ACM Internet Measurement Conference 2021

Rapid Web-Page Loading with Preload Scanner

Jemin Ahn, jiwoong Won, Kyungtae Kang*

Hanyang University, Republic of Korea

Despite being continuously advanced, con-
ventional web page loading processes remain
inefficient and prevent network devices from

fully utilizing their computing capabilities

This study investigates the primary source
of this inefficiency, known as script blocking,
which occurs owing to browser pipelining. An
advanced web page loading process is then
proposed, in which the Preload Scanner in
Chromium is modified such that it can
identify correlations between web objects

and pre-requests associated with them.

Experimental testing with example websites

demonstrates an improvement in overall web

page load times

Inefficiency of web page load

Reason

« Modern web browser use pipelining for

improving web page load performance. It

means network transmission and script

evaluation are executed simultaneously

« Web browser request is below
request and load HTML - Parsing HTML -
request HTML content sequentially while

DOM tree creating

Problem

e HTML content must be executed
sequentially to ensure that the result of
DOM tree value is consistent. But HTML

contents loading sequence can not be

guaranteed

« DOM tree generation is stopped when the

prior scripts are not loaded or evaluated

Preload Scanner

« Web browsers have several functions for

improving web page load performance,

preload scanner is one of them

e Preload scanner make and send pre-
request some HTML contents(script,
specified link tag content) before DOM tree

creation start

e Preload scanner has 3 fetch parameter
(kNoDefer | kLazyload | kidleload)

* Specified link tag \

** Change priority
() Modified in this study

ﬂlenderer Process(main)
[Prerequest]

1
| |

[**%‘afﬂsad1

| ->Knodefer)L Knodefer
i
<script> <*link>

f h 7

|
HTML Preload . .
\[Document I—’l Scanner H Parsing I—'l DOM]—-[Rendering]/

[Browser Process(network)

« Script evaluation sequence affects the

result of DOM tree, so the script should be
executed in order and need to be loaded
faster; for minimizing DOM creation

blocking situation

« Specified link tags can usually be style-

related files, contents that HTML writers
want to load fast, etc. But these kinds of

files do not occur DOM creation block

« Whole script files are preloaded with kLazy
Load parameter, and specified link tags are

preloaded ANoDefer; kNoDefer have higher

priority than kLazyload

« We changed this sequence for script

loading priority to have the same priority

of specified link tags and got improved

web page performance

Setup
e 0OS :Ubuntu 18.04 LTS

e Browser : The official chromium source

(https://chromium.googlesource.com/chromium/src/+

[refs/heads/main/docs/linux/build_instructions.md)

« Target web sites : Top 10 popular web sites
from Alexa TOP 50

(https://www.alexa.com/topsites/countries/KR)

How to do

50 times request with no cache condition
for each site

« Calculate average time duration between

initial HTML document load completion

time and completion of DOM tree

Acknowledgement

This work was supported by Institute of Information &
communications Technology Planning & Evaluation (lITP)
grant funded by the Korea government(MSIT) (No.2020-
0-01343) and the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT)
(1711117678)

o

Abstract Problem on the Process Result and Discussion

Site The number of Changed Improvement Average
Prerequest Prerequest Improvement
F 16 0
H 18 0
A 12 1 7%
C 22 2 12%
D 72 1 12% 13.6%
E 13 2 23%
J 21 4 14%
B 22 10 21%
G 34 10 32% 23.5%
I 24 11 16%
Total 17.12%

Result shows overall web page load

performance enhanced except F and H site

(Because F and H have no change)

« Second group and third group was
improved 13.6% and 23.5% each, and
entirely improved 17.12% of DOM creation

time

« E and | demonstrates that the number of
changed prerequests is not always

proportional to performance improvement

« When considering performance differences
iIn the same group, the total number of
prerequests and HTML document

environments (type, size, etc.) also affect

results.

Conclusion & Future Work

Conclusion

« We focused on inefficiency of the web
page load process and modified preload
scanner on the chromium browser

« Average 17.12% of Web page load time

was improved with simple modification

Future Work

« Establish more accurate and reasonable

standards using machine learning class-

ification

e Performance evaluation with various

conditions (different bandwidth, more

web sites and count of requests etc.)

Contact Information

Jemin - Email: ahnjemin@hanyang.ac.kr

Ahn - Web : cpslab@hanyang.ac.kr

Kyungtae - Email: ktkang@hanyang.ac.kr

Kang - Web : ktkanglab.hanyang.ac.kr

