A Scalable Network Event Detection Framework for Darknet Traffic

Max Gao Ricky K.P. Mok KC Claffy

UC San Diego/CAIDA

Introduction

- Darknet traffic is widely used to study internet-wide network events (e.g., censorship, malware outbreaks, DDoS impacts, etc.)
- Larger network telescopes collect more traffic. Processing it longitudinally at packet and flow resolutions is challenging.

Goal

- Evaluate the applications of ML-based approaches on detecting events of interest from time series derived from raw darknet traffic

Property Set

- Origin ASN (prefix2AS)
- Country of Origin (NetAcuity)
- IP Protocol Number
- TCP/UDP Destination Port
- ICMP Type & Code
- Spoofing Inference

Metric Set

- Packets / minute
- Bytes / minute
- # of unique source IPs / minute
- # of unique source ASNs / minute
- # of unique destination IPs / minute

Approach

Distance Matrix Computation
1. Select S>=1 time series of length T, each filtered by a property value
2. Partition each time series by segment length b, yielding S*N total segments
3. Apply Dynamic Time Warping on each unique pair of segments for a SNxSN symmetric matrix

Evaluation
1. Apply Hierarchical Agglomerative Clustering to extract clusters of dissimilarity scores
2. Extract statistics for further analysis from subsets of the matrix

Preliminary Results

Type I Events
- Detection of temporal relationships in dissimilarity scores between a single time series’ segment pairs

Type II Events
- Detection of temporally correlated dissimilarity scores in segments across multiple time series

Type III Events
- Detection of outlying dissimilarity scores within a set of time series segments

Discussion & Future Work

- The use cases we investigated are applicable for retrospective analysis and anomaly detection within darknet traffic

- In our future work, we plan to:
 - Comprehensively evaluate a large number of time series inputs
 - Automatically detect events, serving as a trigger for reactive measurements
 - Define events of interest, cross-evaluation with other internet datasets

This work is based on research sponsored by the National Science Foundation grants CNS-2120399, CNS-2131987, CNS-1730661, and the Amateur Radio Digital Communications (ARDC) Foundation. The views are those of the authors and do not necessarily represent endorsements, either expressed or implied, of the sponsors.