High-resolution Measurement of Data Center Microbursts

Qiao Zhang (University of Washington)
Vincent Liu (University of Pennsylvania)
Hongyi Zeng (Facebook)
Arvind Krishnamurthy (University of Washington)
Networks are Fast, Measurements are not...

Data center networks are getting faster

- 100Gbps, ~100 ns to process a packet, 10-100 μs RTT

But measurement frameworks are not keeping up

- **SNMP counters** (e.g. bytes sent or drops) typically collected every couple minutes

- **Packet sampling** (sFlow or iptables) typically at low sampling rate, e.g. 1/30k
Networks are Fast, Measurements are not...

Data center networks are getting faster

- 100Gbps, ~100 ns to process a packet, 10-100 μs RTT

But measurement frameworks are not keeping up

- **SNMP counters** (e.g. bytes sent or drops) typically collected every couple minutes
- **Packet sampling** (sFlow or iptables) typically at low sampling rate, e.g. 1/30k

Too coarse-grained!
The Case for High Resolution

- Packet drop correlates poorly with utilization at 4 minute granularity
- 4 minute granularity hides short-term traffic spikes
- Need high-resolution to reveal finer-grained behaviors
The Case for High Resolution

- Packet drop correlates poorly with utilization at 4 minute granularity
- 4 minute granularity hides short-term traffic spikes
- Need high-resolution to reveal finer-grained behaviors

![Diagram showing the relationship between average drop rate and average utilization, indicating a generally very low drop rate.](image-url)
The Case for High Resolution

- Packet drop correlates poorly with utilization at 4 minute granularity
- 4 minute granularity hides short-term traffic spikes
- Need high-resolution to reveal finer-grained behaviors

unusual drop rates at both low and high utilization

drop rate generally very low
Roadmap

Mechanism

- It is possible to do high resolution measurements on today's switches

Results

- Many if not most traffic bursts are very short-lived
High-resolution Counter Collection Framework

We designed a high-resolution counter collection framework

- Switch CPUs poll ASIC registers with microsecond level latency
- Sample fast (~25 μs) while keeping sampling loss below 1%

We focus on three kinds of counters

1. **Byte count**: cumulative and used to compute utilization
2. **Packet size**: a histogram of packet sizes
3. **Peak buffer occupancy**: for single port and shared pool
Deployment

- One of the largest data centers at Facebook with a 3-tier Clos network
- Only collect from ToRs due to deployment constraints
- 10Gbps server links and 4x40Gbps ToR uplinks
Workload and Methodology

- Mostly single-role racks
 - Web: handle user request, lookup with cache
 - Cache: handle k-v lookups, respond to Web servers
 - Hadoop: handle batched processing
- 30 racks in total: 10 racks for each app, over 24 hours
 - Sample a random 2-minute interval per hour, for 1TB+
Microburst Measurements

Microburst:
a period of short-term high utilization (e.g. >50%)

• How long do they last and how often do they occur?
• How much of congestion is caused by microbursts?
• Does network behavior differ significantly inside a burst?
• Are there synchronized behaviors during bursts?
Distribution of Link Utilization
Distribution of Link Utilization

a lot of intervals with almost nothing happening

25 μs

CDF

% Link Utilization

Web
Cache
Hadoop
Distribution of Link Utilization

A lot of intervals with almost nothing happening.

A few intervals have ~100% utilization.

25 μs
Distribution of Link Utilization

- A lot of intervals with almost nothing happening.
- Some intervals have ~100% utilization.
- Insensitive to 50% threshold.
Bursts are Short

- **Burst**: an unbroken sequence of hot samples (> 50% util)
Bursts are Short

- **Burst**: an unbroken sequence of hot samples (> 50% util)

> many bursts last at most 25 μs
Bursts are Short

- **Burst**: an unbroken sequence of hot samples (> 50% util)

Many bursts last at most 25 μs.
Bursts are Short

- **Burst**: an unbroken sequence of hot samples (> 50% util)

Many bursts last at most 25 µs

Almost all congestion is short-lived

90pct at 200 µs
Time between Bursts

CDF

Inter-burst Duration (ms)

Web
Cache
Hadoop

25 μs
Time between Bursts

For Web/Hadoop, 50% < 1 RTT

25 μs
Time between Bursts

For Web/Hadoop, 50% < 1 RTT

Even for cache, median is < 10x RTT

25 μs
Time between Bursts

- Some predictability: a burst is likely to be followed by another relatively soon
- Potential for re-balance between bursts

For Web/Hadoop, 50% < 1 RTT

Even for cache, median is < 10x RTT

$25 \mu s$
Packet Size Distribution

Inside Burst

Outside Burst

Bigger packets inside bursts for Web/Cache

100 μs
Packet Size Distribution

Bigger packets inside bursts for Web/Cache

Burst are correlated with app-level behaviors (e.g. sending bigger responses or scatter-gather/incast)
Directionality of Bursts

300 μs
Directionality of Bursts

More bursts towards servers due to high fan-in

300 μs
Directionality of Bursts

More bursts towards servers due to high fan-in

Cache see more bursts on uplinks as responses are typically bigger than requests

300μs
Directionality of Bursts

More bursts towards servers due to high fan-in

Cache see more bursts on uplinks as responses are typically bigger than requests

Bursts are correlated with app behaviors

300 μs
Efficacy of Network Load Balancing

- 4 ToR Uplinks: compute mean absolute deviation (MAD) for each polling interval
- \(\text{MAD} = \text{mean}(|u - \bar{u}| / \bar{u}) \), so MAD=0 means perfect load balancing
Efficacy of Network Load Balancing

- 4 ToR Uplinks: compute mean absolute deviation (MAD) for each polling interval

- MAD = mean(|u - \bar{u}| / \bar{u}), so MAD=0 means perfect load balancing

links well balanced at 1s scale

40 \mu s
Efficacy of Network Load Balancing

- 4 ToR Uplinks: compute mean absolute deviation (MAD) for each polling interval

- \(\text{MAD} = \text{mean}(\frac{|u - \bar{u}|}{\bar{u}}) \), so MAD=0 means perfect load balancing

![Graph showing CDF of MAD of Uplink Utilization with links well balanced at 1s scale and highly unbalanced at 40 μs scale.](image)
Efficacy of Network Load Balancing

- 4 ToR Uplinks: compute mean absolute deviation (MAD) for each polling interval

- \[\text{MAD} = \text{mean}(|u - \bar{u}| / \bar{u}) \], so MAD=0 means perfect load balancing

Implications for design of network, e.g. for low latency and loss.
Conclusions

• Deployed a microsecond-scale measurement framework in production

 • Demonstrated it is possible to do high-resolution measurement on today's switches

 • Microbursts are real, short, correlated, and related to application behaviors

 • Future work to correlate with end-host measurements to better understand causes for microbursts