

November 1st, 2017

Through the Wormhole: Tracking Invisible MPLS Tunnels

<u>Yves VANAUBEL</u> Pascal MÉRINDOL Jean-Jacques PANSIOT Benoit DONNET

- MPLS background
- Invisible MPLS tunnels
- Measurement Campaign and Results

- * MPLS Background
 - Label Stack Entries
 - MPLS Network
- Invisible MPLS tunnels
- Measurement Campaign and Results

MPLS Label Stack Entries

- * <u>Label</u> <u>Stack</u> <u>Entries</u> (LSE) :
 - 32 bits
 - Inserted between the MAC and the IP layer

- Label : Label value, 20 bits
 S: Bottom of stack, 1 bit
- TC: <u>Traffic</u> <u>Class field</u>, 3 bits
- TTL: <u>Time</u> <u>To</u> <u>Live</u>, 8 bits

MPLS Network

- MPLS Background
- Invisible MPLS tunnels
 - Definition
 - Impact on the Topology Inference
 - Revelation
- Measurement Campaign and Results

MPLS Tunnel Discovery

- Classical MPLS tunnels can be revealed based on standard active measurement tools (traceroute)
- * Two features are required:
 - ICMP extension ([RFC4950]):
 - If an MPLS router must forge an ICMP *time exceeded* message, it should quote the MPLS LSE into it.
 - **TTL propagation** ([RFC3443]):
 - The ingress router of an MPLS tunnel should initialize the LSE-TTL with the value inside the IP-TTL field.
 - ✓ The opposite operation is done by the egress LER.

Explicit Tunnels

- * The two options are enabled
- * This kind of tunnel is perfectly visible with traceroute

Invisible Tunnels

- * With invisible tunnels, the TTL propagation is disabled
- * Only ingress/egress LERs visible

Impact on the Topology Inference

- * Internal MPLS routers are hidden from traceroute
- An entry point of an MPLS network appears as the neighbor of all exit points
- The whole layer-3 network turns into a dense mesh of <u>H</u>igh
 <u>D</u>egree <u>N</u>odes (HDN)

High Degree Node

- * A node is a HDN if it has at least 128 neighbors
 - 128 is a lower bound relative to well-known physical provider edge hardware
 - Reasonable balance between the volume of probes sent and the amount of interesting data collected

Invisible Tunnels - Revelation

- * <u>Direct</u> Path <u>Revelation</u> (DPR)
 - For networks not using MPLS for internal routing
 - Mostly Juniper devices (default behavior)
- * <u>Backward</u> <u>Recursive</u> <u>Path</u> <u>Revelation</u> (BRPR)
 - For networks using MPLS for all prefixes (internal and external)
 - Mostly CISCO routers (default behavior)

Direct Path Revelation (DPR)

traceroute from VP to DST:

- 1 **CE**₁ 18.317 ms
- 2 **PE**₁ 34.508 ms **=> HDN**
- 3 **PE**₂ 97.529 ms => **HDN**
- 4 CE₂ 107.050 ms
- 5 **DST** 131.278 ms

traceroute from **VP** to **PE**₂:

CE₂

AS₃

DST

- 1 CE₁ 18.317 ms
- 2 PE₁ 34.508 ms
- 3 **P**₁ 58.521 ms
- 4 P₂ 73.981 ms
- 5 P₃ 85.190 ms
- 6 PE₂ 94.529 ms

Simple IP forwarding if MPLS not used for internal traffic

=> Try to run a trace to an internal prefix and see if routers reveal themselves

Backward Recursive Path Revelation (BRPR)

traceroute from **VP** to P_1 does not reveal any new node => **STOP**

- MPLS background
- Invisible MPLS tunnels
- Measurement Campaign and Results

Measurement Campaign

- PlanetLab network
- * 91 vantage points equally divided in 5 groups
- * Selection of HDNs in CAIDA ITDK dataset
- Destinations set: HDNs and their neighbors, i.e. about 1.3M IP addresses
- * Destinations distributed amongst the 5 groups
- * Scamper with paris-traceroute
- * Each IP address in the traces pinged for fingerprinting
- * About 19 days of measurement

Measurement Results

- * 13,771 revealed invisible tunnels
 - 61% with DPR
 - 16% with BRPR
 - 23% with DPR/BRPR (1 hop, impossible to discriminate between the two techniques)
- * 5193 revealed public IP addresses

Invisible Tunnels Length

Impact of Invisible Tunnel on Internet Models

Degree distribution

Impact of Invisible Tunnel on Internet Models

* Path lengths

Conclusions

- New techniques to infer the presence and reveal invisible MPLS tunnels
- Validation based on GNS3 emulations
- Gain knowledge on the internal architecture of opaque MPLS ASes
- * Help improving Internet models

Conclusions

- * Other techniques allow to infer the length of invisible tunnels without revealing the content
 - Can be used as triggers before applying the revelation methods
 - Allow a modification of traceroute to run hidden MPLS tunnel revelations based on the triggers
- * Dataset and GNS3 validation models publicly available:

http://www.montefiore.ulg.ac.be/~bdonnet/mpls