. base-
line and local. For local, we compute the highest performance
on our local ML library by tuning all 3 control dimensions. For
baseline, we measure the performance of “fully automated”, zero-
control versions of all systems (MLaaS and our local library), by
using the baseline configurations for each platform. As mentioned
earlier, these reference points capture performance at two ends of
the complexity spectrum (no control vs. full control).

Figure 4 shows the optimized average F-score for each MLaaS
platform, together with the optimized results. Platforms are listed
on the x-axis based on increasing complexity. We observe a strong
correlation between system complexity and the optimized classi-
fication performance. The platform with highest complexity (Mi-
crosoft) shows the highest performance (0.83 average F-score), and
performance decreases as we consider platforms with lower com-
plexity/control (Google and ABM), with ABM showing the lowest
performance (0.71 F-score). As expected, the local library outper-
forms all MLaaS platforms, as it explores the largest range of model
configurations (most feature selections techniques, classifiers, and
parameters). Note that the performance difference between local
and MLaaS platforms with high complexity is smaller, suggesting
that adding more complexity and control beyond Microsoft brings
diminishing returns. In addition, when we compare the baseline

performance with the optimized performance for platforms with
high complexity (Microsoft), the difference is significant, with up to
26.7% increase in F-score, further indicating that higher complexity
provides room for more performance improvement. Lastly, the er-
ror bars show the standard error of the measured performance, and
we observe that the statistical variation of performance measures
for different platforms is not large.

For completeness, we include the detailed baseline and optimized
performance of MLaaS platforms in Table 3. We include F-score, and
other 3 metrics, accuracy, precision, and recall. We also compute
the Friedman ranking of each metric across datasets [55]. A lower
Friedman ranking indicates consistently higher performance over
all datasets. Platforms in both tables are ordered based on average
Friedman ranking over 4 evaluation metrics in ascending order. We
can see that average F-score is a representative metric, because the
ranking based on F-score values matches the ranking induced by
the Friedman metric.

4.2 Impact of Individual Controls
Wehave shown that higher complexity in the form of more user con-
trol contributes to higher optimized performance. Now we break-
down the potential performance gains from baseline configurations,
and investigate the potential gains contributed by each type of
control. In the collection of tunable controls and design decisions,
answering this question would tell us which decisions have the
most impact on the final performance. We start by tuning only
one dimension of control while leaving others at baseline settings.
Figure 5 shows the percentage improvement in performance from
the baseline setting for each platform and control dimension. Note
that Google and ABM are not included in this analysis. In addition,
we have 3 platforms (Amazon, BigML, PredictionIO) missing in the
Feature Selection column, one (Amazon) missing in the Classifier
Selection column. These are the platforms that do not support tun-
ing those respective control dimensions. We observe the largest
performance improvement of 14.6% (averaged across all platforms)
when giving users the ability to select specific ML classifiers. In fact,
in the case of Microsoft, F-score improves by 22.4% which is the

(a) Baseline performance.

Platform Avg. Fried.
Ranking

Avg.
F-score

Avg.
Accuracy

Avg.
Precision

Avg.
Recall

Amazon 253.7 0.748 (250.5) 0.850 (269.5) 0.782 (298.0) 0.755 (196.7)
Google 267.7 0.706 (261.4) 0.851 (217.7) 0.751 (261.4) 0.711 (330.4)
ABM 344.5 0.694 (285.8) 0.833 (366.5) 0.738 (359.3) 0.691 (366.6)
BigML 348.1 0.688 (326.8) 0.822 (347.2) 0.741 (335.7) 0.688 (385.6)

PredictionIO 379.5 0.672 (389.2) 0.818 (432.6) 0.682 (387.6) 0.741 (308.9)
Local 388.8 0.672 (411.9) 0.832 (401.8) 0.668 (419.4) 0.723 (322.1)

Microsoft 424.3 0.655 (477.3) 0.833 (391.9) 0.715 (370.5) 0.659 (457.6)

(b) Optimized performance.

Platform Avg. Fried.
Ranking

Avg.
F-score

Avg.
Accuracy

Avg.
Precision

Avg.
Recall

Local 190.1 0.839 (179.4) 0.916 (184.2) 0.984 (201.3) 0.990 (195.5)
Microsoft 211.1 0.837 (186.5) 0.914 (190.3) 0.954 (231.3) 0.863 (236.3)

PredictionIO 318.6 0.828 (245.7) 0.886 (238.7) 0.779 (478.4) 0.852 (311.5)
BigML 365.9 0.789 (307.5) 0.876 (281.7) 0.880 (287.9) 0.802 (351.4)
Amazon 446.7 0.761 (545.3) 0.863 (524.3) 0.826 (398.2) 0.795 (318.9)
Google 641.9 0.706 (692.6) 0.853 (606.7) 0.744 (605.5) 0.704 (662.9)
ABM 758.8 0.694 (784.3) 0.834 (774.1) 0.735 (747.7) 0.684 (729.1)

Table 3: Baseline and optimized performance of MLaaS platforms. The Friedman ranking of each metric is included in the
parenthesis. Lower Friedman ranking indicates consistently higher performance across all datasets.

(a) Ranking of classifiers using baseline parameters

Rank BigML PredictionIO Microsoft Local

1 LR (34.5%) LR (42.9%) BST (50.4%) BST (24.4%)
2 RF (26.1%) DT (38.7%) AP (16.8%) KNN (12.6%)
3 DT (24.4%) NB (18.5%) BPM (10.9%) DT (10.9%)
4 BAG (15.1%) RF (7.6%) RF (10.9%)

(b) Ranking of classifiers using optimized parameters

Rank BigML PredictionIO Microsoft Local

1 RF (32.8%) LR (48.7%) BST (43.7%) MLP (32.8%)
2 BAG (30.3%) DT (36.1%) DJ (17.6%) BST (27.7%)
3 LR (27.7%) NB (16.0%) AP (16.0%) RF (9.2%)
4 DT (9.2%) RF (13.4%) KNN (6.7%)

Table 4: Top four classifiers in each platform using baseline/optimized parameters. Number in parenthesis shows the per-
centage of datasets where the corresponding classifier achieved highest performance. LR=Logistic Regression, BST=Boosted
Decision Trees, RF=Random Forests, DT=Decision Tree, AP=Average Perceptron, KNN=k-Nearest Neighbor, NB=Naive Bayes,
BPM=Bayes Point Machine, BAG=Bagged Trees, MLP=Multi-layer Perceptron, DJ=Decision Jungle.

highest among all platforms when we optimize the classifier choice
for each dataset. After the classifier dimension, feature selection
provides the next highest improvement in F-score (6.1%) across
all platforms, followed by the classifier parameter dimension (3.4%
improvement in F-score). The above results show that classifier is
the most important control dimension that significantly impacts
the final performance. To shed light on the general performance of
different classifiers, we analyze classifier performance with default
parameters and with optimized parameter configurations. Table 4(a)
shows the top 4 classifiers when using baseline (default) parameters.
It is interesting to note that no single classifier dominates in terms
of performance over all the datasets. Table 4(b) shows a similar
trend even when we optimize the parameters. This suggests that

we need a mix of multiple linear (e.g. LR, NB) and non-linear (RF,
BST, DT) classifiers to achieve high performance over all datasets.
Summary. Our results clearly show that platforms with higher
complexity (more dimensions for user control) achieve better per-
formance. Among the 3 key dimensions, classifier choice provides
the largest performance gain. Just by optimizing the classifier alone,
we can already achieve close to optimized performance. Overall, Mi-
crosoft provides the highest performance across all platforms, and
a highly tuned Microsoft model can produce performance identical
to that of a highly-tuned local scikit-learn instance.

 0

 0.2

 0.4

 0.6

 0.8

 1
G

o
o

g
le

A
B

M

A
m

a
z
o

n

B
ig

M
L

P
re

d
ic

ti
o

n
IO

M
ic

ro
s
o

ft

L
o

c
a

l

A
v
e

ra
g

e
 F

-s
c
o

re

ComplexityLow High

Figure 6: Performance variation in MLaaS platforms when
tuning all available controls.

 0

 0.2

 0.4

 0.6

 0.8

 1

A
m

a
z
o

n
B

ig
M

L
P

re
d

ic
ti
o

n
IO

M
ic

ro
s
o

ft
L

o
c
a

l

A
m

a
z
o

n
B

ig
M

L
P

re
d

ic
ti
o

n
IO

M
ic

ro
s
o

ft
L

o
c
a

l

A
m

a
z
o

n
B

ig
M

L
P

re
d

ic
ti
o

n
IO

M
ic

ro
s
o

ft
L

o
c
a

l

P
e

rf
o

rm
a

n
c
e

 V
a

ri
a

ti
o

n Feature
Selection

Classifier
Selection

Parameter
Tuning

N
o

 D
a

ta

N
o

 D
a

ta

Figure 7: Performance variation when tuning CLF, PARA and
FEAT individually, normalized by overall variation (white
boxes indicate controls not supported).

5 RISKS OF INCREASING COMPLEXITY
Our experiments in Section 4 assumed that users were experts on
each step in the ML pipeline, and were able to exhaustively search
for the optimal classifier, parameters, and feature selection schemes
to maximize performance. For example, for Microsoft, we evaluated
over 17k configurations to determine the configuration with opti-
mized performance. In practice, users may have less expertise, and
are unlikely to experiment with more than a small set of classifiers
or available parameters. Therefore, our second question is: Can in-
creased control lead to higher risks (of building poorly performing ML
models)? To quantify risk of generating poorly performing models,
we use performance variation as the metric, and compute variation
on each platform as we tune available controls.

5.1 Performance Variation across Platforms
First we measure the performance variation of each MLaaS plat-
form across a range of system configurations (of CLF, PARA, and
FEAT) described in Section 3. For each configuration and platform,
we compute average performance across all datasets. Then we iter-
ate through all configurations, and obtain a range of performance
scores which capture the performance variation. Each configuration
would generate a single point in the range of performance scores.
Higher variation means a single poor decision in design could pro-
duce a significant performance loss. We plot performance variation
results for each platform in Figure 6. As before, platforms on the x-
axis are ordered based on increasing complexity. First, we observe a
positive correlation between complexity of an MLaaS platform and
higher performance variation. Among MLaaS platforms, Microsoft
shows the largest variation, followed by less complex platforms
like PredictionIO and Amazon. For Microsoft, F-score ranges from
0.49 to 0.75. Also as expected, our local ML library has the highest
performance variation. The takeaway is that even though more
complex platforms have the potential to achieve higher perfor-
mance, there are higher risks of building a poorly configured (and
poorly performing) ML model.

5.2 Variation from Tuning Individual Controls
Nextwe analyze the contribution of each control dimension towards
the variation in performance. When we tune a single dimension, we
keep the other controls at their default values set by the platform, i.e.
use the baseline settings. Figure 7 shows the portion of performance
variation caused by each control dimension, i.e. a ratio normalized
by the overall variation measured in our previous experiment. We
observe that classifier choice (CLF) is the largest contributor to
variation in performance. For example, in the case of Microsoft
and PredictionIO (both exhibiting large variation), over 80% of the
variation is captured by just tuning CLF. Thus, it is important to
note that even though CLF can provide the largest improvement
in performance (Section 4), if not carefully chosen, can lead to
significant performance degradation. On the other hand, for all
platforms, except Amazon, tuning the PARA dimension results in
the least variation in performance. We are unable to verify the
reason for the high variation in the case of Amazon (for PARA), but
suspect it is due to either implementation or default parameter
settings.
Partial Knowledge about Classifiers. Given the dispropor-
tionally large impact classifier choice has on performance and per-
formance variation, we want to understand how users can make
better decisions without exhaustively experimenting over the entire
gamut of ML classifiers. Instead, we simulate a scenario where the
user experiments with (and chooses the best out of) a randomly cho-
sen subset of k classifiers from all available classifiers in a platform.
We measure the highest F-score possible in each k-classifier subset.
Next, we average the highest F-score across all possible subsets of
size k . Results are shown in Figure 8 with all platforms support-
ing classifier selection. We observe a trend of rapidly improving
performance as users try multiple classifiers. We observe that just
trying a randomly chosen subset of 3 classifiers often achieves per-
formance that is close to the optimal found by experimenting with
all classifiers. In the case of Microsoft, we observe an F-score of 0.76
which is only 5% lower than the F-score we can obtain by trying
all 8 classifiers. Performance variation also decreases significantly
once a user explores 3 or more classifiers in these platforms.

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

A
v
e
ra

g
e
 F

-s
c
o
re

Number of Classifiers Explored

BigML
PredictionIO
Microsoft
Local

Figure 8: Average performance vs. number of classifiers ex-
plored.

Summary. Our results show that increasing platform complex-
ity leads to better performance, but also leads to significant per-
formance penalties for poor configuration decisions. Our results
suggest that much/most of the gains can be achieved by focusing
on classifier choice, and that experimenting with a random subset
of 3 classifiers often achieves performance and lowers variation
close to optimal.

6 HIDDEN OPTIMIZATIONS
In the final part of our analysis, we seek to shed light on any
platform-specific optimizations outside of user-visible configura-
tions or controls. More specifically, we focus on understanding
hidden optimizations used by fully automated black-box platforms,
Google and ABM. These platforms have the most leeway to imple-
ment internal optimizations, because their entire ML pipeline is
fully automated. In Section 4.1 (Figure 4), we observe that Google
and ABM outperform many other platforms when applying default
configurations. This suggests that their hidden configurations are
generally better than alternative default settings.

Among the countless potential options for optimization, we fo-
cus on a simple yet effective technique: optimizing classifier choices
based on dataset characteristics [46]. We raise the question: Are
black-box platforms automatically selecting a classifier based on the
dataset characteristics? Note that our usage of the phrase “selecting
a classifier” should be broadly interpreted as covering different
possible implementation scenarios (for optimization). For example,
optimization can be implemented by switching between distinct
classifier instances, or a single classifier implementation that in-
ternally alters decision characteristics depending on the dataset.
While our analysis cannot infer such implementation details, we
provide evidence of internal optimization in black-box platforms
(Section 6.1). We further quantitatively analyze their optimization
strategy (Section 6.2), and finally examine the potential for improve-
ment (Section 6.3)

-1

 0

 1

 2

-1.5 -1 -0.5 0 0.5 1 1.5

F
e

a
tu

re
 #

2

Feature #1

Class 0 Class 1

(a) Visualization of CIRCLE.

-6

-3

 0

 3

 6

-3 -2 -1 0 1 2 3

F
e

a
tu

re
 #

2

Feature #1

Class 0

Class 1

(b) Visualization of LINEAR.

Figure 9: Visualization of two datasets: synthetic non-
linearly-separable dataset (CIRCLE) and synthetic linearly-
separable dataset (LINEAR).

Category Classifiers
Linear LR, NB, Linear SVM, LDA

Non-Linear DT, RF, BST, KNN, BAG, MLP
Table 5: Assignment of classifiers available on local library
into linear vs. non-linear categories.

6.1 Evidence of Internal Optimizations
We select two datasets from our collection, a non-linearly-separable
synthetic dataset, which we call CIRCLE11, and a linearly-separable
synthetic dataset, referred to as LINEAR12. Figure 9(a) and Fig-
ure 9(b) show visualizations of the two datasets. Both datasets have
only two features. Given the contrasting characteristics (linearity)
of the two datasets, our hypothesis is that they would help to dif-
ferentiate between linear and non-linear classifier families based
on prediction performance.

We examine Google andABM’s prediction results on CIRCLE and
LINEAR to infer their classifier choices. Since we have no ground-
truth information here, we resort to analyzing decision boundaries
generated by the two platforms. The decision boundary is visual-
ized by querying and plotting the predicted classes of a 100×100
mesh grid. Figure 10(a) and Figure 10(b) illustrate Google’s decision
boundary on CIRCLE and LINEAR, respectively. It is very clear that
Google’s decision boundary on CIRCLE forms a circle, indicating
Google is using a non-linear classifier, or a non-linear kernel, e.g.
RBF kernel [67]. On LINEAR, Google’s decision boundary matches a
straight line. It showsGoogle is using a linear classifier. Experiments
on ABM also show similar results. Figure 10(c) and Figure 10(d)
show the decision boundaries of ABM on CIRCLE and LINEAR,
respectively. Thus, both platforms are optimizing and switching
classifier choices for the two datasets. Additionally, Google’s deci-
sion boundary on CIRCLE (circular shape) is different from ABM
(rectangular shape), indicating that they selected different non-
linear classifiers. Based on the shape of decision boundaries, it is
likely that Google used a non-linear kernel based classifier while
ABM chose a tree-based classifier.

11http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.
html
12http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_
classification.html

http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html

-1

 0

 1

 2

-1.5 -1 -0.5 0 0.5 1 1.5

F
e

a
tu

re
 #

2

Feature #1

Class 0 Class 1

(a) Google’s decision boundary on CIRCLE.

-6

-3

 0

 3

 6

-3 -2 -1 0 1 2 3

F
e

a
tu

re
 #

2

Feature #1

Class 0

Class 1

(b) Google’s decision boundary on LINEAR.

-1

 0

 1

 2

-1.5 -1 -0.5 0 0.5 1 1.5

F
e

a
tu

re
 #

2

Feature #1

Class 0 Class 1

(c) ABM’s decision boundary on CIRCLE.

-6

-3

 0

 3

 6

-3 -2 -1 0 1 2 3

F
e

a
tu

re
 #

2

Feature #1

Class 0

Class 1

(d) ABM’s decision boundary on LINEAR.

Figure 10: Decision boundaries generated by Google and ABM on CIRCLE and LINEAR. Both platforms produced linear and
non-linear boundaries for different datasets.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F
 o

f
E

x
p
e
ri
m

e
n
ts

F-score

Linear

Non-linear

(a) CIRCLE.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F
 o

f
E

x
p
e
ri
m

e
n
ts

F-score

Non-linear

Linear

(b) LINEAR.

Figure 11: Performance of predicting local linear/non-linear
classifier choices on CIRCLE and LINEAR datasets.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
C

D
F

 o
f

T
ra

in
e

d

C
la

s
s
if
ie

rs
Validation F-score

Figure 12: Validation perfor-
mance of predicting linear/non-
linear classifiers.

-1

 0

 1

 2

-1.5 -1 -0.5 0 0.5 1 1.5

F
e
a
tu

re
 #

2

Feature #1

Class 0 Class 1

Figure 13: Amazon’s deci-
sion boundary on CIRCLE.

6.2 Predicting Classifier Family
In this section, we present a method to automatically predict the
classifier used by a platform using just two pieces of information—
knowledge of the training dataset and prediction results from the
platform. Such a method would help us automatically find instances
where a black-box platform would change classifiers depending on
the dataset characteristics.

At a high level, we observe that it is hard to pin-point the spe-
cific classifier used by a platform, using just the dataset and the
prediction results. This is because prediction results of different
classifiers tend to overlap. However, we find that it is possible to
accurately infer the broad classifier family, more specifically, linear
or non-linear classifiers.

Our key insight is that we can control datasets used for the in-
ference and thus selectively choose datasets that elicit significant
divergence between prediction results of linear and non-linear clas-
sifiers. To give an example, we examine the performance of the
local library classifiers on the CIRCLE and LINEAR datasets. We
categorize local classifiers into linear and non-linear families, as
shown in Table 5. Figures 11(a) and 11(b) shows the performance
(F-score) of the two categories of classifiers on the two datasets. As
expected, we find that linear and non-linear classifiers produce very
different F-scores on the two datasets, regardless of other configu-
ration settings. Non-linear classifiers outperform linear classifiers
when on CIRCLE. For LINEAR, linear classifiers outperform non-
linear classifiers in many cases. This is because of the noisy nature
of the dataset causing non-linear classifiers to overfit, and therefore
produce lower performance compared to linear classifiers. Next, we
present our methodology to accurately predict the classifier family

by identifying more datasets that show divergence in prediction
results of linear and non-linear classifiers.
Methodology. We build a supervised ML classifier for the pre-
diction task. For training the classifier, we use prediction results,
and ground-truth of classifier choices from the local library and the
three platforms that allow user control of the classifier dimension
(i.e. Microsoft, BigML and PredictionIO). Features used for train-
ing include aggregated performance metrics (F-score, precision,
recall, accuracy), and the predicted labels. We train one classifier
for each dataset in our collection. Each training sample is one ML
experiment using a single configuration of the ML pipeline (i.e.
choices of FEAT, CLF and PARA). Measurements are randomly split
into training, validation, and test sets. Training and validation sets
contain 70% of experiments, and test set contains the remaining
30% experiments. We train a Random Forests classifier with 5-fold
cross-validation, and pick the best performing classifier based on
validation performance. Based on prior work, Random Forests is
one of the best performing classifiers for supervised binary clas-
sification tasks [15, 23]. Figure 12 shows the distribution of cross-
validation performance of classifiers trained on all 119 datasets.
Not all datasets could differentiate linear and non-linear classifiers.
There are 64 datasets that produce classifiers achieving higher than
0.95 F-score. In other datasets, classifiers failed to separate linear
and non-linear classifiers as they produce similar performance. In-
tuitively, we do not expect all datasets to perform well, and one goal
of the training process is to identify datasets with high differentiat-
ing power. We select the 64 datasets where the trained classifiers
achieve high performance (F-score > 0.95) on the validation set. To
further test if they would generalize and accurately predict classifier

(a) Google vs. our naïve strategy.

Naïve
Google Linear Non-linear

Linear 11 (25.5%) 5 (11.6%)
Non-linear 17 (39.5%) 10 (23.26%)

(b) ABM vs. our naïve strategy.

Naïve
ABM Linear Non-linear

Linear 8 (16.7%) 3 (6.3%)
Non-linear 22 (45.8%) 15 (31.3%)

Table 6: Breakdown of datasets based on classifier choice
when our naïve strategy outperforms black-box platforms.

choices, we apply them on the 30% held-out test set. All trained
classifiers achieve F-score higher than 0.96. This further proves that
the chosen classifiers can accurately predict the classifier family.
Classifier Choices of Google and ABM. We apply the selected
64 trained classifiers (covering 64 datasets) on Google and ABM
and predict their classifier choices over linear and non-linear family.
Results show Google uses linear classifiers on 39 out of 64 (60.9%)
datasets, and non-linear classifiers for the remaining 25 (39.1%)
datasets. ABM, on the other hand, uses linear classifiers on 44
(68.8%) out of 64 datasets, and non-linear on the remaining 20
(31.2%) datasets. If we compare Google and ABM, they pick the
same classifier category on 49 (76.6%) datasets, but disagree on
the remaining 15 (23.4%) datasets. The differences in the classifier
choices could contribute to their overall performance difference
in Figure 4. Overall, our results suggest that both platforms make
different classifier choices (choosing linear or non-linear family)
depending on the dataset.
Classifier Choices of Amazon. Recall that Amazon does not
reveal any classifier information in their model training interface,
but claims to use Logistic Regression on their documentation page.
We apply our classifier prediction scheme on Amazon to investi-
gate whether they are indeed using a single classifier for all tasks.
Interestingly, 10 out of all 64 datasets have over 50% configurations
that are predicted to be non-linear (the remaining are predicted to
be linear). We also observe that Amazon produces a non-linear deci-
sion boundary when applied to the CIRCLE dataset (Figure 13). We
suspect that Amazon uses non-linear techniques on top of Logistic
Regression, e.g. non-linear kernel, or even uses other non-linear
classifiers apart from Logistic Regression.

Unfortunately we are unable to corroborate our findings with
the providers (Google, ABM, and Amazon), as all hidden optimiza-
tions are kept confidential and proprietary. However, our predic-
tions demonstrate high accuracy in our validation and test datasets
(where the underlying configuration is known).

6.3 Impact of Internal Optimizations
Previous experiments show that black-box platforms successfully
choose classifier families with better performance when applied on

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
D

F
 o

f
D

a
ta

s
e
ts

Difference in F-score

(a) Google.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

C
D

F
 o

f
D

a
ta

s
e
ts

Difference in F-score

(b) ABM.

Figure 14: Performance difference in datasets where naïve
strategy outperforms Google/ABM using different classifier
family.

the CIRCLE and LINEAR datasets. On these two datasets, Google
and ABMwould outperform a scheme that does not switch between
classifier families. But are their strategies optimized for all other
datasets? Are there cases where the two platforms make the wrong
classifier choice?

To understand the potential for further improvement, we design
a naïve classifier selection strategy using the local library, and
compare its performance with Google and ABM. Our intuition is
that if Google and ABM perform poorly when compared to our
naïve strategy, there is potential for further improvement and we
can understand the cases where classifier choices (i.e. linear vs
non-linear) are potentially incorrect. We choose two widely used
linear and non-linear classifiers, Logistic Regression and Decision
Tree. These two classifiers are supported by most other platforms
(Table 1). For each dataset, we train both classifiers and choose the
one with higher performance. To further simplify the strategy and
to avoid any impact of optimization from other control dimensions,
we use the default parameter settings in Logistic Regression and
Decision Tree, and perform no feature selection.

For our analysis, we again use the 64 datasets that can accurately
predict choices of linear and non-linear classifiers. In 43 out of 64
datasets, our naïve strategy outperforms Google, and in 48 datasets,
it outperforms ABM. This clearly indicates that Google and ABM
have scope for further improvement.

We further compare the choices made by naïve strategy and
black-box platforms. Table 6 shows the breakdown of the datasets
by decisions when naïve strategy outperforms Google and ABM. In
both platforms, in a majority of cases, the classifier choices do not
match our simple strategy. In these cases, Google and ABM could
increase their performance (F-score) by 20% and 34% on average,
respectively, by choosing the other classifier family. Figure 14 shows
a detailed breakdown (as a CDF) of performance difference between
the black-box platforms and naïve strategy, when we outperform
them. The potential performance improvement is significant in
many cases.
When is switching classifier the best option for improvement?
Although we show the potential performance improvement by
switching classifiers, black-box platforms could use other meth-
ods to improve performance. For example, Google and ABM could
perform better parameter tuning and feature selection to reduce
the performance gap and justify their classifier choices. To identify

cases where classifier switching is likely the best option, we com-
pare our naïve strategy with the optimal performance of the other
classifier family (i.e. not chosen). This means that when naïve strat-
egy chooses a non-linear classifier, we compare its performance
with the optimal linear classifier (across all configurations). If naïve
strategy could still outperform Google and ABM under this sce-
nario, it indicates that switching the classifier is likely the best way
to further improve the performance. We find 3 datasets in the case
of Google, and 4 for ABM, where changing the classifier is probably
the best option to further improve performance. While our analysis
is limited to the 64 datasets where we can perform prediction, our
finding highlights the existence of scenarios where Google and
ABM clearly need to make better classifier choices.

7 RELATEDWORK
Analyzing MLaaS Platforms. There is very limited prior work
focusing on MLaaS platforms. Chan, et al. and Ribeiro, et al. pre-
sented two different architecture designs of MLaaS platforms [16,
51]. Although we cannot confirm that these architectures are being
used by any of the MLaaS platforms we studied, they shed light
on potential ways MLaaS platforms operate internally. Other re-
searchers investigated vulnerabilities of these platforms towards
different types of attacks. This includes attacks that try to leak in-
formation about individual training records of a model [26, 57], and
those aiming to duplicate the functionality of a black-box MLaaS
model by querying the model [64]. While these studies are in gen-
eral orthogonal to ourwork, there is scope for borrowing techniques
from them that can help us better understand MLaaS platforms.
Empirical Analysis of ML Classifiers. Prior empirical analy-
sis focused on determining the best classifier for a variety of ML
problems using user-managed ML tools (e.g. Weka, R, Matlab) on a
large number of datasets. Multiple studies conducted an exhaustive
performance evaluation of up to 179 supervised classifiers using
up to 121 datasets [15, 23, 66]. All studies observe that Random
Forests, Boosted or Bagging Trees outperform other classifiers, in-
cluding SVM, Naïve Bayes, Logistic Regression, Decision Tree, and
Multi-layer Perceptron. Caruana et al. further studied classifier per-
formance focusing on high-dimensional datasets [14]. They find
that Random Forests perform better than Boosted Trees on high-
dimensional data, and the relative performance difference between
classifiers change as dimensionality increases. Other work also fo-
cused on evaluating performance of specific classifier families, for
example tree-based classifiers [47, 50], rule-based classifiers [50],
and ensemble methods [49].

In comparison, our work does not focus on a single step of the
ML pipeline. Instead, we analyze end-to-end impact of complexity
on classifier performance, through the lens of deployed MLaaS
platforms. This allows us to understand how specific changes to the
ML task pipeline impact actual performance in a real world system.
Instead of focusing only on the best achievable performance for
any classifier, we recognize the wide-spread use of ML by generalist
users, and study the “cost” of suboptimal decisions in choosing and
configuring classifiers in terms of degraded performance.
Automated Machine Learning. Many works focused on re-
ducing human effort in ML system design by automating classifier
selection and parameter tuning. Researchers proposed mechanisms

to recommend classifier choices based on classifiers that are known
to perform well on similar datasets [40]. Many mechanisms even
use machine learning algorithms like collaborative filtering and
k-nearest neighbor to recommend classifiers [4, 10, 60]. To perform
automatic parameter optimization, methods have been proposed
based on intuition-based Random Search [6, 7], and Bayesian op-
timization [7, 25, 37, 61]. These mechanisms have been shown to
estimate suitable parameters with less computational complexity
than brute-force methods like Grid Search [21]. Other works pro-
posed techniques to automate the entire ML pipeline. For example,
Auto-Weka [39, 63] and Auto-Sklearn [24] could search through
the joint space of classifiers and their respective parameter settings
and choose the optimal configuration.
Experimental Design for Evaluating ML Classifiers. The
ML community has a long history on classifier evaluation using
carefully designed benchmark tests [38, 53, 68]. Many studies pro-
posed theoretical frameworks and guidelines for designing bench-
mark experiments [22, 36]. Dietterich used statistical tests to com-
pare classifiers [20] and the methodology was later improved in
follow-up work [19, 29]. Our performance evaluation using Fried-
man ranking is based on their methodology. Other work focused
on comparing and benchmarking performance of popular ML soft-
ware [30, 69], e.g. Weka [75], PRTools [65], KEEL [2] and, more
recently, deep learning tools [56]. In addition, work has been done
to identify and quantify the relationship between classifier perfor-
mance and dataset properties [35, 46], especially dataset complex-
ity [44, 48, 78]. Our work leverages similar insights about dataset
complexity (linearity) to automatically identify classifier families
based on prediction results.

8 LIMITATIONS
We point out three limitations of our study. First, we focus on 6
mainstream MLaaS platforms, covering services provided by both
traditional Internet giants (Google, Microsoft, Amazon) and emerg-
ing startups (ABM. BigML, PredictionIO). We did not study other
commercial MLaaS platforms because they either focus on highly
specialized tasks (e.g. image/text classification), or does not support
large scale measurements (e.g. posing strict rate limit). Second, we
focus on binary classification tasks with three dimensions of con-
trol (CLF, PARA, and FEAT). We did not extend our analysis to other
ML tasks and cover every configuration choice, e.g. more advanced
classifiers. We leave these as future work. Third, we only study
the classification performance of MLaaS platforms, which is one
of the many aspects to evaluate MLaaS platforms. There are other
dimensions, e.g. training time, cost, robustness to incorrect input.
We leave further exploration of these aspects as future work.

9 CONCLUSIONS
For network researchers, MLaaS systems provide an attractive al-
ternative to running and configuring their own standalone ML clas-
sifiers. Our study empirically analyzes the performance of MLaaS
platforms, with a focus on understanding how user control impacts
both the performance and performance variance of classification
in common ML tasks.

Our study produced multiple key takeaways. First, as expected,
with more control comes more potential performance gains, as well

as greater performance degradation from poor configuration deci-
sions. Second, fully automated platforms are optimizing classifiers
using internal tests. While this greatly simplifies the ML process
and helps them outperform other MLaaS platforms using default
settings, their aggregated performance lags far behind well-tuned
versions of more configurable alternatives (Microsoft, PredictionIO,
local scikit-learn). Finally, much of the gains from configuration and
tuning come from choosing the right classifier. Experimenting with
a small random subset of classifiers is likely to achieve near-optimal
results.

Our study shows that used correctly, MLaaS systems can provide
networking researchers results comparable to standalone ML clas-
sifiers. While more automated “turnkey” systems are making some
intelligent decisions on classifiers, they still have a long way to go.
Thankfully, we show that for most classification tasks today, ex-
perimenting with a small random subset of classifiers will produce
near-optimal results.

ACKNOWLEDGMENTS
We wish to thank our shepherd Chadi Barakat and the anonymous
reviewers for their useful feedback. This project was supported by
NSF grants CNS-1527939 and CNS-1705042. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of any
funding agencies.

REFERENCES
[1] Bhavish Aggarwal, Ranjita Bhagwan, Tathagata Das, Siddharth Eswaran,

Venkata N. Padmanabhan, and Geoffrey M. Voelker. 2009. NetPrints: Diagnosing
home network misconfigurations using shared knowledge. In Proc. of NSDI.

[2] Jesús Alcalá-Fdez, Luciano Sánchez, Salvador Garcia, Maria Jose del Jesus, Se-
bastian Ventura, Josep M. Garrell, José Otero, Cristóbal Romero, Jaume Bacardit,
Victor M. Rivas, et al. 2009. KEEL: A software tool to assess evolutionary al-
gorithms for data mining problems. Soft Computing-A Fusion of Foundations,
Methodologies and Applications 13, 3 (2009), 307–318.

[3] Arthur Asuncion and David Newman. 2007. UCI machine learning repository.
http://archive.ics.uci.edu/ml. (2007).

[4] Rémi Bardenet, Mátyás Brendel, Balázs Kégl, and Michele Sebag. 2013. Collabo-
rative hyperparameter tuning. In Proc. of ICML.

[5] Fabrício Benevenuto, Gabriel Magno, Tiago Rodrigues, and Virgílio Almeida.
2010. Detecting spammers on Twitter. In Proc. of CEAS.

[6] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of Machine Learning Research 13, Feb (2012), 281–305.

[7] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algo-
rithms for hyper-parameter optimization. In Proc. of NIPS.

[8] Peter Bodik, Moises Goldszmidt, Armando Fox, Dawn B. Woodard, and Hans
Andersen. 2010. Fingerprinting the datacenter: Automated classification of
performance crises. In Proc. of EuroSys.

[9] Léon Bottou and Chih-Jen Lin. 2007. Support vector machine solvers. Large scale
kernel machines (2007), 301–320.

[10] Pavel B. Brazdil, Carlos Soares, and Joaquim Pinto Da Costa. 2003. Ranking
learning algorithms: Using IBL and meta-learning on accuracy and time results.
Machine Learning 50, 3 (2003), 251–277.

[11] Leo Breiman. 1996. Bagging predictors. Machine learning 24, 2 (1996), 123–140.
[12] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[13] Matthijs C. Brouwer, Allan R. Tunkel, and Diederik van de Beek. 2010. Epidemiol-

ogy, diagnosis, and antimicrobial treatment of acute bacterial meningitis. Clinical
microbiology reviews 23, 3 (2010), 467–492.

[14] Rich Caruana, Nikos Karampatziakis, and Ainur Yessenalina. 2008. An empirical
evaluation of supervised learning in high dimensions. In Proc. of ICML.

[15] Rich Caruana and Alexandru Niculescu-Mizil. 2006. An empirical comparison of
supervised learning algorithms. In Proc. of ICML.

[16] Simon Chan, Thomas Stone, Kit Pang Szeto, and Ka Hou Chan. 2013. PredictionIO:
a distributed machine learning server for practical software development. In Proc.
of CIKM.

[17] Helen Costa, Fabricio Benevenuto, and Luiz H.C. Merschmann. 2013. Detecting
tip spam in location-based social networks. In Proc. of SAC.

[18] Helen Costa, Luiz Henrique de CamposMerschmann, Fabricio Barth, and Fabricio
Benevenuto. 2014. Pollution, Bad-mouthing, and Local Marketing: The under-
ground of location-based social networks. Elsevier Information Sciences (2014).

[19] Janez Demšar. 2006. Statistical comparisons of classifiers over multiple data sets.
Journal of Machine learning research 7, Jan (2006), 1–30.

[20] Thomas G. Dietterich. 1998. Approximate statistical tests for comparing su-
pervised classification learning algorithms. Neural computation 10, 7 (1998),
1895–1923.

[21] Katharina Eggensperger, Matthias Feurer, Frank Hutter, James Bergstra, Jasper
Snoek, Holger Hoos, and Kevin Leyton-Brown. 2013. Towards an empirical
foundation for assessing bayesian optimization of hyperparameters. In Proc. of
NIPS.

[22] Manuel J.A. Eugster, Torsten Hothorn, and Friedrich Leisch. 2016. Domain-based
benchmark experiments: Exploratory and inferential analysis. Austrian Journal
of Statistics 41, 1 (2016), 5–26.

[23] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim.
2014. Do we need hundreds of classifiers to solve real world classification
problems. Journal of Machine Learning Research 15, 1 (2014), 3133–3181.

[24] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel
Blum, and Frank Hutter. 2015. Efficient and robust automated machine learning.
In Proc. of NIPS.

[25] Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. 2015. Initializing
bayesian hyperparameter optimization via meta-learning. In Proc. of AAAI.

[26] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion
attacks that exploit confidence information and basic countermeasures. In Proc.
of CCS.

[27] Yoav Freund and Robert E. Schapire. 1999. Large margin classification using the
perceptron algorithm. Machine learning 37, 3 (1999), 277–296.

[28] Jerome H. Friedman. 2002. Stochastic gradient boosting. Computational Statistics
and Data Analysis 38, 4 (2002), 367–378.

[29] Salvador Garcia and Francisco Herrera. 2008. An extension on “statistical compar-
isons of classifiers over multiple data sets” for all pairwise comparisons. Journal
of Machine Learning Research 9, Dec (2008), 2677–2694.

[30] Michael Goebel and Le Gruenwald. 1999. A survey of data mining and knowledge
discovery software tools. ACM SIGKDD explorations newsletter 1, 1 (1999), 20–33.

[31] Peter Haider and Tobias Scheffer. 2014. Finding botnets using minimal graph
clusterings. In Proc. of ICML.

[32] Frank E. Harrell. 2002. Very low birth weight infants dataset.
[33] Frank E. Harrell. 2006. VA lung cancer dataset.
[34] Ralf Herbrich, Thore Graepel, and Colin Campbell. 2001. Bayes point machines.

Journal of Machine Learning Research 1, Aug (2001), 245–279.
[35] Robert C. Holte. 1993. Very simple classification rules perform well on most

commonly used datasets. Machine learning 11, 1 (1993), 63–90.
[36] Torsten Hothorn, Friedrich Leisch, Achim Zeileis, and Kurt Hornik. 2005. The

design and analysis of benchmark experiments. Journal of Computational and
Graphical Statistics 14, 3 (2005), 675–699.

[37] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential model-
based optimization for general algorithm configuration. In Proc. of LION.

[38] Eamonn Keogh and Shruti Kasetty. 2003. On the need for time series data mining
benchmarks: a survey and empirical demonstration. Data Mining and knowledge
discovery 7, 4 (2003), 349–371.

[39] Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter, and Kevin Leyton-
Brown. 2016. Auto-WEKA 2.0: Automatic model selection and hyperparameter
optimization in WEKA. Journal of Machine Learning Research 17 (2016), 1–5.

[40] Rui Leite, Pavel Brazdil, and Joaquin Vanschoren. 2012. Selecting classification
algorithms with active testing. In Proc. of MLDM.

[41] Zhijing Li, Ana Nika, Xinyi Zhang, Yanzi Zhu, Yuanshun Yao, Ben Y. Zhao,
and Haitao Zheng. 2017. Identifying value in crowdsourced wireless signal
measurements. In Proc. of WWW.

[42] Dapeng Liu, Youjian Zhao, Haowen Xu, Yongqian Sun, Dan Pei, Jiao Luo, Xiaowei
Jing, and Mei Feng. 2015. Opprentice: Towards practical and automatic anomaly
detection through machine learning. In Proc. of IMC.

[43] Qingyun Liu, Shiliang Tang, Xinyi Zhang, Xiaohan Zhao, Ben Y. Zhao, and Haitao
Zheng. 2016. Network growth and link prediction through an empirical lens. In
Proc. of IMC.

[44] Julián Luengo and Francisco Herrera. 2015. An automatic extraction method
of the domains of competence for learning classifiers using data complexity
measures. Knowledge and Information Systems 42, 1 (2015), 147–180.

[45] Núria Macià and Ester Bernadó-Mansilla. 2014. Towards UCI+: A mindful reposi-
tory design. Information Sciences 261 (2014), 237–262.

[46] Núria Macià, Ester Bernadó-Mansilla, Albert Orriols-Puig, and Tin Kam Ho. 2013.
Learner excellence biased by data set selection: A case for data characterisation
and artificial data sets. Pattern Recognition 46, 3 (2013), 1054–1066.

[47] Richard Maclin and David Opitz. 1997. An empirical evaluation of bagging and
boosting. In Proc. of AAAI.

[48] Laura Morán-Fernández, Verónica Bolón-Canedo, and Amparo Alonso-Betanzos.
2016. Can classification performance be predicted by complexity measures? A
study using microarray data. Knowledge and Information Systems (2016), 1–24.

http://archive.ics.uci.edu/ml

[49] David Opitz and Richard Maclin. 1999. Popular ensemble methods: An empirical
study. Journal of Artificial Intelligence Research 11 (1999), 169–198.

[50] Claudia Perlich, Foster Provost, and Jeffrey S. Simonoff. 2003. Tree induction
vs. logistic regression: A learning-curve analysis. Journal of Machine Learning
Research 4, Jun (2003), 211–255.

[51] Mauro Ribeiro, Katarina Grolinger, and Miriam A.M. Capretz. 2015. MLaaS:
Machine learning as a service. In Proc. of ICMLA.

[52] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1988. Learning
representations by back-propagating errors. Cognitive modeling 5, 3 (1988), 1.

[53] Steven L. Salzberg. 1997. On comparing classifiers: Pitfalls to avoid and a recom-
mended approach. Data mining and knowledge discovery 1, 3 (1997), 317–328.

[54] Purnamrita Sarkar, Deepayan Chakrabarti, and Michael I. Jordan. 2012. Nonpara-
metric link prediction in dynamic networks. In Proc. of ICML.

[55] David J. Sheskin. 2003. Handbook of parametric and nonparametric statistical
procedures. CRC Press.

[56] Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xiaowen Chu. 2016. Benchmarking
state-of-the-art deep learning software tools. International Conference on Cloud
Computing and Big Data (2016), 99–104.

[57] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership inference attacks against machine learning models. In Proc. of IEEE S&P.

[58] Jamie Shotton, Toby Sharp, Pushmeet Kohli, Sebastian Nowozin, John Winn,
and Antonio Criminisi. 2013. Decision jungles: Compact and rich models for
classification. In Proc. of NIPS.

[59] Anirudh Sivaraman, Keith Winstein, Pratiksha Thaker, and Hari Balakrishnan.
2014. An experimental study of the learnability of congestion control. In Proc. of
SIGCOMM.

[60] Michael R. Smith, Logan Mitchell, Christophe Giraud-Carrier, and Tony Martinez.
2014. Recommending learning algorithms and their associated hyperparameters.
In Proc. of MLAS.

[61] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. 2012. Practical bayesian
optimization of machine learning algorithms. In Proc. of NIPS.

[62] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. 2005. Introduction to data
mining. Addison-Wesley Longman Publishing Co., Inc.

[63] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2013.
Auto-WEKA: Combined selection and hyperparameter optimization of classifica-
tion algorithms. In Proc. of KDD.

[64] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
2016. Stealing machine learning models via Prediction APIs. In Proc. of USENIX

Security.
[65] Ferdinand Van Der Heijden, Robert Duin, Dick De Ridder, and David MJ Tax.

2005. Classification, parameter estimation and state estimation: an engineering
approach using MATLAB. John Wiley & Sons.

[66] Joaquin Vanschoren, Hendrik Blockeel, Bernhard Pfahringer, and Geoffrey
Holmes. 2012. Experiment databases. Machine Learning 87, 2 (2012), 127–158.

[67] Jean-Philippe Vert, Koji Tsuda, and Bernhard Schölkopf. 2004. A primer on kernel
methods. Kernel Methods in Computational Biology (2004), 35–70.

[68] Kiri Wagstaff. 2012. Machine learning that matters. In Proc. of ICML.
[69] Abdullah H. Wahbeh, Qasem A. Al-Radaideh, Mohammed N. Al-Kabi, and

Emad M. Al-Shawakfa. 2011. A comparison study between data mining tools
over some classification methods. International Journal of Advanced Computer
Science and Applications (2011), 18–26.

[70] Gang Wang, Tristan Konolige, Christo Wilson, Xiao Wang, Haitao Zheng, and
Ben Y. Zhao. 2013. You are how you click: Clickstream analysis for sybil detection.
In Proc. of Usenix Security.

[71] Gang Wang, Bolun Wang, Tianyi Wang, Ana Nika, Haitao Zheng, and Ben Y.
Zhao. 2014. Whispers in the dark: Analysis of an anonymous social network. In
Proc. of IMC.

[72] Gang Wang, Xinyi Zhang, Shiliang Tang, Haitao Zheng, and Ben Y. Zhao. 2016.
Unsupervised clickstream clustering for user behavior analysis. In Proc. of CHI.

[73] David J. Whellan, Robert H. Tuttle, Eric J. Velazquez, Linda K. Shaw, James G.
Jollis, Wendell Ellis, Christopher M. O’connor, Robert M. Califf, and Salvador
Borges-Neto. 2006. Predicting significant coronary artery disease in patients
with left ventricular dysfunction. American heart journal 152, 2 (2006), 340–347.

[74] Keith Winstein and Hari Balakrishnan. 2013. TCP ex Machina: Computer-
generated congestion control. In Proc. of SIGCOMM.

[75] Ian H. Witten, Eibe Frank, Leonard E. Trigg, Mark A. Hall, Geoffrey Holmes,
and Sally Jo Cunningham. 1999. Weka: Practical machine learning tools and
techniques with Java implementations.

[76] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jordan. 2009.
Detecting large-scale system problems by mining console logs. In Proc. of SOSP.

[77] Minhui Xue, Cameron Ballard, Kelvin Liu, Carson Nemelka, Yanqiu Wu, Keith
Ross, and Haifeng Qian. 2016. You can Yak but you can’t hide: Localizing anony-
mous social network users. In Proc. of IMC.

[78] Julian Zubek and Dariusz M. Plewczynski. 2016. Complexity curve: a graphical
measure of data complexity and classifier performance. PeerJ Computer Science 2
(2016), e76.

	Abstract
	1 Introduction
	2 Understanding MLaaS platforms
	3 Methodology
	3.1 Datasets
	3.2 MLaaS Platform Measurements

	4 Complexity vs. Performance
	4.1 Optimized Performance
	4.2 Impact of Individual Controls

	5 Risks of Increasing Complexity
	5.1 Performance Variation across Platforms
	5.2 Variation from Tuning Individual Controls

	6 Hidden Optimizations
	6.1 Evidence of Internal Optimizations
	6.2 Predicting Classifier Family
	6.3 Impact of Internal Optimizations

	7 Related Work
	8 Limitations
	9 Conclusions
	References

