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s BBRv1 fair to legacy
congestion control algorithms?




Prior work has tried to answer the fairness question with measurement.



Prior work has tried to answer the fairness question with measurement.

BBR is fair to Cubic in

deep-buffered networks.

10 —— 1 Cubic flow —— 1 BBR flow
1 Cubic: 60%
3 8 —
o]
z 6 U
5 |
g 4 f
g 1 BBR: 40%
o 2 * —
0 50 100 150 200 250 300
Time (s)

Figure: 1 BBR vs. 1 Cubic.
(10 Mbps network, 32 BDP queue)

Reference: N. Cardwell, et.al. 2016. BBR: Congestion control. In
Presentation at IETF97



Prior work has tried to answer the fairness question with measurement.

BBR is fair to Cubic in BBR is unfair to Cubic in

deep-buffered networks. deep-buffered networks.

— 1 BBR flow = Sum of 16 Cubic flows
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Figure: 1 BBR vs. 1 Cubic. Figure: 1 BBR vs. 16 Cubic.
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Reference: Ware et. al. The Battle for Bandwidth: Fairness and
Heterogenous Congestion Control. NSDI 2018.



Prior work does not explain why we see certain behavior.

BBR is fair to Cubic in BBR is unfair to Cubic in
deep-buffered networks. deep-buffered networks.
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How can we explain these results?




We can use modeling to understand an algorithm’s behavior.

Reno’s throughput

Mathis equation for TCP BW < (MSS) 1
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Can we build a model to understand BBR's interactions with loss-based
algorithms?

Reno’s throughput

Mathis equation for TCP BW < (MSS) 1

RTT | /o

VP

Padhye equation for TCP B(p) ~ min Winaz 1
) p(1+ 32p?)

RIT " ppr M+Tomin(1,3 3bp

Reno’s throughput
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Our equation for BBR's Can we build a model?
throughput




Can we build a model to understand BBR's interactions with loss-based
algorithms? Yes!

Reno’s throughput

Mathis equation for TCP BW < (MSS) 1

RTT | /o

VP

Padhye equation for TCP : 1
Reno's throughput 20 4 70 min (1’3 3bp) p(1 + 32p2)
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Our model shows BBR's throughput does not depend on the number of
competing loss-based flows.

Mathis equation for TCP BW < (

Reno’s throughput

MSS\ 1
RTT

VP

Padhye equation for TCP : 1

Reno’s throughput 200 4 Ty min (1’3 %) p(1 + 32p2))

)x (1 —(%+.2+l) x%)

| ] .

None of these variables depend on

the number of loss-based flows!
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BBR Is a rate-based algorithm.
How does BBR figure out sending rate?
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BBR Is a rate-based algorithm.
How does BBR figure out sending rate? ProbeBW

e Send at rater - 6 RTTs
e Sent at rate 1.25r. - 1 RTT

* Reduce to new sending rate (Drain) - 1 RTT
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BBR Is a rate-based algorithm.
How does BBR figure out sending rate? ProbeBW

Slow bottleneck link

(i1 Tube]
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BBR bandwidth estimate is the largest throughput it has seen over an 8
RTT window.

link capacity: 10 Mbps

BBR sending
rate: 9 Mbps
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During ProbeBW, BBR increases its sending rate by 25% to see if it can

get more throughput.

link capacity: 10 Mbps

BBR sending

rate: 9-Mbps
1.25 x 9 Mbps

— 11.25 Mbps
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During ProbeBW, BBR increases its sending rate by 25% to see if it can
get more throughput.

link capacity:‘lO Mbps ‘

BBR sending

You @D rate: 9-Mbps
e — 1.25 x 9 Mbps
= 11.25 Mbps
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During ProbeBW, BBR increases its sending rate by 25% to see if it can
get more throughput.

link capacity: 10 Mbps

BBR sending

(i1 Tube]

Send at this new rate for 6 RTTs
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What happens during ProbeBW when competing with Reno or Cubic?

link capacity: 10 Mbps

(i1 Tube]

Reno
utilization:

9 Mbps (90%)

-
NETFLIX

T S—
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What happens during ProbeBW when competing with Reno or Cubic?

link capacity: 10 Mbps
Link + queue full

BBR sending
rate:
1 Mbps (10%)

(i1 Tube]

Reno
utilization:

9 Mbps (90%)

|
NETFLIX

T S—
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During ProbeBW, BBR will cause packet loss.

link capacity: 10 Mbps
Link + queue full

BBR sending
(1 Tube rate: ;
| Wt 1 Mbps—{10%)
‘ 1.25 Mbps
|
= Reno
utilization:

9 Mbps (90%)
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During ProbeBW, BBR will cause packet loss.

link capacity:‘ 10 Mbps \
Link + queue full

BBR sending
(1 Tube rate:
‘ 1.25 Mbps
|
= Reno
utilization:

9 Mbps (90%)
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During ProbeBW, BBR will cause packet loss.

link capacity:‘ 10 Mbps ‘
Link + queue not full

BBR sending
You{ D) rate: 0

1 Mbps (10%)
125 Mbps

1.21 Mbps(12%)

Reno
S utilization:

9 Mbps (90%)

4.5 Mbps (45%)
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BBR will increase its steady-state sending rate while loss-based flows will
back off.

link capacity: 10 Mbps
Link + queue not full

BBR sending
rate:

1 Mbps (10%)
1.25 Mbps

1.21 Mbps(12%)

Reno
utilization:

9-Mbps-{90%)

4.5 Mbps (45%)

BBR’'s new rate is 1.21 Mbps
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Cubic and Reno cannot return to their former throughput.

link capacity: 10 Mbps
Link + queue full

BBR sending
rate:

1 Mbps (10%)
1.25 Mbps

1.21 Mbps(12%)

Reno
utilization:

4.5 Mbps{45%)

8.79 Mbps (88%)
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num packets in queue
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During ProbeBW, BBR
will put more packets into

the queue and will update
its BW estimate.
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num packets in queue
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Shouldn't BBR just keep
going into ProbeBW,

putting more and more
packets into the queue?
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num packets in queue
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Why doesn't BBR keep

putting more packets into
the queue?
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Why doesn't BBR keep

putting more packets into
the queue?
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What is stopping ProbeBW from
consuming the whole link?
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One sentence in the BBR paper revealed the answer.

DELAYED AND STRETCHED ACKS

Cellular, Wi-Fi, and cable broadband networks often
delay and aggregate ACKs.' When inflight is limited to one
BDP, this results in throughput-reducing stalls. Raising
ProbeBW’s cwnd_gain to two allowed BBR to continue
sending smoothly at the estimated delivery rate/even
when ACKs are delayed by up to one RTT. This largely
avoids stalls.
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A safety mechanism dictates

BBR's link fraction under
competition.
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Key Insight:

Under competition,
BBR 1s not rate-limited,
it 1s window-limited

due to the in-flight cap.
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We need to model the in-flight cap.
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We need to model the in-flight cap.
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Assume that we have 1 BBR flow vs. 1 Cubic flow in a deep-buffered
network.

10 - — 1 Cubic flow =—— 1 BBR flow
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Figure: 1 BBR vs. 1 Cubic. (10 Mbps network, 32 BDP queue)



Assume:
¢ = btlnk link capacity
q = size of btlnk queue

Process packets at

Bottleneck queue
rate ¢

You{{Th)

. |
NETFLIX
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Assume: ¥ Cubic
¢ = btlnk link capacity
q = size of btlnk queue
p = fraction of btlnk queue

[ |
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Assume: #5 BBR #g Cubic
c = bFlnk link capacity (1= p)g -
q = size of btlnk queue I

p = fraction of btlnk queue l \ [
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Assume:
¢ = btlnk link capacity
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Assume:

¢ = btlnk link capacity

q = size of btlnk queue

p = fraction of btlnk queue
occupied by Cubic

1- p = fraction of btlnk
queue occupied by BBR
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Assume:

¢ = btlnk link capacity

q = size of btlnk queue

p = fraction of btlnk queue

occupied by Cubic
1- p = fraction of btlnk
queue occupied by BBR
BBR inflight cap
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Assume:

¢ = btlnk link capacity

q = size of btlnk queue

p = fraction of btlnk queue
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1- p = fraction of btlnk
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Assume:
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Assume:

¢ = btlnk link capacity

q = size of btlnk queue
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1 BBR flow gets up to half the queue/link with a 2 BDP in-flight cap.

— BBR - 2BDP Cap
1000 - - Cubic
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Figure: 1 BBR vs. 1 Cubic (32 BDP queue)
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When we change the in-flight cap, we see BBR can get more of the queue.

— BBR - 4BDP Cap

1000+ Cubic

Model
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(Packets)

Figure: 1 BBR vs. 1 Cubic (32 BDP queue)

48



Our paper has a more robust model of BBR's in-flight cap.

4 Key Differences From Simple Model:

Propagation delay (I)

Queue size (q = Xcl)
# of BBR flows (N)

Probing overhead

BBR (1 L, 1+4N) (1 ( +2+l)x1)
=(1—=+—+— |x (1 —-(—+. —
frac 2 2 c 10



Our model predicts BBR's throughput when competing against Cubic flows
with a median error of 5% (error is 8% for Reno).

4 Key Differences From Simple Model:
Propagation delay (I)

Queue size (g = Xcl)
4 of BBR flows (N) See paper for detalls!

Probing overhead

BBR —(1 1, 1,2 )x(1 (q+2+l)x1)
frac = 22X g c 10
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Takeaways:

M Od e | I n g When BBR competes with other

traffic, it becomes window-limited,

B B R y S I nte ra Ct i O n S Zi/niisnignﬁcﬁ;ﬁtiaa;a rate determined
Wit h LOSS_ B a Sed BBR's in-flight cap does not depend

on the number of competing loss-
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