
SRR: An O(1) Time Complexity Packet Scheduler for Flows
in Multi-Service Packet Networks

Guo Chuanxiong
Inst. of Comm. Eng.

P.O.Box 110, 2 Biaoying, Yudao st.
Nanjing, 210016, China

xguo@ieee.org

ABSTRACT
In this paper, we present a novel fair queueing scheme, which we
call Smoothed Round Robin (SRR). Ordinary round robin
schedulers are well known for their burstiness in the scheduling
output. In order to overcome this problem, SRR codes the weights
of the flows into binary vectors to form a Weight Matrix, then
uses a Weight Spread Sequence (WSS), which is specially
designed to distribute the output more evenly, to schedule packets
by scanning the Weight Matrix. By using the WSS and the Weight
Matrix, SRR can emulate the Generalized Processor Sharing
(GPS) well. It possesses better short-term fairness and schedule
delay properties in comparison with various round robin
schedulers. At the same time, it preserves O(1) time complexity
by avoiding the time-stamp maintenance employed in various Fair
Queueing schedulers. Simulation and implementation experiments
show that SRR can provide good average end-to-end delay for
soft real-time services. SRR can also be implemented in high-
speed networks to provide QoS for its simplicity and low time
complexity.

Keywords
QoS, packet scheduler, fair queueing, time complexity, end-to-end
delay, high-speed networks.

1. INTRODUCTION
With the expanding of the Internet, more and more services
besides the traditional Best Effort services are added into the
network. Video and audio conferencing, remote medical caring
are some of the examples. It is expected that more services to be
introduced in the near future. Different types of services have
different characteristics, and generally have different
requirements. For example, video conferencing is a kind of VBR
service that requires broad bandwidth and low end-to-end delay
bound, while traditional data services do not have explicit QoS
requirements. Even with the rapid increasing rate of the

transmission medium, certain kind of isolation is needed to satisfy
the QoS requirements of the competing flows (as defined in [29] ,
a flow is a stream of packets that traverse the same route from the
source to the destination, and that require the same grade of
transmission service. Flows can be further aggregated into
classes). Many mechanisms on how to provide QoS support for
packet networks have been proposed in [3], [8], [13], [19], [29],
[30]. One of the most important parts of these mechanisms is a
packet scheduler. A packet scheduler’s task is to decide which
packet to be transmitted when the output link is idle. Traditional
routers use First Come First Serve (FCFS) scheduler to schedule
packets. FCFS does not distinguish different flows. Thus, it does
not provide any kind of isolation among them. We only consider
schedulers that distinguish different flows or classes in this paper.

Generally, packet scheduler should have the following properties:

1. low time complexity to choose and forward a packet;

2. treats different flows fairly;

3. provides low worst case delay and delay variation;

4. it should be simple enough to be implemented efficiently.

The simplicity and time complexity properties always collide with
the fairness and delay bound properties. Schedulers with short-
term fairness and strict delay bound generally have high time
complexity and are hard to be implemented. O(1) time complexity
schemes are easy to be implemented, but they generally fail to
provide short-term fairness and low local delay bound.

In time-stamp based schedulers (one of the two kinds of well
studied work-conserving scheduling algorithms), a virtual time
clock is maintained to emulate the ideal Generalized Processor
Sharing (GPS [19]). Traditional Weighted Fair Queuing (WFQ)
[11](PGPS [19]) has low local delay bound and good fairness, but
its time complexity is O(N) (N is the number of the active flows).
Variants of WFQ such as Virtual-Clock [29], WF2Q [1], Start-
time FQ [16], FFQ, SPFQ [25], Time-shift FQ [9] use different
methods to calculate the time-stamp, but still have at least
O(logN) time complexity. Since the best known algorithm to
insert a number into a sorted array needs O(logN), it is unlikely
that a time-stamp based scheduler with O(1) time complexity can
be found. However, an O(logN) scheduler is not good enough for
a high-speed link. For example, it takes approximate 0.08us to
transmit a 100 bytes length packet for a 10Gbps link. That means
an O(logN) scheduler must finish the packet selection in 0.08us
regardless of the number of flows. The situation becomes even
worse when the capacity of the output link is 40Gbps or higher.

This work was supported by the 863 project of China under contract
number 863-300-02-04-99

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCOMM’01, August 27-31, 2001, San Diego, California, USA.
Copyright 2001 ACM 1-58113-411-8/01/0008…$5.00.

211

On the other hand, another kind of work-conserving schedulers,
the round robin schemes are simple to be implemented and have
O(1) time complexity, but they are well known for their output
burstiness and short-term unfairness. Deficit Round Robin (DRR)
[23] and Carry-Over Round Robin (CORR) [22] are typical round
robin schedulers. In these kinds of round robin schedulers, the
schedulers will serve a flow for a continuous period of time in
proportion to the weight of the flow, resulting in a highly burst
scheduling output for each flow. Thus, these kinds of round robin
schedulers are considered not suitable to provide QoS in packet
networks.

In this paper, we present a Smoothed Round Robin (SRR)
scheduler to overcome the shortcomings of the ordinary round
robin schedulers. SRR has short-term fairness and certain
schedule delay bound, as well as O(1) time complexity. A Weight
Spread Sequence (WSS) and a Weight Matrix are used as two key
data structures of the scheduler. The weights of the flows are
coded into binary vectors to form a Weight Matrix, then SRR uses
the corresponding WSS to scan the Weight Matrix. WSS is a
specially designed sequence that can distribute the output traffic
of each flow evenly. Thus, SRR can emulate GPS as the various
time-stamp based schedulers do. Since it does not need to
maintain any tags or states, SRR can achieve O(1) time
complexity, short-term fairness, and certain delay bound at the
same time.

In the following paragraphs, an example is illustrated to show
how SRR works. The concepts of WSS, Weight Matrix are used
without definitions. The formal definitions will be given in
Section 2.

Suppose there are four flows with fixed packet size, named
1f , 2f , 3f ,

4f , with rates kbpsr 641 = , kbpsr 2562 = ,

kbpsr 5123 = , kbpsr 1924 = . The packet sizes of the flows are
512 bytes; all the four flows are backlogged. And the bandwidth
of the output link MbpsC 1220 == . The corresponding weights

of the flows are 11 =w , 42 =w , 83 =w , 34 =w . By coding

the weights into binary vectors, we have }1,0,0,0{1 =WV ,

}0,0,1,0{2 =WV , }0,0,0,1{3 =WV , }1,1,0,0{4 =WV for the
four flows respectively. According to the binary vectors, the
Weight Matrix corresponding to flow 1f , 2f , 3f , 4f is,

.

1100
0001
0010
1000

4

3

2

1



















=



















=

WV
WV
WV
WV

WM

We number the columns of this WM from left to right as

0123 ,, columnandcolumncolumncolumn .

The corresponding WSS (which will be defined in Section 2.1) to
this Weight Matrix is,

1,2,1,3,1,2,1,4,1,2,1,3,1,2,1.

SRR then scans the WSS term by term, when the value of the term
is i , the icolumn −4 is chosen. In icolumn −4 , the scheduler
will scan the terms from top to bottom, when the term is not 0, the
scheduler will serve the corresponding flow. That is, the flows
will be served in the following service sequence,

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

f1

f4

f2

f3WFQ

 f1
 f2
 f3
 f4

pa
ck

et
s

time(unit:4ms)

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

f3

f2

f4

f1

SRR

 f1
 f2
 f3
 f4

pa
ck

et
s

time(unit:4ms)

Figure 1. Service curves of the three schedulers

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8 f3

f2

f4

f1

DRR

 f1
 f2
 f3
 f4pa

ck
et

s

time(unit:4ms)

212

.,,,,,,,,,,,,,,, 3234323413234323 ffffffffffffffff

The service curves of the flows in SRR are shown in Figure 1
together with that in WFQ and DRR. From the above example, we
can observe that SRR emulates the GPS quite well. Both WFQ
and SRR perform much better than DRR in that they have much
better delay bound and short-term fairness. It is also easy to
observe that the outputs of 2f , 3f , 4f in DRR are very bursty.

In Section 2, the definition of a set of Weight Spread Sequences
(WSS) and their properties are presented first, then the definition
of the Weight Matrix is given. In Section 3, the formal description
of SRR is described. The fairness, schedule delay bound,
scalability, space and time complexity of SRR are analyzed in
Section 4. In section 5, simulation experiments are designed to
compare the end-to-end delay property of SRR with that of WFQ
and DRR, simulation experiments show that SRR can provide
good average end-to-end delay for soft real-time services such as
IP telephony. This paper concludes with Section 6.

2. THE WEIGHT SPREAD SEQUENCE
AND THE WEIGHT MATRIX
2.1 The Weight Spread Sequence
Definition 1: A set of Weight Spread Sequences (WSS) is
defined recursively as,

1) The first WSS 11 =S ,

2) The kth WSS is, .,,}{ 11 −−== kk
i

k SkSaS

121 −≤≤ ki for 1>k (1)

The set corresponding to sequence kS is },,3,2,1{ kK . klen
is defined as the total number of terms of the kth WSS. The terms
of the kth WSS can be arranged in a circle so that term 12 −ka is

next to term 1a .

The distance between two terms ma and na of kS is defined to
be,

)].12mod()(),12mod()min[(−−−− kk nmmn

Two terms ma , na (m>n) are called two adjacent occurrences of
element)1(kii <≤ if,

1) iaa nm == , and,

2) ia j ≠ for),(mnj ∈ or ia j ≠ for

),1[]12,(nmj k U−∈ . For the former case, the chain between

two adjacent occurrences ma , na for element i is

},,,{ 121 −++ mnn aaa K , for the latter case, the chain is

},,,,,,,{ 1211221 −−++ nmm aaaaaa k KK .

For example, from Definition 1, the 5th WSS is

1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1.

So, for this sequence, 315 =len , the distance between two
adjacent occurrences of element 3 is 7 or 8.

The following Propositions are properties of WSS.

Proposition 1: The first (12 1 −−k) terms of a kth WSS forms a
(k-1)th WSS. And a (2k)th WSS can be constructed from a kth
WSS and a (k+1)th WSS in the following way,

1. adding (k-1) to every term of the (k+1)th WSS;

2. replacing the terms ia where kai = of the newly formed
(k+1)th WSS with the kth WSS. The newly formed sequence is
a (2k)th WSS.

Proposition 2: The total number of terms of kS is
12 −k (i.e., 12 −= k

klen), and the number of the occurrences of

element)1(kii ≤≤ is ik −2 .

Proposition 3: The chain between two adjacent occurrences
)(, nmaa nm > of element i in kS is,

{ ;)12(,
.)12(,,

11

11
mnnmifSS
mnnmifSxS

kii

kii
−−+>−
−−+<−

−−

−− (2)

where ki <<1 , and kxi ≤< . The proof of Proposition 3 is
given in the Appendix A.

The following proposition is obvious in view of Proposition 3.
Proposition 4: The distance between two adjacent occurrences of

element)1(kii <≤ in kS is either i2 or 12 −i .

Since there is only one occurrence of element k in kS , the

distance of element k is defined to be 12 −k .

2.2 The Weight Matrix
In various Fair Queueing Schedulers, each flow is assigned a
weight in proportion to its reserved rate. In this paper, we assume
that the set of weights is }12,5,4,3,2,1{ −kK . By adjusting the
value of kk, rate allocation schemes with different range can be
accommodated. For example, for k=16, if the granularity of rate is
1bps, then the set of rates corresponding to the set of weights is

}64,,3,2,1{ kbpsbpsbpsbps L . For k=32, the set of rates is
}4,,3,2,1{ Gbpsbpsbpsbps L .

The weight of fflow can be coded as,

∑
−

=

=
1

0
, 2

k

n

n
nff aw where }1,0{, ∈nfa .

Definition 2: The binary coefficients nfa , of fw form a Weight

Vector of fflow , which is defined as,

},,,{ 0,)2(,)1(, fkfkff aaaWV K−−= . (3)

213

Definition 3: The Weight Matrix corresponding to flows

Nfff ,,, 21 K is defined as

.

0,)2(,)1(,

0,2)2(,2)1(,2

0,1)2(,1)1(,1

2

1





















=



















=

−−

−−

−−

NkNkN

kk

kk

N aaa

aaa
aaa

WV

WV
WV

WM

K

MOMM

K

K

M
 (4)

where }1,0{, ∈jia , and)1(0,1 −≤≤≤≤ kjNi . We

number the column of the Weight Matrix from left to right as

021 ,,, columncolumncolumn kk K−− .

3. THE SMOOTHED ROUND ROBIN
SCHEDULER
We combine the kkth WSS and the kN × Weight Matrix to form
the Smoothed Round Robin (SRR) scheduler. The basic idea of
SRR is based on the scanning of the WSS and the corresponding
Weight Matrix. The WSS is scanned term by term. When the
current term is element i , ikcolumn −

of the Weight Matrix is
selected. For each occurrence of 1)(, =−ikfa in this column, packet

from flow corresponding to the row of)(, ikfa − is scheduled.

In the following of this section, the formal description of SRR is
given.

3.1 Formal Description of SRR
In this paper, we focus on packet scheduler, and consider the
packet classification the function of the packet classifier, the
assignment of weights to flows the function of the admission
controller, and that all the input packets are queued to their
corresponding queues by the packet enqueuer. The tasks of the
packet scheduler are to choose and forward packets and to
maintain related data structures of the scheduler.

In a packet network, if the packet length of a flow is greater than
the Maximum Transmission Unit (MTU) of the output link, the
system will fragmentize the packet into small pieces. Therefore,
we assume that the maximum packet length of all the flows is the
MTU of the output link, and denote it as maxL .

In SRR, we assume that the maximum order of WSS is maxK .

When maxK =32, if the bandwidth assignment granularity is
1bps, the set of rates that can be provided by SRR is

}4,,3,2,1{ Gbpsbpsbpsbps L ; if the granularity is 1kbps, the
set of rates is }4,,3,2,1{ Tbpskbpskbpskbps L .

We assume that a flow can be deleted explicitly by a command
(i.e., by some kinds of signaling protocols) or implicitly by SRR
when the queue corresponding to that flow is empty.

We adopt the following notations for the scheduler:

maxK The maximum order of the WSS used by SRR;

M Weight Matrix of all the active flows;
kS The kth WSS currently used by the scheduler;

k The order of the current WSS used by SRR;

cP Index of the current scanning position of the WSS,
ranging from 1 to 12 −k ;

fqueue

Queue of the received packets of
fflow , which is a

FIFO;

fP Packet that is at the head of fqueue ;

fL Length of fP ;

fw Weight of fflow , it is a normalized value

according to the bandwidth assignment granularity;

fdeficit

A register to memorize how many bytes

fflow should bring to the next round;

iDL The ith double link, max0 Ki <≤ . There are
maxK

double links in SRR;

dlP Pointer to a node of a double link;

maxL The upper bound of packet’s length of the output
link;

C Normalized (according to the bandwidth assignment
granularity) bandwidth of the output link.

We use the following 3 pieces of pseudo C code in Figure 2 to
illustrate the scheduler. There are 3 asynchronous actions,
namely, Schedule, Add_flow, Del_flow. Each action is triggered
by some events. Schedule is the main part of the scheduler, it is
invoked whenever the output link enters a busy-period. Add_flow
is invoked when a new flow arrives. Del_flow is the action taking
place when the flow is deleted explicitly or dead (i.e., the queue of
the corresponding flow is empty).

Schedule{
local variable: f, col; /*f, col are the current row, column
number of M, respectively*/
Pc=1; Pdl=headk-1->next; /*initialization*/

while(in busy-period){
 f=Pdl ->fid;
 deficitf = deficitf + Lmax;
 while(deficitf > 0){
 if(Lf <= deficitf){
 dequeue(Pf);
 send(Pf);
 deficitf = deficitf - Lf;
 if(queuef is empty){
 Del_flow(f);
 break;
 }
 }else break;
 }
 if(Pdl->next!=tailcol){
 Pdl=Pdl->next;
 }else{

214

loop: Pc=Pc+1;
 if(Pc==2k) Pc=1;
 col=k-Sk[Pc];/*get the corresponding column number */
 if(DLcol is empty) goto loop;
 Pdl=headcol->next; /* points to the first non-zero term of
this column*/
 }

 }
}

Add_flow(w) { /* w is the weight assigned to this flow */

 local variable: f;
 f=get_flowId() ; /*get a new flow ID for this flow */
 assign deficitf, queuef ; /* deficitf=0, queuef is empty */
 use w to form a Weight Vector as shown in Equation 3;
 add the vector to the last row of Matrix M;
 insert nodes into DL0, DL1, …, DLKmax-1 according to the

coefficients of w;
 if(new columns are added into M)

 update k;
}

Del_flow(f) { /* f is the flow ID of this flow */

remove the corresponding row from M;
remove deficitf, queuef;
remove nodes from DL0, DL1, …, DLKmax-1 according to the

coefficients of wf ;
if(empty columns are deleted from M){

 update k;
Pc = Pc mod (2k);

}
}

Figure 2. Description of SRR

The Weight Matrix is adjusted dynamically in SRR. When a new
flow comes, a new row will be added into M as the last row. If the

weight of this new flow ∑ −

= −= 1

0)1(, 2j

n
n

jff aw

)1,()1(, => −jfakj , new columns numbered

kjj columnclolumncolumn ,,, 21 K−− will be added into

M, and the order of the WSS is adjusted to j (ij.e., k=j). When a
flow leaves SRR, the corresponding row of M will be deleted. If
the ,,, 21 K−− kk clolumncolumn icolumn become empty,
these columns will be removed from M, then the order of the WSS
is adjusted to i (i.e., k=i).

)1(maxKkS k ≤≤ is the kkth WSS defined by equation (1), the
order of the WSS used in SRR is adjusted dynamically according
to the column number of M.

fdeficit is borrowed from DRR [23] to memorize the bytes that

fflow can bring into the next round.

There are
maxK double links named 0DL , K,1DL ,

1max −KDL in

SRR. iDL is used to link the non-zero terms of icolumn of M.

Each iDL has a head, and a tail. Each node of the link has three
fields, next, prev and fid. next is a pointer points to the next node,
prev is a pointer points to the previous node, and fid is a field
contains the flow id.

iDL is defined to be empty if all the terms of

icolumn are zero. These links are used here to reduce the time
complexity of SRR. Double link data structure is chosen to reduce
the time complexity of flow deletion.

The busy-period in Schedule has the same meaning as that in
[19]. At the beginning of SRR, M and the double links are empty.
When the first flow comes, Add_flow will be called. Then
Schedule will be invoked. After Del_flow deletes the last flow,
the system enters idle state waiting for the next busy-period. Since
Add_flow and Del_flow need to update at most k double links,
their time complexities are in proportion to k, which is the current
order of WSS used by SRR.

Since M is adjusted dynamically according to the weights of flows
in SRR, SRR has the following property.

Proposition 5: The double link 1−kDL is not empty in SRR,
where k is the order of the WSS currently in use in SRR.

In the following section, properties such as the long-term and
short-term fairness, schedule delay bound, scalability, time and
space complexity of SRR will be analyzed.

4. PROPERTIES OF SRR
Since SRR always forwards packets when there are active flows in
the system, it is work-conserving.

SRR finishes a round when it starts from the first term of the kth
WSS, and after visiting all the 12 −k terms, back to the
beginning of the sequence again.

Theorem 1: SRR visits fflow fw times in a round, where

fw is the weight of fflow .

Proof: From Proposition 2 and the description of SRR,

icolumn (and therefore all the terms belong to icolumn) of

the Weight Matrix M will be visited i2 times in a round. Since

∑ −

=
= 1

0 , 2k

n
n

nff aw , where nfa , belongs to ncolumn ,

fflow will be visited fw times in a round. □

Thus each flow gets its share in a round according to its weight.

The following lemma is obvious according to the working
procedure of SRR.

215

Lemma 1: Suppose fflow is backlogged, and has been visited

by SRR x times from time 0 to t, and),0(tS f denotes the bytes

served by SRR of fflow , then,

maxmax),0()1(xLtSLx f ≤<− (5)

4.1 Fairness of the Scheduler
Let),0(tV f the times fflow visited by SRR from time 0 to t,

and τ the time the scheduler finishes a round. From Theorem 1, it
is easy to see that at the end of a round, for any pair of active
flows f, g, the following equation holds,

Lemma 2:

 0
),0(),0(

=−
g

g

f

f

w
V

w
V ττ

 (6)

Lemma 2 shows the long-term fairness of SRR. However, SRR
can provide more than this. For any pair of active flows f, g, we
have the following theorem.

Theorem 2: For any pair of backlogged flows f, g in SRR,

),max(
2

),0(),0(gffggf wwktVwtVw ≤− (7)

k is the order of the current WSS used by SRR. The proof of
Theorem 2 is given in the Appendix B.

From Theorem 2, there exists following corollary.

Corollary 1: For any pair of backlogged flows f, g in SRR,

),min(2
)2(),0(),0(max

gfg

g

f

f

ww
Lk

w
tS

w
tS +<− (8)

where),0(tS f ,),0(tSg denote the service received by

fflow , gflow from time 0 to t, respectively.

Proof: From Lemma 1, the following 2 inequalities hold,

maxmax

maxmax

),0(),0()1),0((
),0(),0()1),0((
LtVtSLtV
LtVtSLtV

ggg

fff

≤<−

≤<−

Thus,

gg

g

f

f

g

g

f

f

g

g

f

f

ff

f

g

g

f

f

g

g

f

f

g

g

w
LL

w
tV

w
tV

w
LtV

w
LtV

w
tS

w
tS

w
LL

w
tV

w
tV

w
LtV

w
LtV

w
tS

w
tS

max
max

maxmax

max
max

maxmax

)
),0(),0(

(
)1),0((),0(),0(),0(

)
),0(),0(

(
)1),0((),0(),0(),0(

+−=
−

−<−

+−=
−

−<−

so,

.
),min(2

)2(
),min(),min(2

),min(
),0(),0(),0(),0(

maxmaxmax

max
max

gfgfgf

gfg

g

f

f

g

g

f

f

ww
Lk

ww
L

ww
kL

ww
L

L
w

tV
w

tV
w

tS
w

tS

+
=+≤

+−<−

□

4.2 Schedule Delay Bound of SRR
If p

aT is the time a packet becomes the head of fqueue , and
p

dT is the time that the scheduler finishes transmitting the packet,

we name the schedule delay for this packet, p
a

p
d

p
f TTD −= .

We further name the maximum value of p
fD the scheduler delay

bound of fflow , that is,

f
p
ff flowpwhereDD ∈=),max(.

As to fD , we have the following theorem.

Theorem 3: Suppose there are N flows, numbered from 1 to N in
SRR. The weight assigned to fflow is fw , and

∑ =
≤N

f f Cw
1

, ∑ =
= i

n
n

nff aw
0 , 2 , where 1, =ifa , and

1−≤ ki . The schedule delay bound of fflow ,

C
LN

w
LD

f
f

maxmax 2)1(2 −+< (9)

Proof: According to SRR, a packet becomes the head of a flow if
it is the head of a new flow or the packets before it have left the
system. When a packet becomes the head of a flow, it will be
served when SRR visits the flow again. A flow is visited when
one of its coefficients)0(,, ≠nfnf aa is visited by SRR. So the

delay bound of a flow is the maximum value of the intervals
between two adjacent visits by SRR. Let count be the sum of
times that each non-zero terms of M is visited by SRR during this
interval. According to the value of fw , there are two cases.

1. 122 1 −<≤ +i
f

i w .

From Proposition 3, there must exists a y , where iy < , and

0, =yfa . The chain between two terms of element (ik −) that

includes element (yk −) is 11),(, −−−− − ikik SykS . In this

case, fflow will be visited again after SRR visits the columns

mapped by 11),(, −−−− − ikik SykS and the icolumn . Thus,

216

.)2(
2
1

)22(
2
1

)2(
2
1

)2(

2

22

1 ,
1

0 1 ,

1 ,1

1

0 1 ,,
1

0

1 ,
1

1 ,

1 ,
1

1 ,

1 ,1 ,1 1,
1

1 2,
2

1 1,

∑∑ ∑

∑∑ ∑ ∑∑

∑∑ ∑
∑∑ ∑

∑∑∑
∑∑

=

−

= =

==

−

= =

−

=

=

−

= =

=

−

= =
−

=== −
−−

= += +

+−≤

+−=

+=

+=

+++

++=

N

m ym
i

n

N

m nm
n

i

N

m ym
N

m

i

n

N

m nm
n

nm
k

n
n

i

N

m ym
k

in

N

m nm
n

i

N

m ym
k

in

N

m nm
in

N

m im
N

m ym
N

m km
ik

N

m im
N

m im

aaC

aaa

aa

aa

aaa

aacount K

Thus,

))1(2
2
1(2

)1(])2(
2
1[

1 ,1 ,
1

0
maxmax

max1

0 1 1 ,,
max

−−−−<

−++−<

∑∑∑

∑ ∑ ∑

==

−

=

−

= = =

Naa
C

L
w
L

C
LNaaC

C
LD

N

m ym
N

m nm
i

n
n

i
f

i

n

N

m

N

m ymnm
n

i
P
f

The max)1(LN − is the maximum deficit the other)1(−N flows
can bring into this interval.

2. 12 1 −= +i
fw .

In this case, the chain with the maximum length between two

adjacent occurrences of element)(ik − is 11, −−−− ikik SS . So,

).2(
2
1

)22(
2
1

)2(
2
1)2(

2

22

1

0 1 ,

1

1

0 1 ,,
1

0

1

1 ,
1

1 ,

1 ,1 1,
1

1 2,
2

1 1,

∑ ∑

∑ ∑ ∑∑

∑ ∑∑ ∑
∑∑

∑∑

−

= =

=

−

= =

−

=

−

= =

−

= =
−

== −
−−

= += +

−≤

−=

==

++

++=

i

n

N

m nm
n

i

N

m

i

n

N

m nm
n

nm
k

n
n

i

k

in

N

m nm
n

i

k

in

N

m nm
in

N

m im
N

m km
ik

N

m im
N

m im

aC

aa

aa

aa

aacount K

Thus,

C
LN

a
C

L
w
L

D i

n

N

m nm
n

i
f

P
f

max1

0 1 ,
maxmax)1(

2
2

2 −
+−< ∑ ∑−

= =

In the above 2 cases,

.
)1(22

)max(maxmax

C
NL

w
LDD

f

P
ff

−
+<= □

So fD is not only in inverse proportion to the weight of the flow,

but also in direct proportion to the total number of the flows in
SRR. Thus it fails to provide a strictly rate-proportional delay
bound. However, the delay bound is still much better than that of
DRR.

However, we have
f

f w
LD max2

< if ∑∑ =

−

=

N

m nm
i

n
n

i a
1 ,

1

0
2

2
1

∑ =
=− N

m yma
1 , 0 and no flows bring deficit to the next round.

Thus, on average case, the delay bound is only in inverse
proportion to the weight of the flow.

It should be noted that fD is different from the local delay

bound concept used in WFQ and its variants, where the departure
time of a packet is compared with the departure time under GPS
[19]. fD is similar to the concept of WFI of [1,2]. It has been

shown in [1] that fD (or WFI) of WFQ is in proportion to N,

where N is the number of active flows. Thus fD (or WFI) of

SRR is similar to that of WFQ .

It also should be noted that SRR fails to provide the inequality

C
LFF max' ≤− as WFQ does 1 . For example, suppose the

packet length is 1, and C=16, there are 8 flows numbered as

821 ,,, fff L with weight 1. When SRR is serving 1f , a new

flow 9f with weight 8 comes. In this case, for the first packet of

9f in SRR,
9

' 111
wCC

NFF −+−=−
16
1

16
7 max =>=

C
L .

4.3 Scalability of SRR
The scalability of SRR is illustrated in the following aspects.

1. Different rate ranges can be accommodated with the WSS of
the same order by adjusting the rate granularity. For example,
when the granularity of rate is 1Kbps, and maxK =16 (i.e., the
order of the WSS is 16), the set of rates is

}64,,3,2,1{ Mbpskbpskbpskbps L . When the rate
granularity is 1Mbps, the corresponding set of rate is

}64,,3,2,1{ GbpsMbpsMbpsMbps L . Thus, similar WSS
can be used in both core routers (switches) and edge routers
(switches).

2. SRR can be used in output links with variable bandwidth
capacity. According to its working procedure, SRR can
provide fairness among competing flows even when the
bandwidth of the output link varies from time to time.

3. SRR works well regardless of the number of flows. Since the
time complexity of SRR is strictly O(1) (which will be proven
in the next subsection), SRR works well even with a large
number of flows. This makes SRR an attractive scheduler for
high-speed networks where time complexity is the most
important factor.

1 The inequality is Theorem 1.1 of reference [17] (in page 25).

217

4.4 Complexity of SRR
From the first part of Proposition 1, we know that the WSSs with
order }1,,3,2,1{ max −KL are contained in the thKmax WSS.

Thus, only one thKmax WSS is needed in SRR. When

maxK =16, the space needed to store the corresponding WSS is
64k bytes (each term of WSS occupies one byte). However, since
the length of the WSS increases exponentially with the order of
the WSS, it becomes impractical to store the whole sequence
statically when maxK becomes very large. This problem can be
overcome by using the last part of Proposition 1. By constructing
a (2k)th WSS from a kth and a (k+1)th WSS, the space needed can
be reduced from k22 to k23× .

We believe that a 32th WSS is enough for current and future
packet networks (it can provide up to 4Tbps rate with granularity
of 1kbps). Thus, under this condition, the space complexity of

SRR is)(maxKNOc ×+ , 32max ≤K and 1623×=c . c
is the space needed to store a 16th and a 17th WSS,

)(maxKNO × is the space needed to store the maxK double
links.

We have the following theorem for the time complexity of SRR.

Theorem 4: The SRR packet Scheduler needs O(1) time to
choose a packet for transmission, O(k) time to add or delete a
flow, where k is the order of WSS currently used by SRR.

Proof: SRR uses the schedule action in Figure 2 to choose a
packet for transmission. It takes the scheduler O(1) time to choose
the flow f. Then since fLL ≥max , schedule will transmit at least

one packet for flow f. After serving f, the schedule will update

dlP . If the end of colDL is not reached, one sentence is needed

to update dlP . If the end of colDL is met, schedule will update

cP to get the new column number of M, it may enter the loop

code. However, according to the WSS, 1−kcolumn of M will be
visited at least once in every 2 times. According to Proposition 5,

1−kDL is not empty. Thus, the loop code can be executed at

most 2 times. Thus, the code that updates dlP and cP needs O(1)
time. Thus, SRR needs O(1) time to choose a packet for
transmission.

Since Add_flow and Del_flow need to update the k double links
when flows come and leave SRR, their time complexities are O(k)
□

It should be noted that if a flow is always not backlogged, the
Add_flow and Del_flow will be invoked once per packet. Though

in SRR (which uses a fixed number of weights, max2K) the time
complexities of Add_flow and Del_flow are constant values (at
most O(Kmax)), it does introduce a burden that may be comparable
to the O(logN) incremental step in the time-stamp based schemes.

In [5], we propose to use a timer to delay the deletion of an
inactive flow. However, such a mechanism will make SRR not a
strictly O(1) scheme to forward a packet. We also show in [5] that
it is difficult to choose the time-out value of the timer. It is a
question needs further investigation.

5. SIMULATION
In this paper, we use simulation to compare the end-to-end delay
property of SRR with that of WFQ and DRR. For more simulation
experiments (such as local delay bound, queue delay and fairness)
please refer to [5].

5.1 Simulation Configuration
The tool we used in our simulation experiment is ns [31], to
which we added WFQ, SRR scheduling classes, and revised the

R0

N0

N1

N2

N3

R1 R4 R2 R3

M0

M1

M2

M3
N4 N5

N7 N6

Figure 3. Network topology of the simulation experiment

218

DRR2 scheduling class.

As shown in Figure 3, the above network topology is designed to
compare the end-to-end delay property of SRR with that of WFQ
and DRR. There are 12 hosts (N0-N3, M0-M3, and N4-N7), and
5 routers (R0-R4). The transmission delay and bandwidth
capacities of the links are shown in the following table.

Table 1 Transmission delay and bandwidth parameters of the
links.

Links Transmission delay
(ms)

Bandwidth
(Mbps)

N[0-3] – R0 0.03 10
R0-R1 0.1 6
R1-R2 3 15.5
R2-R3 3 100
R3-R4 0.1 10
R4-M[0-3] 0.03 10
N[4,6]-R1 0.03 10
N[5,7]-R3 0.03 10

In this simulation, R0, R4 are edge routers, R1-R3 are core
routers. A packet from N0 to M0 will traverse 6 links.

The following traffic traces are used in this experiment,

1. There are 10 CBR flows numbered from 1 to 10 between N0
and M0. The rates of the 10 flows are 10kbps, 10kbps,
20kbps, 20kbps, 40kbps, 80kbps, 80kbps, 160kbps, 260kbps,
320kbps respectively. The CBR flows simulate the real-time
audio service here.

2. There are 2 ftp flows between N1 and M1. The total rates of
the two flows are 2Mbps. These 2 flows are best effort
streams. The best effort streams in this experiment are mapped
to flow 0.

2 In ns2.1.b5, the implementation of DRR does not interpret the
algorithm in a right way. It deletes a flow when it deques its last
packet. However, a flow should be deleted only when the last
bit of the last packet left the transmission interface.

3. There are 2 real-time video streams numbered as flow 11, 12
between N2 and M2. The total rates of the 2 streams are
1.1Mbps. The video streams are gotten from [21], one is a
cartoon movie named simpsons (with average rate 464kbps),
the other is a movie named golden finger (with average rate
608kbps). The videos were compressed using an MPEG-1
compliant encoder. The quantization values were: I=10, P=14,
and B=18 using the pattern IBBPBBPBBPBB, which gives a
group of picture (GOP) size of 12.

4. There are 10 flows numbered from 13 to 22 with Pareto
distribution between N3 and M3. The rate of each flow is
200kbps. These flows simulate services with long-range
dependency.

5. There is a ftp stream between N5 and N6, and a telnet stream
between N4 and N7. These flows are best effort services used
to consume the redundant bandwidth of the network.

In this experiment, we measure the end-to-end delays of the ten
CBR flows under different scheduling schemes (i.e., WFQ, SRR,
DRR).

5.2 Simulation Results
The average and maximum end-to-end delays of flows 1 to 10 are
shown in Figure 4a and Figure 4b.

This experiment shows that the end-to-end delay property of SRR
is similar to that of WFQ. The worst-case and average end-to-end
delays of SRR and WFQ decrease with the increasing of the flow
rate. This experiment also shows that the worst-case end-to-end
delay property of SRR is worse than that of WFQ (which
conforms with Theorem 3 of this paper), and the average delay
property of SRR is a little better than that of WFQ. For example,
as to the flow 6, the worst-case end-to-end delays under WFQ,
SRR, and DRR are 36.16ms, 56.61ms and 168ms, and the average
delays are 30.78ms, 25.93ms, and 70.20ms respectively. Thus, as
to flow 6,

Figure 4a. The average delay of the CBR flows

Figure 4b. The maximum delay of the CBR flows

0 50 100 150 200 250 300 350
0.00

0.05

0.10

0.15

0.20

0.25

 WFQ
 SRR
 DRR

de
la

y(
s)

rate(kbps)

0 50 100 150 200 250 300 350
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 WFQ
 SRR
 DRR

de
la

y(
s)

rate(kbps)

219

28.2:84.0:1::

65.4:57.1:1:: maxmaxmax

=

=
DRR
mean

SRR
mean

WFQ
mean

DRRSRRWFQ

DDD
DDD

Therefore, the end-to-end delay of SRR is very similar to that of
WFQ. Both WFQ and SRR perform much better than DRR. If
flow 6 is a real-time IP telephony stream, it will work well under
WFQ and SRR. However, it will not work well under DRR for the
large worst-case end-to-end delay.

The experiment also shows that the maximum and average end-to-
end delays of DRR change little with different flow rates. The
average delay is about 80ms, and the maximum delay is about
170ms for DRR. This experiment shows that the worst-case delay
of DRR makes it not suitable for services with certain delay
bound requirements, such as IP telephony.

Thus, SRR is a qualified scheduler for services that do not have
strict end-to-end delay requirements, such as IP telephony, and
adaptive real-time services.

6. CONCLUSION
We have proposed SRR and examined its properties in this paper.
A Weight Spread Sequence and a Weight Matrix are introduced
as two main data structures of the SRR. With the use of the WSS
and the Weight Matrix, the output of SRR is distributed more
evenly than that of the ordinary round robin schedulers. SRR can
provide strictly O(1) time complexity, short-term fairness, and
certain schedule delay bound at the same time.

SRR is attractive for its low time complexity and simplicity. It
only needs to store a static WSS, to maintain maxK double links,
and to assign a deficit counter for each flow. Thus it can be
implemented in high-speed links at low cost, where efficiency and
time complexity are the most important factors. It should be noted
that SRR fails to provide a strict local delay bound. Thus, it is not
suitable for those applications where strict end-to-end delay
bound is needed (i.e., guaranteed services). However, simulations
show that SRR can provide good average and certain worst-case
end-to-end delay bounds, thus it is an appropriate scheduler for
services where strict delay bound is not required (such as IP
telephony and adaptive real-time services).

Though it is still elusive that whether an ideal packet scheduler
with strict rate-proportional delay bound, short-term fairness, and
O(1) time complexity exists, this paper introduces a new idea to
avoid the)(log NO limits of various time-stamp based
schedulers while still maintaining short-term fairness and certain
schedule delay bound.

We have implemented and tested the SRR in the Linux Kernel
2.2.5, the implementation indicates that SRR introduces little cost
to the TCP/IP stack, and the experiment results are consonant
with that of the simulation results. Our experiments also show
that SRR is a suitable scheduling algorithm for the AF PHB of
DiffServ.

7. ACKNOWLEDGMENTS
Prof. W. Qi gave the name of SRR and WSS. The author would
like to thank him for his constructive comments and generous
help for improving the organization and presentation of this
paper. The author also would like to thank J. Wang, Y. Sun for

implementing the SRR in the Linux kernel, J. Chen, and C. Lin
for their valuable comments. Finally, we thank both the
anonymous reviewers and Roch Guerin for their efforts.

8. REFERENCES
[1] J. Bennet, and H. Zhang, “WF2Q: worst case fair weighted

fair queueing,” in Proc. Infocom’96, 1996.
[2] J. Bennett, and H. Zhang, “Hierarchical Packet Fair

Queueing Algorithms,” in Proc. SIGCOMM’96, 1996.
[3] S. Blake, et. al. “An Architecture for Differentiated

Services,” RFC 2475, Dec. 1998.
[4] J. Bolot, and T. Turletti, “Experience with Control

Mechanisms for Packet Video,” in Proc. SIGCOMM’97,
1997.

[5] Guo Chuanxiong, “A SRR packet scheduler for flows in
multi-service packet networks,” Ph.D. thesis, Inst. of Comm.
Eng. of China, April, 2000.

[6] D. Clark, and Wenjia Fang, “Explicit Allocation of Best-
Effort Packet Delivery Service,” IEEE/ACM Trans.
Networking, vol. 6, Aug. 1998.

[7] D. Clark, “The Design Philosophy of the DARPA Internet
Protocols,” in Proc. SIGCOMM’88, 1988.

[8] D. Clark, S. Shenker, and L. Zhang, “Supporting Real-
time Applications in an Integrated Services Packet Network:
Architecture and Mechanism,” in Proc. SIGCOMM’92,
1992.

[9] J. Cobb, M. Gouda, and A. El-Nahas, “Time-Shift
Scheduling—Fair Scheduling of Flows in High-Speed
Networks,” IEEE/ACM Trans. Networking, vol. 6, June,
1998.

[10] J. A. Cobb, and M. G. Gouda, “Flow Theory,”
IEEE/ACM Trans. Networking, vol.5, Oct. 1997.

[11] A. Demers, S. Keshav, and S. Shenker, “Analysis and
Simulation of a Fair Queueing Algorithm,” in Proc.
SIGCOMM’89, 1989.

[12] S. Floyd, and V. Jacobson, “Random Early Detection
Gateways for Congestion Avoidance,” IEEE/ACM Trans.
Networking, vol. 1, Aug. 1993.

[13] S. Floyd, and V. Jacobson, “Link-share and Resource
Management Models for Packet Networks,” IEEE/ACM
Trans. Networking, vol. 3, Aug. 1995.

[14] S. Floyd, and K. Fall, “Promoting the Use of End-to-End
Congestion Control in the Internet,” IEEE/ACM Trans.
Networking, vol. 7, Aug. 1999.

[15] L. Georgiadis, R. Guerin, and R. Rajan, “Efficient
Support of Delay and Rate Guarantees in an Internet,” in
Proc. SIGCOMM’96, 1996.

[16] P. Goyal, H. M. Vin, and H Cheng, “Start-Time Fair
Queueing: A Scheduling Algorithm for Integrated Services
Packet Switching Networks,” IEEE/ACM Trans. Networking,
vol. 5, 1997.

[17] Pawn Goyal, and H. Vin, “Generalized Guaranteed Rate
Scheduling Algorithms: A Framework,” IEEE/ACM Trans.
Networking, vol. 5, 1997.

220

[18] S. R. McCanne, “Scalable Compression and
Transmission of Internet Multicast Video,” Ph.D. thesis, UC.
Berkeley, Dec. 1996.

[19] A. Parekh, “A Generalized Processor Sharing Approach
to Flow Control in Integrated Services Network,” Ph.D.
thesis, Dept. Elect. Eng. and Comput. Sci., M.I.T., Feb.
1992.

[20] V. Paxson, and S. Floyd, “Why we don’t know how to
simulate the Internet,” from:
ftp://ftp.ee.lbl.gov/papers/wsc97.ps.

[21] O. Rose, “Traffic Modeling of Variable Bit Rate MPEG
Video and its Impacts on ATM Networks,” Ph.D. thesis,
Wurezburger, Bericht, 02/97.

[22] D. Saha, S. Mukherjee, and S. Tripathi, “Carry-Over
Round Robin: A Simple Cell Scheduling Mechanism for
ATM Networks,” IEEE/ACM Trans. Networking, vol.6, Dec.
1998.

[23] M. Shreedhar and G. Varghese, “Efficient Fair Queuing
using Deficit Round Robin,” in Proc. SIGCOMM’95, 1995.

[24] D. Stiliadis, and A. Varma, “Rate-Proportional Servers:
A Design Methodology for Fair Queueing Algorithms,”
IEEE/ACM Trans. Networking, vol. 6, Apr. 1998.

[25] D. Stiliadis, and A. Varma, “Efficient Fair Queueing
Algorithms for Packet-Switched Networks, ” IEEE/ACM
Trans. Networking, vol. 6, Apr. 1998.

[26] A. Varma, and D. Stiliadis, “Hardware Implementation
of Fair Queuing Algorithms for Asynchronous Transfer
Mode Networks,” IEEE Com. Mag., vol. 35, Dec. 1997.

[27] W. Weiss, “QoS with differentiated services,” Bell-labs
Technical Journal, oct-dec 1998.

[28] W. Willingers, and V. Paxson, “Where Mathematics
meets the Internet,” Notes of the American Mathematical
Society, vol.45, Aug.1998.

[29] L. Zhang, “A New Architecture for Packet Switching
Network Protocols,” Ph.D. thesis, Dept. Elect. Eng. and
Comput Sci., M.I.T., Aug. 1989.

[30] L. Zhang, S. Deering, D. Estrin, S. Shenker and D.
Zappala, “RSVP: A New Resource ReServation Protocol,”
IEEE Network, 1993.

[31] The VINT Project, “ns Notes and Documentation”, from
http://www-mash.cs.berkeley.edu/ns/nsDoc.ps.gz.

APPENDIX
A. Proof of Proposition 3
Proof: 1, when 1−= ki , the kth WSS

.),1(,,,),1(,,, 222211 −−−−−− −−== kkkkkkk SkSkSkSSkSS
Thus, the chains between two adjacent occurrences of element

(k-1) are 22 ,, −− kk SkS or 22 , −− kk SS .

2. Suppose the Proposition is correct for two adjacent occurrences
of element)11(−≤< kii , this means the WSS can be
expressed as,

1111 ,,,,,,,,,, −−−−= iiiik SiiSxSiiSS KK

since 221),1(, −−− −= iii SiSS ,

.),1(,,,,,),1(,,,
),1(,,,,,),1(,

22222

222

−−−−−

−−−

−−
−−=

iiiii

iiik

SiSiiSiSxS
iSiiSiSS

K

K

Thus, the chain between two adjacent occurrences of element
)1(−i is,

22 , −− ii SS or 22 ,, −− ii SxS .

Thus, the proposition follows by induction.

B. Proof of Theorem 2
Before the proof, we observe that the maximum value of

),0(),0(tVwtVw fggf − only relates to flow f and flow g

themselves in SRR. Though other flows may change the time
distribution of gf VV , , they will not affect the service sequence

of flow f and flow g. Thus, only the service sequence includes f, g
is used in the proof. It is obvious that the theorem is correct when

1=fw or 1=gw .

From Lemma 2, we know that at the end of each round,

0),0(),0(=− ττ fggf VwVw . Thus we only need to

prove Theorem 2 in its first round. Under this condition,

ffgg wVwV ≤≤ , .

Proof: We prove this theorem by induction.

1. When }3,2,1{,,2 ∈= gf wwk . It is easy to prove that for

all the 9 combinations of gf ww , ,

).,max(),0(),0(gffggf wwtVwtVw ≤−

2. Suppose that the inequality is correct using a kth WSS, that is
for any pair of gf ww , ,

),max(
2

),0(),0(gffggf wwktVwtVw ≤− .

For any pair of '' , gf using a (k+1)th WSS, '
fw and '

gw can

be expressed as,

0,
'

'2 fff aww += ， 0,
'

'2 ggg aww += , where

}1,0{,,1,1 0,0,
''

'' ∈>> gfgf aaww .

Thus, the service sequence of flow '' , gf can be expressed as,

).,(},.,.{),,(),(
0,0,

''
)1('' gfSgafagfSgfS kgfkk =+

221

We name the subsequence before }.,.{ 0,0, '' gafa gf the left

part of),(''
)1(gfS k + , and the subsequence after

}.,.{ 0,0, '' gafa gf the right part of),(''
)1(gfS k + .

With different values of 0,0, '' , gf aa , there are 4 cases:

1). 0,0 0,0, '' == gf aa ; 2). 0,1 0,0, '' == gf aa ;

3). 1,0 0,0, '' == gf aa ; 4). 1,1 0,0, '' == gf aa .

The 4 cases can be proven with similar method. Thus, we only
show the proof of the last case.

As to this case, when ggff VVVV == '' , ,

).,max(
2

122

)12()12(

''

''''

gffgfggf

fggffggf

wwkVVVwVw

VwVwVwVw

+<−+−≤

+−+=−

When ggff wVwV =+= '' ,1 ,

).,max(
2

11

)1)(12()12(

''

''''

gffg

fggffggf

wwkww

wwwwVwVw

+<++=

++−+=−

When 1,1 '' +=+= ggff wVwV ,

).,max(
2

1

)1)(12()1)(12(

''

''''

gffg

fggffggf

wwkww

wwwwVwVw

+<−=

++−++=−

When gggfff VwVVwV ++=++= 1,1 '' ,

).,max(
2

1),max(22

22

22

)1)(12()1)(12(

''

''''

gfgfgffg

ffgggffg

ffgggffg

ffgggffggf

wwkwwVwVw

VwVwVwVw

VwVwVwVw

VwwVwwVwVw

+≤+−<

+−−+−≤

+−−+−=

+++−+++=−

So, for all the 4 cases,

).,max(
2

1
'''''' gffggf wwkVwVw +≤−

Thus, Theorem 2 follows by induction.

222

