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ABSTRACT 
In this paper, we present a novel fair queueing scheme, which we 
call Smoothed Round Robin (SRR). Ordinary round robin 
schedulers are well known for their burstiness in the scheduling 
output. In order to overcome this problem, SRR codes the weights 
of the flows into binary vectors to form a Weight Matrix, then 
uses a Weight Spread Sequence (WSS), which is specially 
designed to distribute the output more evenly, to schedule packets 
by scanning the Weight Matrix. By using the WSS and the Weight 
Matrix, SRR can emulate the Generalized Processor Sharing 
(GPS) well. It possesses better short-term fairness and schedule 
delay properties in comparison with various round robin 
schedulers. At the same time, it preserves O(1) time complexity 
by avoiding the time-stamp maintenance employed in various Fair 
Queueing schedulers. Simulation and implementation experiments 
show that SRR can provide good average end-to-end delay for 
soft real-time services. SRR can also be implemented in high-
speed networks to provide QoS for its simplicity and low time 
complexity.  

Keywords 
QoS, packet scheduler, fair queueing, time complexity, end-to-end 
delay, high-speed networks. 

1. INTRODUCTION 
With the expanding of the Internet, more and more services 
besides the traditional Best Effort services are added into the 
network. Video and audio conferencing, remote medical caring 
are some of the examples. It is expected that more services to be 
introduced in the near future. Different types of services have 
different characteristics, and generally have different 
requirements. For example, video conferencing is a kind of VBR 
service that requires broad bandwidth and low end-to-end delay 
bound, while traditional data services do not have explicit QoS 
requirements. Even with the rapid increasing rate of the 

transmission medium, certain kind of isolation is needed to satisfy 
the QoS requirements of the competing flows (as defined in [29] , 
a flow is a stream of packets that traverse the same route from the 
source to the destination, and that require the same grade of 
transmission service. Flows can be further aggregated into 
classes). Many mechanisms on how to provide QoS support for 
packet networks have been proposed in [3], [8], [13], [19], [29], 
[30]. One of the most important parts of these mechanisms is a 
packet scheduler. A packet scheduler’s task is to decide which 
packet to be transmitted when the output link is idle. Traditional 
routers use First Come First Serve (FCFS) scheduler to schedule 
packets. FCFS does not distinguish different flows. Thus, it does 
not provide any kind of isolation among them. We only consider 
schedulers that distinguish different flows or classes in this paper. 

Generally, packet scheduler should have the following properties: 

1. low time complexity to choose and forward a packet; 

2. treats different flows fairly; 

3. provides low worst case delay and delay variation; 

4. it should be simple enough to be implemented efficiently. 

The simplicity and time complexity properties always collide with 
the fairness and delay bound properties. Schedulers with short-
term fairness and strict delay bound generally have high time 
complexity and are hard to be implemented. O(1) time complexity 
schemes are easy to be implemented, but they generally fail to 
provide short-term fairness and low local delay bound. 

In time-stamp based schedulers (one of the two kinds of well 
studied work-conserving scheduling algorithms), a virtual time 
clock is maintained to emulate the ideal Generalized Processor 
Sharing (GPS [19]). Traditional Weighted Fair Queuing (WFQ) 
[11](PGPS [19]) has low local delay bound and good fairness, but 
its time complexity is O(N) (N is the number of the active flows). 
Variants of WFQ such as Virtual-Clock [29], WF2Q [1], Start-
time FQ [16], FFQ, SPFQ [25], Time-shift FQ [9] use different 
methods to calculate the time-stamp, but still have at least 
O(logN) time complexity. Since the best known algorithm to 
insert a number into a sorted array needs O(logN), it is unlikely 
that a time-stamp based scheduler with O(1) time complexity can 
be found. However, an O(logN) scheduler is not good enough for 
a high-speed link. For example, it takes approximate 0.08us to 
transmit a 100 bytes length packet for a 10Gbps link. That means 
an O(logN) scheduler must finish the packet selection in 0.08us 
regardless of the number of flows. The situation becomes even 
worse when the capacity of the output link is  40Gbps or higher. 
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On the other hand, another kind of work-conserving schedulers, 
the round robin schemes are simple to be implemented and have 
O(1) time complexity, but they are well known for their output 
burstiness and short-term unfairness. Deficit Round Robin (DRR) 
[23] and Carry-Over Round Robin (CORR) [22] are typical round 
robin schedulers. In these kinds of round robin schedulers, the 
schedulers will serve a flow for a continuous period of time in 
proportion to the weight of the flow, resulting in a highly burst 
scheduling output for each flow. Thus, these kinds of round robin 
schedulers are considered not suitable to provide QoS in packet 
networks. 

In this paper, we present a Smoothed Round Robin (SRR) 
scheduler to overcome the shortcomings of the ordinary round 
robin schedulers. SRR has short-term fairness and certain 
schedule delay bound, as well as O(1) time complexity. A Weight 
Spread Sequence (WSS) and a Weight Matrix are used as two key 
data structures of the scheduler. The weights of the flows are 
coded into binary vectors to form a Weight Matrix, then SRR uses 
the corresponding WSS to scan the Weight Matrix. WSS is a 
specially designed sequence that can distribute the output traffic 
of each flow evenly. Thus, SRR can emulate GPS as the various 
time-stamp based schedulers do. Since it does not need to 
maintain any tags or states, SRR can achieve O(1) time 
complexity, short-term fairness, and certain delay bound at the 
same time.  

In the following paragraphs, an example is illustrated to show 
how SRR works. The concepts of WSS, Weight Matrix are used 
without definitions. The formal definitions will be given in 
Section 2. 

Suppose there are four flows with fixed packet size, named 
1f , 2f , 3f ,

4f , with rates kbpsr 641 = , kbpsr 2562 = , 

kbpsr 5123 = , kbpsr 1924 = . The packet sizes of the flows are 
512 bytes; all the four flows are backlogged. And the bandwidth 
of the output link MbpsC 1220 == . The corresponding weights 

of the flows are 11 =w , 42 =w , 83 =w , 34 =w . By coding 

the weights into binary vectors, we have }1,0,0,0{1 =WV , 

}0,0,1,0{2 =WV , }0,0,0,1{3 =WV , }1,1,0,0{4 =WV for the 
four flows respectively. According to the binary vectors, the 
Weight Matrix corresponding to flow 1f , 2f , 3f , 4f  is, 
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We number the columns of this WM from left to right as 

0123 ,, columnandcolumncolumncolumn . 

The corresponding WSS (which will be defined in Section 2.1) to 
this Weight Matrix is,  

1,2,1,3,1,2,1,4,1,2,1,3,1,2,1. 

SRR then scans the WSS term by term, when the value of the term 
is i , the icolumn −4  is chosen. In icolumn −4 , the scheduler 
will scan the terms from top to bottom, when the term is not 0, the 
scheduler will serve the corresponding flow. That is, the flows 
will be served in the following service sequence, 
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Figure 1. Service curves of the three schedulers 
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.,,,,,,,,,,,,,,, 3234323413234323 ffffffffffffffff  

The service curves of the flows in SRR are shown in Figure 1 
together with that in WFQ and DRR. From the above example, we 
can observe that SRR emulates the GPS quite well. Both WFQ 
and SRR perform much better than DRR in that they have much 
better delay bound and short-term fairness. It is also easy to 
observe that the outputs of 2f , 3f , 4f  in DRR are very bursty. 

In Section 2, the definition of a set of Weight Spread Sequences 
(WSS) and their properties are presented first, then the definition 
of the Weight Matrix is given. In Section 3, the formal description 
of SRR is described. The fairness, schedule delay bound, 
scalability, space and time complexity of SRR are analyzed in 
Section 4. In section 5, simulation experiments are designed to 
compare the end-to-end delay property of SRR with that of WFQ 
and DRR, simulation experiments show that SRR can provide 
good average end-to-end delay for soft real-time services such as 
IP telephony. This paper concludes with Section 6. 

2. THE WEIGHT SPREAD SEQUENCE 
AND THE WEIGHT MATRIX 
2.1 The Weight Spread Sequence 
Definition 1:  A set of Weight Spread Sequences (WSS) is 
defined recursively as, 

1) The first WSS 11 =S , 

2) The kth WSS is, .,,}{ 11 −−== kk
i

k SkSaS  

121 −≤≤ ki for 1>k                                              (1) 

The set corresponding to sequence kS is },,3,2,1{ kK . klen  
is defined as the total number of terms of the kth WSS. The terms 
of the kth WSS can be arranged in a circle so that term 12 −ka  is 

next to term 1a . 

The distance between two terms ma and na of kS  is defined to 
be,  

)].12mod()(),12mod()min[( −−−− kk nmmn  

Two terms ma , na (m>n) are called two adjacent occurrences of 
element )1( kii <≤  if,  

1) iaa nm == , and,  

2) ia j ≠  for ),( mnj ∈ or ia j ≠ for 

),1[]12,( nmj k U−∈ . For the former case, the chain between 

two adjacent occurrences ma , na for element i  is 

},,,{ 121 −++ mnn aaa K , for the latter case, the chain is 

},,,,,,,{ 1211221 −−++ nmm aaaaaa k KK . 

For example, from Definition 1, the 5th WSS is 

1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1. 

So, for this sequence, 315 =len , the distance between two 
adjacent occurrences of element 3 is 7 or 8. 

The following Propositions are properties of WSS. 

Proposition 1: The first ( 12 1 −−k ) terms of a kth WSS forms a 
(k-1)th WSS. And a (2k)th WSS can be constructed from a kth 
WSS and a (k+1)th WSS in the following way, 

1. adding (k-1) to every term of the (k+1)th WSS; 

2. replacing the terms ia where kai = of the newly formed 
(k+1)th WSS with the kth WSS. The newly formed sequence is 
a (2k)th WSS. 

Proposition 2: The total number of terms of kS is 
12 −k (i.e., 12 −= k

klen ), and the number of the occurrences of 

element )1( kii ≤≤  is ik −2 . 

Proposition 3: The chain between two adjacent occurrences 
)(, nmaa nm > of element i  in kS is, 

{ ;)12(,
.)12(,,

11

11
mnnmifSS
mnnmifSxS

kii

kii
−−+>−
−−+<−

−−

−−                (2) 

where ki <<1 , and kxi ≤< . The proof of Proposition 3 is 
given in the Appendix A. 

The following proposition is obvious in view of Proposition 3. 
Proposition 4: The distance between two adjacent occurrences of 

element )1( kii <≤  in kS is either i2  or 12 −i . 

Since there is only one occurrence of element k in kS , the 

distance of element k is defined to be 12 −k . 

2.2 The Weight Matrix 
In various Fair Queueing Schedulers, each flow is assigned a 
weight in proportion to its reserved rate. In this paper, we assume 
that the set of weights is }12,5,4,3,2,1{ −kK . By adjusting the 
value of kk, rate allocation schemes with different range can be 
accommodated. For example, for k=16, if the granularity of rate is 
1bps, then the set of rates corresponding to the set of weights is 

}64,,3,2,1{ kbpsbpsbpsbps L . For k=32, the set of rates is 
}4,,3,2,1{ Gbpsbpsbpsbps L . 

The weight of fflow  can be coded as, 

∑
−

=

=
1

0
, 2

k

n

n
nff aw  where }1,0{, ∈nfa . 

Definition 2: The binary coefficients nfa ,  of fw form a Weight 

Vector of fflow , which is defined as, 

},,,{ 0,)2(,)1(, fkfkff aaaWV K−−= .                  (3) 

213



Definition 3: The Weight Matrix corresponding to flows 

Nfff ,,, 21 K  is defined as 
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where }1,0{, ∈jia , and )1(0,1 −≤≤≤≤ kjNi . We 

number the column of the Weight Matrix from left to right as 

021 ,,, columncolumncolumn kk K−− . 

3. THE SMOOTHED ROUND ROBIN 
SCHEDULER 
We combine the kkth WSS and the kN ×  Weight Matrix to form 
the Smoothed Round Robin (SRR) scheduler. The basic idea of 
SRR is based on the scanning of the WSS and the corresponding 
Weight Matrix. The WSS is scanned term by term. When the 
current term is element i , ikcolumn −

of the Weight Matrix is 
selected. For each occurrence of 1)(, =−ikfa in this column, packet 

from flow corresponding to the row of )(, ikfa −   is scheduled. 

In the following of this section,  the formal description of SRR is 
given. 

3.1 Formal Description of SRR 
In this paper, we focus on packet scheduler, and consider the 
packet classification the function of the packet classifier, the 
assignment of weights to flows the function of the admission 
controller, and that all the input packets are queued to their 
corresponding queues by the packet enqueuer. The tasks of the 
packet scheduler are to choose and forward packets and to 
maintain related data structures of the scheduler. 

In a packet network, if the packet length of a flow is greater than 
the Maximum Transmission Unit (MTU) of the output link, the 
system will fragmentize the packet into small pieces. Therefore, 
we assume that the maximum packet length of all the flows is the 
MTU of the output link, and denote it as maxL . 

In SRR, we assume that the maximum order of WSS is maxK . 

When maxK =32, if the bandwidth assignment granularity is 
1bps, the set of rates that can be provided by SRR is 

}4,,3,2,1{ Gbpsbpsbpsbps L ; if the granularity is 1kbps, the 
set of rates is }4,,3,2,1{ Tbpskbpskbpskbps L . 

We assume that a flow can be deleted explicitly by a command 
(i.e., by some kinds of signaling protocols) or implicitly by SRR 
when the queue corresponding to that flow is empty. 

We adopt the following notations for the scheduler: 

 

maxK  The maximum order of the WSS used by SRR; 

M  Weight Matrix of all the active flows; 
kS  The kth WSS currently used by the scheduler; 

k  The order of the current WSS used by SRR; 

cP  Index of the current scanning position of the WSS, 
ranging from 1 to 12 −k ; 

fqueue
 

Queue of the received packets of 
fflow , which is a 

FIFO; 

fP  Packet that is at the head of fqueue ; 

fL  Length of fP ; 

fw  Weight of fflow , it is a normalized value 

according to the bandwidth assignment granularity; 

fdeficit
 

A register to memorize how many bytes 

fflow should bring to the next round; 

iDL  The ith double link, max0 Ki <≤ . There are 
maxK  

double links in SRR; 

dlP  Pointer to a node of a double link; 

maxL  The upper bound of packet’s length of the output 
link; 

C  Normalized (according to the bandwidth assignment 
granularity) bandwidth of the output link. 

 

We use the following 3 pieces of pseudo C code in Figure 2 to 
illustrate the scheduler. There are 3 asynchronous actions, 
namely, Schedule, Add_flow, Del_flow. Each action is triggered 
by some events. Schedule is the main part of the scheduler, it is 
invoked whenever the output link enters a busy-period. Add_flow 
is invoked when a new flow arrives. Del_flow is the action taking 
place when the flow is deleted explicitly or dead (i.e., the queue of 
the corresponding flow is empty). 

Schedule{ 
local variable: f, col; /*f, col are the current row, column 
number of M, respectively*/ 
Pc=1; Pdl=headk-1->next; /*initialization*/ 
 
while(in busy-period){ 
 f=Pdl  ->fid; 
 deficitf  = deficitf  + Lmax; 
 while(deficitf  > 0){ 
  if(Lf <= deficitf  ){ 
   dequeue(Pf); 
   send(Pf); 
   deficitf  = deficitf - Lf; 
   if(queuef is empty){ 
    Del_flow(f); 
    break; 
   } 
  }else break; 
 } 
  if(Pdl->next!=tailcol){ 
  Pdl=Pdl->next; 
 }else{ 
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loop:  Pc=Pc+1; 
 if(Pc==2k) Pc=1; 
 col=k-Sk[Pc];/*get the corresponding column number */ 
 if(DLcol is empty) goto loop; 
 Pdl=headcol->next; /* points to the first non-zero term of 
this column*/ 
 } 

 } 
} 

Add_flow(w) { /* w is the weight assigned to this flow */ 

 local variable: f; 
 f=get_flowId( ) ; /*get a new flow ID for this flow */ 
 assign deficitf, queuef  ; /* deficitf=0, queuef is empty */ 
 use w to form a Weight Vector as shown in Equation 3; 
 add the vector to the last row of Matrix M; 
 insert nodes into DL0, DL1, …, DLKmax-1  according to the 

coefficients of w; 
 if(new columns are added into M) 

 update k; 
} 

Del_flow( f ) { /* f is the flow ID of this flow */ 

remove the corresponding row from M; 
remove deficitf, queuef; 
remove nodes from DL0, DL1, …, DLKmax-1 according to the 

coefficients of wf ; 
if(empty columns are deleted from M){ 

 update k; 
Pc = Pc mod (2k );  

} 
} 

Figure 2.  Description of SRR 

The Weight Matrix  is adjusted dynamically in SRR. When a new 
flow comes, a new row will be added into M as the last row. If the 

weight of this new flow ∑ −

= −= 1

0 )1(, 2j

n
n

jff aw  

)1,( )1(, => −jfakj , new columns numbered 

kjj columnclolumncolumn ,,, 21 K−− will be added into 

M, and the order of the WSS is adjusted to j (ij.e., k=j). When a 
flow leaves SRR, the corresponding row of M will be deleted. If 
the ,,, 21 K−− kk clolumncolumn icolumn become empty, 
these columns will be removed from M, then the order of the WSS 
is adjusted to i (i.e., k=i).  

 )1( maxKkS k ≤≤  is the kkth WSS defined by equation (1), the 
order of the WSS used in SRR is adjusted dynamically according 
to the column number of M. 

fdeficit  is borrowed from DRR [23] to memorize the bytes that 

fflow  can bring into the next round. 

There are 
maxK  double links named 0DL , K,1DL ,

1max −KDL  in 

SRR. iDL is used to link the non-zero terms of icolumn of M. 

Each iDL  has a head, and a tail. Each node of the link has three 
fields, next, prev and fid. next is a pointer points to the next node, 
prev is a pointer points to the previous node, and fid is a field 
contains the flow id. 

iDL  is defined to be empty if all the terms of 

icolumn  are zero. These links are used here to reduce the time 
complexity of SRR. Double link data structure is chosen to reduce 
the time complexity of flow deletion. 

The busy-period in Schedule has the same meaning as that in 
[19]. At the beginning of SRR, M and the double links are empty. 
When the first flow comes, Add_flow will be called. Then 
Schedule will be invoked. After Del_flow deletes the last flow, 
the system enters idle state waiting for the next busy-period. Since 
Add_flow and Del_flow need to update at most k double links, 
their time complexities are in proportion to k, which is the current 
order of WSS used by SRR. 

Since M is adjusted dynamically according to the weights of flows 
in SRR, SRR has the following property. 

Proposition 5: The double link 1−kDL  is not empty in SRR, 
where k is the order of the WSS currently in use in SRR. 

In the following section, properties such as the long-term and 
short-term fairness, schedule delay bound, scalability, time and 
space complexity of SRR will be analyzed. 

4. PROPERTIES OF SRR 
Since SRR always forwards packets when there are active flows in 
the system, it is work-conserving. 

SRR finishes a round when it starts from the first term of the kth 
WSS, and after visiting all the 12 −k  terms, back to the 
beginning of the sequence again. 

Theorem 1: SRR visits fflow  fw  times in a round, where 

fw  is the weight of fflow . 

Proof: From Proposition 2 and the description of SRR, 

icolumn (and therefore all the terms belong to icolumn ) of 

the Weight Matrix M will be visited i2 times in a round. Since 

∑ −

=
= 1

0 , 2k

n
n

nff aw , where nfa , belongs to ncolumn , 

fflow will be visited fw  times in a round. □ 

Thus each flow gets its share in a round according to its weight. 

The following lemma is obvious according to the working 
procedure of SRR. 
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Lemma 1: Suppose fflow is backlogged, and has been visited 

by SRR x times from time 0 to t, and ),0( tS f  denotes the bytes 

served by SRR of fflow , then, 

maxmax ),0()1( xLtSLx f ≤<−                          (5) 

4.1 Fairness of the Scheduler 
Let ),0( tV f the times fflow visited by SRR from time 0 to t, 

and τ the time the scheduler finishes a round. From Theorem 1, it 
is easy to see that at the end of a round, for any pair of active 
flows f, g, the following equation holds, 

Lemma 2: 

             0
),0(),0(

=−
g

g

f

f

w
V

w
V ττ

                        (6) 

Lemma 2 shows the long-term fairness of SRR. However, SRR 
can provide more than this. For any pair of active flows f, g, we 
have the following theorem. 

Theorem 2: For any pair of backlogged flows f, g in SRR, 

),max(
2

),0(),0( gffggf wwktVwtVw ≤−   (7) 

k is the order of the current WSS used by SRR. The proof of 
Theorem 2 is given in the Appendix B. 

From Theorem 2, there exists following corollary. 

Corollary 1: For any pair of backlogged flows f, g in SRR, 

),min(2
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gfg
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w
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w
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where ),0( tS f , ),0( tSg denote the service received by 

fflow , gflow  from time 0 to t, respectively. 

Proof: From Lemma 1, the following 2 inequalities hold, 
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□ 

4.2 Schedule Delay Bound of SRR 
If p

aT is the time a packet becomes the head of fqueue , and 
p

dT is the time that the scheduler finishes transmitting the packet, 

we name the schedule delay for this packet, p
a

p
d

p
f TTD −= . 

We further name the maximum value of p
fD the scheduler delay 

bound of fflow , that is,  

f
p
ff flowpwhereDD ∈= ),max( . 

As to fD , we have the following theorem. 

Theorem 3: Suppose there are N flows, numbered from 1 to N in 
SRR. The weight assigned to fflow is fw , and 

∑ =
≤N

f f Cw
1

, ∑ =
= i

n
n

nff aw
0 , 2 , where 1, =ifa , and 

1−≤ ki . The schedule delay bound of fflow , 

C
LN

w
LD

f
f

maxmax 2)1(2 −+<                  (9) 

Proof: According to SRR, a packet becomes the head of a flow if 
it is the head of a new flow or the packets before it have left the 
system. When a packet becomes the head of a flow, it will be 
served when SRR visits the flow again. A flow is visited when 
one of its coefficients )0( ,, ≠nfnf aa  is visited by SRR. So the 

delay bound of a flow is the maximum value of the intervals 
between two adjacent visits by SRR. Let count  be the sum of 
times that each non-zero terms of M is visited by SRR during this 
interval. According to the value of fw , there are two cases. 

1. 122 1 −<≤ +i
f

i w . 

From Proposition 3, there must exists a y , where iy < , and 

0, =yfa . The chain between two terms of element ( ik − ) that 

includes element ( yk − ) is 11 ),(, −−−− − ikik SykS . In this 

case, fflow  will be visited again after SRR visits the columns 

mapped by 11 ),(, −−−− − ikik SykS  and the icolumn . Thus,  
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The max)1( LN − is the maximum deficit the other )1( −N flows 
can bring into this interval. 

2. 12 1 −= +i
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In this case, the chain with the maximum length between two 
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So fD is not only in inverse proportion to the weight of the flow, 

but also in direct proportion to the total number of the flows in 
SRR. Thus it fails to provide a strictly rate-proportional delay 
bound. However, the delay bound is still much better than that of 
DRR. 

However, we have 
f

f w
LD max2
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1

0
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∑ =
=− N

m yma
1 , 0  and no flows bring deficit to the next round. 

Thus, on average case, the delay bound is only in inverse 
proportion to the weight of the flow.  

It should be noted that fD  is different from the local delay 

bound concept used in WFQ and its variants, where the departure 
time of a packet is compared with the departure time under GPS 
[19]. fD  is similar to the concept of WFI of [1,2]. It has been 

shown in [1] that fD (or WFI) of WFQ is in proportion to N, 

where N is the number of active flows. Thus fD (or WFI) of 

SRR is similar to that of WFQ . 

It also should be noted that SRR fails to provide the inequality 

C
LFF max' ≤−  as WFQ does 1 . For example, suppose the 

packet length is 1, and C=16, there are 8 flows numbered as 

821 ,,, fff L  with weight 1. When SRR is serving 1f , a new 

flow 9f with weight 8 comes. In this case, for the first packet of 

9f  in SRR, 
9

' 111
wCC

NFF −+−=−  
16
1

16
7 max =>=

C
L . 

4.3 Scalability of SRR 
The scalability of SRR is illustrated in the following aspects. 

1. Different rate ranges can be accommodated with the WSS of 
the same order by adjusting the rate granularity. For example, 
when the granularity of rate is 1Kbps, and maxK =16 (i.e., the 
order of the WSS is 16), the set of rates is 

}64,,3,2,1{ Mbpskbpskbpskbps L . When the rate 
granularity is 1Mbps, the corresponding set of rate is 

}64,,3,2,1{ GbpsMbpsMbpsMbps L . Thus, similar WSS 
can be used in both core routers (switches) and edge routers 
(switches).  

2. SRR can be used in output links with variable bandwidth 
capacity. According to its working procedure, SRR can 
provide fairness among competing flows even when the 
bandwidth of the output link varies from time to time. 

3. SRR works well regardless of the number of flows. Since the 
time complexity of SRR is strictly O(1) (which will be proven 
in the next subsection), SRR works well even with a large 
number of flows. This makes SRR an attractive scheduler for 
high-speed networks where time complexity is the most 
important factor. 

                                                                 
1 The inequality is Theorem 1.1 of reference [17] (in page 25). 
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4.4 Complexity of  SRR 
From the first part of Proposition 1, we know that the WSSs with 
order }1,,3,2,1{ max −KL  are contained in the thKmax  WSS. 

Thus, only one thKmax  WSS is needed in SRR. When 

maxK =16, the space needed to store the corresponding WSS is 
64k bytes (each term of WSS occupies one byte). However, since 
the length of the WSS increases exponentially with the order of 
the WSS, it becomes impractical to store the whole sequence 
statically when maxK  becomes very large. This problem can be 
overcome by using the last part of Proposition 1. By constructing 
a (2k)th WSS from a kth and a (k+1)th WSS, the space needed can 
be reduced from k22  to k23× .  

We believe that a 32th WSS is enough for current and future 
packet networks (it can provide up to 4Tbps rate with granularity 
of 1kbps). Thus, under this condition, the space complexity of 

SRR is )( maxKNOc ×+ , 32max ≤K  and 1623×=c . c 
is the space needed to store a 16th and a 17th WSS, 

)( maxKNO ×  is the space needed to store the maxK  double 
links. 

We have the following theorem for the time complexity of SRR. 

Theorem 4: The SRR packet Scheduler needs O(1) time to 
choose a packet for transmission, O(k) time to add or delete a 
flow, where k is the order of WSS currently used by SRR. 

Proof: SRR uses the schedule action in Figure 2 to choose a 
packet for transmission. It takes the scheduler O(1) time to choose 
the flow f. Then since fLL ≥max , schedule will transmit at least 

one packet for flow f. After serving f, the schedule will update 

dlP . If the end of colDL  is not reached, one sentence is needed 

to update dlP . If the end of colDL  is met, schedule will update 

cP  to get the new column number of M, it may enter the loop 

code. However, according to the WSS, 1−kcolumn  of M will be 
visited at least once in every 2 times. According to Proposition 5, 

1−kDL  is not empty. Thus, the loop code can be executed at 

most 2 times. Thus, the code that updates dlP  and cP  needs O(1) 
time. Thus, SRR needs O(1) time to choose a packet for 
transmission. 

Since Add_flow and Del_flow need to update the k double links 
when flows come and leave SRR, their time complexities are O(k)  
□ 

It should be noted that if a flow is always not backlogged, the 
Add_flow and Del_flow will be invoked once per packet. Though 

in SRR (which uses a fixed number of weights, max2K ) the time 
complexities of Add_flow and Del_flow are constant values (at 
most O(Kmax)), it does introduce a burden that may be comparable 
to the O(logN) incremental step in the time-stamp based schemes. 

In [5], we propose to use a timer to delay the deletion of an 
inactive flow. However, such a mechanism will make SRR not a 
strictly O(1) scheme to forward a packet. We also show in [5] that 
it is difficult to choose the time-out value of the timer. It is a 
question needs further investigation. 

5. SIMULATION 
In this paper, we use simulation to compare the end-to-end delay 
property of SRR with that of WFQ and DRR. For more simulation 
experiments (such as local delay bound, queue delay and fairness) 
please refer to [5]. 

5.1 Simulation Configuration 
The tool we used in our simulation experiment is ns [31],  to 
which we added WFQ, SRR scheduling classes, and revised the 
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Figure 3. Network topology of the simulation experiment 
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DRR2 scheduling class. 

As shown in Figure 3, the above network topology is designed to 
compare the end-to-end delay property of SRR with that of WFQ 
and DRR. There are 12 hosts (N0-N3, M0-M3, and N4-N7), and 
5 routers (R0-R4). The transmission delay and bandwidth 
capacities of the links are shown in the following table. 

Table 1 Transmission delay and bandwidth parameters of the 
links. 

Links Transmission delay 
(ms) 

Bandwidth 
(Mbps) 

N[0-3] – R0 0.03 10 
R0-R1 0.1 6 
R1-R2 3 15.5 
R2-R3 3 100 
R3-R4 0.1 10 
R4-M[0-3] 0.03 10 
N[4,6]-R1 0.03 10 
N[5,7]-R3 0.03 10 

In this simulation, R0, R4 are edge routers, R1-R3 are core 
routers. A packet from N0 to M0 will traverse 6 links.  

The following traffic traces are used in this experiment, 

1. There are 10 CBR flows numbered from 1 to 10 between N0 
and M0. The rates of the 10 flows are 10kbps, 10kbps, 
20kbps, 20kbps, 40kbps, 80kbps, 80kbps, 160kbps, 260kbps, 
320kbps respectively. The CBR flows simulate the real-time 
audio service here. 

2. There are 2 ftp flows between N1 and M1. The total rates of 
the two flows are 2Mbps. These 2 flows are best effort 
streams. The best effort streams in this experiment are mapped 
to flow 0.  

                                                                 
2 In ns2.1.b5, the implementation of DRR does not interpret the 
algorithm in a right way. It deletes a flow when it deques its last 
packet. However, a flow should be deleted only when the last 
bit of the last packet left the transmission interface. 

3. There are 2 real-time video streams numbered as flow 11, 12 
between N2 and M2. The total rates of the 2 streams are 
1.1Mbps. The video streams are gotten from [21], one is a 
cartoon movie named simpsons (with average rate 464kbps), 
the other is a movie named golden finger (with average rate 
608kbps). The videos were compressed using an MPEG-1 
compliant encoder. The quantization values were: I=10, P=14, 
and B=18 using the pattern IBBPBBPBBPBB, which gives a 
group of picture (GOP) size of 12. 

4. There are 10 flows numbered from 13 to 22 with Pareto 
distribution between N3 and M3. The rate of each flow is 
200kbps. These flows simulate services with long-range 
dependency. 

5. There is a ftp stream between N5 and N6, and a telnet stream 
between N4 and N7. These flows are best effort services used 
to consume the redundant bandwidth of the network. 

In this experiment, we measure the end-to-end delays of the ten 
CBR flows under different scheduling schemes (i.e., WFQ, SRR, 
DRR). 

5.2 Simulation Results 
The average and maximum end-to-end delays of flows 1 to 10 are 
shown in Figure 4a and Figure 4b. 

This experiment shows that the end-to-end delay property of SRR 
is similar to that of WFQ. The worst-case and average end-to-end 
delays of SRR and WFQ decrease with the increasing of the flow 
rate. This experiment also shows that the worst-case end-to-end 
delay property of SRR is worse than that of WFQ (which 
conforms with Theorem 3 of this paper), and the average delay 
property of SRR is a little better than that of WFQ. For example, 
as to the flow 6, the worst-case end-to-end delays under WFQ, 
SRR, and DRR are 36.16ms, 56.61ms and 168ms, and the average 
delays are 30.78ms, 25.93ms, and 70.20ms respectively. Thus,  as 
to flow 6, 

Figure 4a. The average delay of the CBR flows 

Figure 4b. The maximum delay of the CBR flows 
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Therefore, the end-to-end delay of SRR is very similar to that of 
WFQ. Both WFQ and SRR perform much better than DRR. If 
flow 6 is a real-time IP telephony stream, it will work well under 
WFQ and SRR. However, it will not work well under DRR for the 
large worst-case end-to-end delay. 

The experiment also shows that the maximum and average end-to-
end delays of DRR change little with different flow rates. The 
average delay is about 80ms, and the maximum delay is about 
170ms for DRR. This experiment shows that the worst-case delay 
of DRR makes it not suitable for services with certain delay 
bound requirements, such as IP telephony.  

Thus, SRR is a qualified scheduler for services that do not have 
strict end-to-end delay requirements, such as IP telephony, and 
adaptive real-time services.  

6. CONCLUSION 
We have proposed SRR and examined its properties in this paper. 
A Weight Spread Sequence and a Weight Matrix are introduced 
as two main data structures of the SRR. With the use of the WSS 
and the Weight Matrix, the output of SRR is distributed more 
evenly than that of the ordinary round robin schedulers. SRR can 
provide strictly O(1) time complexity, short-term fairness, and 
certain schedule delay bound at the same time.  

SRR is attractive for its low time complexity and simplicity. It 
only needs to store a static WSS, to maintain maxK double links, 
and to assign a deficit counter for each flow. Thus it can be 
implemented in high-speed links at low cost, where efficiency and 
time complexity are the most important factors. It should be noted 
that SRR fails to provide a strict local delay bound. Thus, it is not 
suitable for those applications where strict end-to-end delay 
bound is needed (i.e., guaranteed services). However, simulations 
show that SRR can provide good average and certain worst-case 
end-to-end delay bounds, thus it is an appropriate scheduler for 
services where strict delay bound is not required (such as IP 
telephony and adaptive real-time services). 

Though it is still elusive that whether an ideal packet scheduler 
with strict rate-proportional delay bound, short-term fairness, and 
O(1) time complexity exists, this paper introduces a new idea to 
avoid the )(log NO  limits of various time-stamp based 
schedulers while still maintaining short-term fairness and certain 
schedule delay bound. 

We have implemented and tested the SRR in the Linux Kernel 
2.2.5, the implementation indicates that SRR introduces little cost 
to the TCP/IP stack, and the experiment results are consonant 
with that of the simulation results.  Our experiments also show 
that SRR is a suitable scheduling algorithm for the AF PHB of 
DiffServ.  
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APPENDIX 
A. Proof of Proposition 3 
Proof: 1, when 1−= ki , the kth WSS 

.),1(,,,),1(,,, 222211 −−−−−− −−== kkkkkkk SkSkSkSSkSS
Thus, the chains between two adjacent occurrences of element   

(k-1) are 22 ,, −− kk SkS  or 22 , −− kk SS . 

2. Suppose the Proposition is correct for two adjacent occurrences 
of element )11( −≤< kii , this means the WSS can be 
expressed as,  

1111 ,,,,,,,,,, −−−−= iiiik SiiSxSiiSS KK  

since 221 ),1(, −−− −= iii SiSS , 

.),1(,,,,,),1(,,,
),1(,,,,,),1(,

22222

222

−−−−−

−−−

−−
−−=

iiiii

iiik

SiSiiSiSxS
iSiiSiSS

K

K
 

Thus, the chain between two adjacent occurrences of element 
)1( −i  is, 

22 , −− ii SS  or 22 ,, −− ii SxS . 

Thus, the proposition follows by induction. 

B. Proof of Theorem 2 
Before the proof, we observe that the maximum value of 

),0(),0( tVwtVw fggf −  only relates to flow f and flow g 

themselves in SRR. Though other flows may change the time 
distribution of gf VV , , they will not affect the service sequence 

of flow f and flow g. Thus, only the service sequence includes f, g 
is used in the proof. It is obvious that the theorem is correct when 

1=fw  or 1=gw . 

From Lemma 2, we know that at the end of each round, 

0),0(),0( =− ττ fggf VwVw . Thus we only need to 

prove Theorem 2 in its first round. Under this condition, 

ffgg wVwV ≤≤ , . 

Proof: We prove this theorem by induction. 

1. When }3,2,1{,,2 ∈= gf wwk . It is easy to prove that for 

all the 9 combinations of gf ww , , 

).,max(),0(),0( gffggf wwtVwtVw ≤−  

2. Suppose that the inequality is correct using a kth WSS, that is 
for any pair of gf ww , , 

),max(
2

),0(),0( gffggf wwktVwtVw ≤− . 

For any pair of '' , gf  using a (k+1)th WSS, '
fw and '

gw can 

be expressed as,  

0,
'

'2 fff aww += ，  0,
'

'2 ggg aww += , where 

}1,0{,,1,1 0,0,
''

'' ∈>> gfgf aaww . 

Thus, the service sequence of flow '' , gf  can be expressed as, 

).,(},.,.{),,(),(
0,0,

''
)1( '' gfSgafagfSgfS kgfkk =+  
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We name the subsequence before }.,.{ 0,0, '' gafa gf  the left 

part of ),( ''
)1( gfS k + , and the subsequence after 

}.,.{ 0,0, '' gafa gf  the right part of ),( ''
)1( gfS k + . 

With different values of 0,0, '' , gf aa , there are 4 cases: 

1). 0,0 0,0, '' == gf aa ; 2). 0,1 0,0, '' == gf aa ; 

3). 1,0 0,0, '' == gf aa ; 4). 1,1 0,0, '' == gf aa . 

The 4 cases can be proven with similar method. Thus, we only 
show the proof of the last case. 

As to this case, when ggff VVVV == '' , , 

).,max(
2
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)12()12(

''

''''

gffgfggf

fggffggf

wwkVVVwVw

VwVwVwVw

+<−+−≤

+−+=−
 

When ggff wVwV =+= '' ,1 , 

).,max(
2

11

)1)(12()12(

''

''''

gffg

fggffggf

wwkww

wwwwVwVw

+<++=

++−+=−
 

When 1,1 '' +=+= ggff wVwV , 

).,max(
2

1

)1)(12()1)(12(

''

''''

gffg

fggffggf

wwkww

wwwwVwVw

+<−=

++−++=−
 

When gggfff VwVVwV ++=++= 1,1 '' , 

).,max(
2

1),max(22

22

22

)1)(12()1)(12(

''

''''

gfgfgffg

ffgggffg

ffgggffg

ffgggffggf

wwkwwVwVw

VwVwVwVw

VwVwVwVw

VwwVwwVwVw

+≤+−<

+−−+−≤

+−−+−=

+++−+++=−

 

So, for all the 4 cases, 

).,max(
2

1
'''''' gffggf wwkVwVw +≤−  

Thus, Theorem 2 follows by induction. 
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