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ABSTRACT

In this paper, we present a novel fair queueing scheme, which we
call Smoothed Round Robin (SRR). Ordinary round robin
schedulers are well known for their burstiness in the scheduling
output. In order to overcome this problem, SRR codes the weights
of the flows into binary vectors to form a Weight Matrix, then
uses a Weight Spread Sequence (WSS), which is specially
designed to distribute the output more evenly, to schedule packets
by scanning the Weight Matrix. By using the WSS and the Weight
Matrix, SRR can emulate the Generalized Processor Sharing
(GPS) well. It possesses better short-term fairness and schedule
delay properties in comparison with various round robin
schedulers. At the same time, it preserves O(1) time complexity
by avoiding the time-stamp maintenance employed in various Fair
Queueing schedulers. Simulation and implementation experiments
show that SRR can provide good average end-to-end delay for
soft real-time services. SRR can also be implemented in high-
speed networks to provide QoS for its simplicity and low time
complexity.

Keywords
QoS, packet scheduler, fair queueing, time complexity, end-to-end
delay, high-speed networks.

1. INTRODUCTION

With the expanding of the Internet, more and more services
besides the traditional Best Effort services are added into the
network. Video and audio conferencing, remote medical caring
are some of the examples. It is expected that more services to be
introduced in the near future. Different types of services have
different  characteristics, and generally have different
requirements. For example, video conferencing is a kind of VBR
service that requires broad bandwidth and low end-to-end delay
bound, while traditional data services do not have explicit QoS
requirements. Even with the rapid increasing rate of the
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transmission medium, certain kind of isolation is needed to satisfy
the QoS requirements of the competing flows (as defined in [29],
a flow is a stream of packets that traverse the same route from the
source to the destination, and that require the same grade of
transmission service. Flows can be further aggregated into
classes). Many mechanisms on how to provide QoS support for
packet networks have been proposed in [3], [8], [13], [19], [29],
[30]. One of the most important parts of these mechanisms is a
packet scheduler. A packet scheduler’s task is to decide which
packet to be transmitted when the output link is idle. Traditional
routers use First Come First Serve (FCFS) scheduler to schedule
packets. FCFS does not distinguish different flows. Thus, it does
not provide any kind of isolation among them. We only consider
schedulers that distinguish different flows or classes in this paper.

Generally, packet scheduler should have the following properties:
1. low time complexity to choose and forward a packet;

2. treats different flows fairly;

3. provides low worst case delay and delay variation;

4. it should be simple enough to be implemented efficiently.

The simplicity and time complexity properties always collide with
the fairness and delay bound properties. Schedulers with short-
term fairness and strict delay bound generally have high time
complexity and are hard to be implemented. O(1) time complexity
schemes are easy to be implemented, but they generally fail to
provide short-term fairness and low local delay bound.

In time-stamp based schedulers (one of the two kinds of well
studied work-conserving scheduling algorithms), a virtual time
clock is maintained to emulate the ideal Generalized Processor
Sharing (GPS [19]). Traditional Weighted Fair Queuing (WFQ)
[11](PGPS [19]) has low local delay bound and good fairness, but
its time complexity is O(N) (N is the number of the active flows).
Variants of WFQ such as Virtual-Clock [29], WF?Q [1], Start-
time FQ [16], FFQ, SPFQ [25], Time-shift FQ [9] use different
methods to calculate the time-stamp, but still have at least
O(logN) time complexity. Since the best known algorithm to
insert a number into a sorted array needs O(logN), it is unlikely
that a time-stamp based scheduler with O(1) time complexity can
be found. However, an O(logN) scheduler is not good enough for
a high-speed link. For example, it takes approximate 0.08us to
transmit a 100 bytes length packet for a 10Gbps link. That means
an O(logN) scheduler must finish the packet selection in 0.08us
regardless of the number of flows. The situation becomes even
worse when the capacity of the output link is 40Gbps or higher.



On the other hand, another kind of work-conserving schedulers,
the round robin schemes are simple to be implemented and have
O(1) time complexity, but they are well known for their output
burstiness and short-term unfairness. Deficit Round Robin (DRR)
[23] and Carry-Over Round Robin (CORR) [22] are typical round
robin schedulers. In these kinds of round robin schedulers, the
schedulers will serve a flow for a continuous period of time in
proportion to the weight of the flow, resulting in a highly burst
scheduling output for each flow. Thus, these kinds of round robin
schedulers are considered not suitable to provide QoS in packet
networks.

In this paper, we present a Smoothed Round Robin (SRR)
scheduler to overcome the shortcomings of the ordinary round
robin schedulers. SRR has short-term fairness and certain
schedule delay bound, as well as O(1) time complexity. A Weight
Spread Sequence (WSS) and a Weight Matrix are used as two key
data structures of the scheduler. The weights of the flows are
coded into binary vectors to form a Weight Matrix, then SRR uses
the corresponding WSS to scan the Weight Matrix. WSS is a
specially designed sequence that can distribute the output traffic
of each flow evenly. Thus, SRR can emulate GPS as the various
time-stamp based schedulers do. Since it does not need to
maintain any tags or states, SRR can achieve O(1) time
complexity, short-term fairness, and certain delay bound at the
same time.

In the following paragraphs, an example is illustrated to show
how SRR works. The concepts of WSS, Weight Matrix are used
without definitions. The formal definitions will be given in
Section 2.

Suppose there are four flows with fixed packet size, named
fis fos fyss fy» Wwith rates n =64kbps , r, =256kbps
r, =512kbps, r, =192kbps . The packet sizes of the flows are

512 bytes; all the four flows are backlogged. And the bandwidth
of the output link C =22 = 1Mbps . The corresponding weights

of the flows are w, =1, w, =4, w, =8, w, =3. By coding
the weights into binary vectors, we have WV, ={0,0,0,1} ,
wv, ={0,1,0,0} , WV, ={1,0,0,0} , WV, ={0,0,11} for the
four flows respectively. According to the binary vectors, the
Weight Matrix corresponding to flow fl S f2 s f3 S f4 is,

wr,] [o 0 0 1
wr,| 10 1 0 0
WM = = .
wr,| |1 0 0 0
wv,| 1o 0 1 1

We number the columns of this WM from left to right as
column,,column,,column, and column,.

The corresponding WSS (which will be defined in Section 2.1) to
this Weight Matrix is,

1,2,1,3,1,2,1,4,1,2,1,3,1,2,1.

SRR then scans the WSS term by term, when the value of the term
is I, the column4_i is chosen. In column4_i , the scheduler

will scan the terms from top to bottom, when the term is not 0, the
scheduler will serve the corresponding flow. That is, the flows
will be served in the following service sequence,

WFQ £
74 PRIERE
/
6d | 1 )
f2 -
54 | == 3 e ’
1%} —f4 4 f
T 4 ’ 2
S .
8 3 ,.._,’/
’ f /
2 o 4
! f
14 = ——
'/
0 T T T T T T T
0 2 4 6 8 10 12 14 16
time(unit:4ms)
8
:/‘
1 SRR ST
./ :
6_
5_
i2]
© 4
x
[5]
®©
Q 3
2_
14
0
0
time(unit:4ms)
8 ===y
P
7 ,
DRR ’
6 -
'/
5| 1 !
f2 J f
I B / 2
© 4 3
8 ||—f4 /
Q 3+ ’
;
2 S
/"
1_ ................. R A EEEEEE R EEERRY LR
'/
0 T T T T T T
0 2 4 6 8 10 12
time(unit:4ms)

Figure 1. Service curves of the three schedulers
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The service curves of the flows in SRR are shown in Figure 1
together with that in WFQ and DRR. From the above example, we
can observe that SRR emulates the GPS quite well. Both WFQ
and SRR perform much better than DRR in that they have much
better delay bound and short-term fairness. It is also easy to

observe that the outputs of f 2> f3 , f4 in DRR are very bursty.

In Section 2, the definition of a set of Weight Spread Sequences
(WSS) and their properties are presented first, then the definition
of the Weight Matrix is given. In Section 3, the formal description
of SRR is described. The fairness, schedule delay bound,
scalability, space and time complexity of SRR are analyzed in
Section 4. In section 5, simulation experiments are designed to
compare the end-to-end delay property of SRR with that of WFQ
and DRR, simulation experiments show that SRR can provide
good average end-to-end delay for soft real-time services such as
IP telephony. This paper concludes with Section 6.

2. THE WEIGHT SPREAD SEQUENCE
AND THE WEIGHT MATRIX

2.1 The Weight Spread Sequence
Definition 1: A set of Weight Spread Sequences (WSS) is
defined recursively as,

1) The first WSS S' =1,

2)  The WSS

1<i<2 —1fork>1

kth St ={a,}=8"k,S"".

(M

is,

The set corresponding to sequence S*is {1,2,3,...,k} . len,
is defined as the total number of terms of the kth WSS. The terms

is

of the kth WSS can be arranged in a circle so that term @ 21

next to term @, .

. k .
The distance between two terms @, and a, of S is defined to
be,

min[(n —m)mod(2* —1),(m — n)mod(2* —1)].

Two terms @,,, @, (m>n) are called two adjacent occurrences of
element j(1<i < k) if,

H)a,=a,=1i,and,

2) a;#1 for je(n,m) or a,#1 for

je (m2" =1]U[1,n). For the former case, the chain between

two adjacent occurrences 4, , d, for element I is

m
{a,..a,,,....,a, } , for the latter case, the chain is

{am+1’am+2""’az",l’al’aZ""’an—l}'

For example, from Definition 1, the 5th WSS is
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1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1.
So, for this sequence, /ens =31, the distance between two
adjacent occurrences of element 3 is 7 or 8.

The following Propositions are properties of WSS.

Proposition 1: The first (2’“’l —1) terms of a k&th WSS forms a
(k-1)th WSS. And a (2k)th WSS can be constructed from a kth
WSS and a (k+1)th WSS in the following way,

1. adding (k1) to every term of the (k+1)th WSS;

2. replacing the terms a; where @, = k of the newly formed

(k+1)th WSS with the k&th WSS. The newly formed sequence is
a (2k)th WSS.

The of S*

2k 1 (ie,len, = 2% —1), and the number of the occurrences of

element §(1<i<k) is 2°7.

Proposition 2: total number of terms is

Proposition 3: The chain between two adjacent occurrences
a,,a,(m>n)of element I in S*is,

Si—l S[—l
i-1 ,x,Si_l
where 1<i<k, and i < x <k . The proof of Proposition 3 is
given in the Appendix A.

if m—n>(n+2%-1)-m;

if m—n<(n+2*=1)—m. @)

The following proposition is obvious in view of Proposition 3.
Proposition 4: The distance between two adjacent occurrences of

element j(1<j<k) in S*is either 2" or 2 —1.

Since there is only one occurrence of element k in S§*, the

distance of element k is defined to be 2° —1.

2.2 The Weight Matrix

In various Fair Queueing Schedulers, each flow is assigned a
weight in proportion to its reserved rate. In this paper, we assume

that the set of weights is {1,2,3,4,5...,2" —1}. By adjusting the
value of k, rate allocation schemes with different range can be

accommodated. For example, for k=16, if the granularity of rate is
1bps, then the set of rates corresponding to the set of weights is

{lbps,2bps,3bps,--- ,64kbps} . For k=32, the set of rates is
{lbps,2bps,3bps,--- ,AGbps} .

The weight of ﬂow/ can be coded as,
k-1
n
we = Zam 2" where a;,€ {0,1} .
n=0
Definition 2: The binary coefficients a fon of w ’ form a Weight

Vector of ﬂOWf , which is defined as,

WVf = {af,(kfl),af,(kfz),...,af,o} ) 3)



Definition 3: The Weight Matrix corresponding to flows

flafz,...,fN is defined as

wv, Aoy Ay - i

wv. Ay Ao ay,
wM =" 7 =] M o O]

wv, Ay -1y Ay k-2 Ay

where g, € {0,]} , and 1<i<N, 0<j<(k-1) . We
number the column of the Weight Matrix from left to right as
column,_,,column,_,,...,column,.

3. THE SMOOTHED ROUND ROBIN
SCHEDULER

We combine the kth WSS and the N Xk Weight Matrix to form
the Smoothed Round Robin (SRR) scheduler. The basic idea of
SRR is based on the scanning of the WSS and the corresponding
Weight Matrix. The WSS is scanned term by term. When the
current term is element i, column,_, of the Weight Matrix is

selected. For each occurrence of 4 ket = 1in this column, packet

from flow corresponding to the row of £ (ki) is scheduled.

In the following of this section, the formal description of SRR is
given.

3.1 Formal Description of SRR

In this paper, we focus on packet scheduler, and consider the
packet classification the function of the packet classifier, the
assignment of weights to flows the function of the admission
controller, and that all the input packets are queued to their
corresponding queues by the packet enqueuer. The tasks of the
packet scheduler are to choose and forward packets and to
maintain related data structures of the scheduler.

In a packet network, if the packet length of a flow is greater than
the Maximum Transmission Unit (MTU) of the output link, the
system will fragmentize the packet into small pieces. Therefore,
we assume that the maximum packet length of all the flows is the

MTU of the output link, and denote it as Lmax .

In SRR, we assume that the maximum order of WSS is K max
When Kmax =32, if the bandwidth assignment granularity is
1bps, the set of rates that can be provided by SRR is
{1bps,2bps,3bps,-- ,4Gbps} ; if the granularity is 1kbps, the

set of rates is {1kbps,2kbps,3kbps,--- ,4Thps} .

We assume that a flow can be deleted explicitly by a command
(i.e., by some kinds of signaling protocols) or implicitly by SRR
when the queue corresponding to that flow is empty.

We adopt the following notations for the scheduler:
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K, . The maximum order of the WSS used by SRR;

M Weight Matrix of all the active flows;

Sk The kth WSS currently used by the scheduler;

k The order of the current WSS used by SRR;

Pc Index of the current scanning position of the WSS,
ranging from 1 to 2° —1;

queue, Queue of the received packets of flow = which is a
FIFO;

Pf Packet that is at the head of queue

L ’ Length of P ;

w, Weight of ﬂOWf , it is a normalized value
according to the bandwidth assignment granularity;
deﬁcitf A register to memorize how many bytes
I flow 1 should bring to the next round;
DL, The ith double link, 0<i< KX . There are K__
double links in SRR;
P Pointer to a node of a double link;
di
L The upper bound of packet’s length of the output
max link;
C Normalized (according to the bandwidth assignment

granularity) bandwidth of the output link.

We use the following 3 pieces of pseudo C code in Figure 2 to
illustrate the scheduler. There are 3 asynchronous actions,
namely, Schedule, Add_flow, Del_flow. Each action is triggered
by some events. Schedule is the main part of the scheduler, it is
invoked whenever the output link enters a busy-period. Add_flow
is invoked when a new flow arrives. Del_flow is the action taking
place when the flow is deleted explicitly or dead (i.e., the queue of
the corresponding flow is empty).

Schedule{

local variable: f, col; /*f, col are the current row, column
number of M, respectively*/

P.=1; Py=head, ;->next; /*initialization*/

while(in busy-period){
J=Py ->fid;
deficity = deficity + Ly,
while(deficit; > 0){

L, <= deficit; ){
dequeue(Py);
send(Py);
deﬁctt/ = deﬁczt/- L/,
iflqueuey is empty){

Del_flow(f);
break;
}
Jelsebreak;
}
if(Pg->next!=tail .,;)){
Pd1=Pd1->next;
Jelse{



loop: P.=P.+1;
if(P==2") P=1;
col=k-S'[P ] :/*get the corresponding column number */
iDL, is empty) goto loop;
Py=head. ,->next; /* points to the first non-zero term of
this column*/

}
/
}

Add_flow(w) { /* w is the weight assigned to this flow */
local variable: f;
f=get flowld() ; /*get a new flow ID for this flow */
assign deficit;, queuey ; /* deficit=0, queue,is empty */
use w to form a Weight Vector as shown in Equation 3;
add the vector to the last row of Matrix M;

insert nodes into DLy, DL,
coefficients of w;

wees DLgoar.; according to the

if(new columns are added into M)
update k;

b

Del_flow( /) { /* f'is the flow ID of this flow */
remove the corresponding row from M;
remove deficit; queue;;

remove nodes from DL, DL,, ..., DLg,....; according to the

coefficients of wy;
if(empty columns are deleted from M){
update k;
P.=P.mod (2*);

Figure 2. Description of SRR

The Weight Matrix is adjusted dynamically in SRR. When a new
flow comes, a new row will be added into M as the last row. If the

j-1
weight of this new flow Wy :zn:oaf,(j—l)zn
numbered

new columns

(j>k,a, ;=1 )
column _,,clolumn,_,,...,column; will be added into

M, and the order of the WSS is adjusted to j (i.e., k=j). When a
flow leaves SRR, the corresponding row of M will be deleted. If

the column,_,,clolumn,_,,..., column, become empty,
these columns will be removed from M, then the order of the WSS
is adjusted to i (i.e., k=i).

S*(1<k <K, ) is the kth WSS defined by equation (1), the

order of the WSS used in SRR is adjusted dynamically according
to the column number of M.
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deﬁcit ’ is borrowed from DRR [23] to memorize the bytes that

ﬂOW ' can bring into the next round.

11I1

There are K,. double links named Dlo » DL,..., DL,

max

SRR. DLI. is used to link the non-zero terms of column, of M.

Each DL, has a head, and a tail. Each node of the link has three
fields, next, prev and fid. next is a pointer points to the next node,
prev is a pointer points to the previous node, and fid is a field
contains the flow id. DL, is defined to be empty if all the terms of
column ; are zero. These links are used here to reduce the time

complexity of SRR. Double link data structure is chosen to reduce
the time complexity of flow deletion.

The busy-period in Schedule has the same meaning as that in
[19]. At the beginning of SRR, M and the double links are empty.
When the first flow comes, Add_flow will be called. Then
Schedule will be invoked. After Del_flow deletes the last flow,
the system enters idle state waiting for the next busy-period. Since
Add_flow and Del_flow need to update at most k& double links,
their time complexities are in proportion to k, which is the current
order of WSS used by SRR.

Since M is adjusted dynamically according to the weights of flows
in SRR, SRR has the following property.

Proposition 5: The double link Dka1 is not empty in SRR,
where £ is the order of the WSS currently in use in SRR.

In the following section, properties such as the long-term and
short-term fairness, schedule delay bound, scalability, time and
space complexity of SRR will be analyzed.

4. PROPERTIES OF SRR

Since SRR always forwards packets when there are active flows in
the system, it is work-conserving.

SRR finishes a round when it starts from the first term of the kth

WSS, and after visiting all the 2% —1 terms, back to the
beginning of the sequence again.

Theorem 1: SRR visits ﬂOWf Wf times in a round, where
W, is the weight of ﬂOWf .

Proof: From Proposition 2 and the description of SRR,

column[ (and therefore all the terms belong to column[) of

the Weight Matrix M will be visited 2" times in a round. Since
N0k "

Wf —zn:oam2 , where af)n belongs to columnn S

ﬂOWf will be visited W times in a round. []

Thus each flow gets its share in a round according to its weight.

The following lemma is obvious according to the working
procedure of SRR.



Lemma 1: Suppose ﬂOW ’ is backlogged, and has been visited
by SRR x times from time 0 to 7, and .S P (0,7) denotes the bytes

served by SRR of ﬂOW IR then,

(x—=1)L ®)

max

<S,(0,0)<xL,,,

4.1 Fairness of the Scheduler
Let Vf (0,¢) the times flow  visited by SRR from time 0 to ¢,

and T the time the scheduler finishes a round. From Theorem 1, it
is easy to see that at the end of a round, for any pair of active
flows f, g, the following equation holds,

Lemma 2:
v, 0.1) 7,07

0
‘ Wy

= ©)
w, |

Lemma 2 shows the long-term fairness of SRR. However, SRR
can provide more than this. For any pair of active flows f, g, we
have the following theorem.

Theorem 2: For any pair of backlogged flows f, g in SRR,
< k

WV, (0,6)=w,V,(0,6) < S max(w,w,) ()
k is the order of the current WSS used by SRR. The proof of
Theorem 2 is given in the Appendix B.
From Theorem 2, there exists following corollary.
Corollary 1: For any pair of backlogged flows f, g in SRR,

8,0.0_S5,0.0| _ (k+2)L,,
‘ 2min(w,,w,)

®)

w

wf g

where Sf 0,7), S < (0,2) denote the service received by

ﬂOWf R ﬂOW o from time O to 7, respectively.

Proof: From Lemma 1, the following 2 inequalities hold,

V,(0,0) =L, <S,(0,6)<V,(0,6)L,..
V,(0,6) =)L, <S,(0,0)<V,(0,6)L,..
Thus,
5,00 5,00 V.00, V00-DL, V.09 V.00 Lo
< =( W t—
Ve W Ve W Ve W W
5,00_50) Y@k, 0,000 10D V0D L,
W Ve W Ve W Ve %

S0,
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1S,(0,0) S, (0,0) 3 v, 0,0) Y, (0,0) L.
‘ w, w, ‘ ‘ w, W, ‘ ™ min(w,,w,)
KLy Ly (k+2)L,,,

<
2min(w,,w,)

+ = .
min(w,,w,) 2min(w,,w,)

4.2 Schedule Delay Bound of SRR
it T ap is the time a packet becomes the head of queue and

T dp is the time that the scheduler finishes transmitting the packet,
we name the schedule delay for this packet, D; =T d‘v -T a‘v .
We further name the maximum value of D f: the scheduler delay

bound of ﬂOWf , that is,
D, =max(Dy), where pe flow,.
Asto D rowe have the following theorem.

Theorem 3: Suppose there are N flows, numbered from 1 to N in
SRR. The weight assigned to ﬂOWf is We o, and

N N n _
Zle w, <C, W, = zn:o as, 2", where a;; = 1, and

i <k —1. The schedule delay bound of ﬂOWf ,

2L
D, <—"+(N-

Wy

2L
1 max 9
)—C ©)

Proof: According to SRR, a packet becomes the head of a flow if
it is the head of a new flow or the packets before it have left the
system. When a packet becomes the head of a flow, it will be
served when SRR visits the flow again. A flow is visited when

one of its coefficients @ , , (af,n # 0) is visited by SRR. So the

delay bound of a flow is the maximum value of the intervals
between two adjacent visits by SRR. Let count be the sum of
times that each non-zero terms of M is visited by SRR during this

interval. According to the value of W IR there are two cases.
L2 <w, <2 -1
From Proposition 3, there must exists a ), where ) < I, and

a,,= 0. The chain between two terms of element (K — I ) that

includes element (kK — V) is Skt ,(k— y),SkiH . In this

case, ﬂOW ’ will be visited again after SRR visits the columns

mapped by Sk ,(k—y), S¥ and the column, . Thus,



N 2 N
count = szz1 a,..+t2 szI (P

k=i-1 QW N N
+2 —aml‘_l+Zm—lamy+2m=lam’i
=Y 7Y a0+, a
T dtp= =1 m" %y
I k-1, N N
=?2_.(2 Y, a,)+> a
SEROMIED MRS YUE1 WRIRES Y.
Y n= m=1 ”’ n m=1 ”’ ” m=1"_mYy

<_(C Zno 2 =1 m")+2 1Dy

Thus,
max N (N - 1)Lmax
/‘ C [21 (C Z z::la”“”) + Zr:=] a’”:."] + C
2Lmax max
< W - C (212,10 Z =1 mn_zml wy —(N=1)

r

The (N_I)Lmax

can bring into this interval.

is the maximum deficit the other (N — 1) flows

2w, =2"_1.

In this case, the chain with the maximum length between two

adjacent occurrences of element (kK —17) is S =S4 s,

N
count= 22 zm:I Qi
k=i-1 OV
LPARED WIS S

- : 1 -
QP INCED WML WHEL) T
1 - i
RSO IEEDNICHED WED WIS
1 i-
) ? (C B zn:lo 2 2::1 Dy )

Thus,

+...

m 1+1

2L,

R ) DI

In the above 2 cases,

DL
C

2L
D, = max(Dy) < —m

Wy

0

2L, (N =1)
e

So D r is not only in inverse proportion to the weight of the flow,

but also in direct proportion to the total number of the flows in
SRR. Thus it fails to provide a strictly rate-proportional delay
bound. However, the delay bound is still much better than that of
DRR.
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However, we have D <

N
n
21 z Zmzl am’"

N
- E . a,, = 0 and no flows bring deficit to the next round.
m=1m,

Wf

Thus, on average case, the delay bound is only in inverse
proportion to the weight of the flow.
It should be noted that D ’ is different from the local delay

bound concept used in WFQ and its variants, where the departure
time of a packet is compared with the departure time under GPS

[19]. Df is similar to the concept of WFI of [1,2]. It has been
shown in [1] that D I (or WFI) of WFQ is in proportion to N,

where N is the number of active flows. Thus D ’ (or WFI) of
SRR is similar to that of WFQ .

It also should be noted that SRR fails to provide the inequality

. L
F -F S% as WFQ does'. For example, suppose the

packet length is 1, and C=16, there are 8 flows numbered as
fl,fz,- . 'afs with weight 1. When SRR is serving fl , a new

flow ﬁ) with weight 8 comes. In this case, for the first packet of
N-1 1 1 71 _L 1
—_— > P —

C w16 16

fo nSRR, F'_F=
Cc C w C

4.3 Scalability of SRR
The scalability of SRR is illustrated in the following aspects.

1. Different rate ranges can be accommodated with the WSS of
the same order by adjusting the rate granularity. For example,

when the granularity of rate is 1Kbps, and K max =10 (i.e., the
order of the WSS is 16), the set of rates is
{lkbps,2kbps,3kbps,---,64 Mbps} When the rate

granularity is 1Mbps, the corresponding set of rate is
{1Mbps,2Mbps, 3Mbps,---,64Gbps} . Thus, similar WSS
can be used in both core routers (switches) and edge routers
(switches).

2. SRR can be used in output links with variable bandwidth
capacity. According to its working procedure, SRR can
provide fairness among competing flows even when the
bandwidth of the output link varies from time to time.

3. SRR works well regardless of the number of flows. Since the
time complexity of SRR is strictly O(1) (which will be proven
in the next subsection), SRR works well even with a large
number of flows. This makes SRR an attractive scheduler for
high-speed networks where time complexity is the most
important factor.

! The inequality is Theorem 1.1 of reference [17] (in page 25).



4.4 Complexity of SRR
From the first part of Proposition 1, we know that the WSSs with

order {1,2,3,---,K __ —1} are contained in the Kmaxl‘h WSS.
Thus, only one Kmaxth WSS is needed in SRR. When

K max — 16, the space needed to store the corresponding WSS is

64k bytes (each term of WSS occupies one byte). However, since
the length of the WSS increases exponentially with the order of
the WSS, it becomes impractical to store the whole sequence

statically when K max Decomes very large. This problem can be

overcome by using the last part of Proposition 1. By constructing
a (2k)th WSS from a kth and a (k+1)th WSS, the space needed can

be reduced from 2% to 3% 2% .
We believe that a 32¢th WSS is enough for current and future

packet networks (it can provide up to 4Thps rate with granularity
of 1kbps). Thus, under this condition, the space complexity of

SRR is c+O(NXK, ), K, <32 and c=3%x2"" ¢
is the space needed to store a 16th and a 17th WSS,
O(NxK
links.

) is the space needed to store the Kmax double

max

We have the following theorem for the time complexity of SRR.

Theorem 4: The SRR packet Scheduler needs O(1) time to
choose a packet for transmission, O(k) time to add or delete a
flow, where £ is the order of WSS currently used by SRR.

Proof: SRR uses the schedule action in Figure 2 to choose a
packet for transmission. It takes the scheduler O(1) time to choose

the flow f. Then since Lmax >L o schedule will transmit at least
one packet for flow f. After serving f, the schedule will update
Pdl . If the end of DLml is not reached, one sentence is needed

to update Pdl . If the end of DL o/ 18 met, schedule will update
PL, to get the new column number of M, it may enter the loop

code. However, according to the WSS, columnk_l of M will be
visited at least once in every 2 times. According to Proposition 5,

DLk_1 is not empty. Thus, the loop code can be executed at

P needs O(1)

most 2 times. Thus, the code that updates Pdl and I,
time. Thus, SRR needs O(1) time to choose a packet for

transmission.

Since Add_flow and Del _flow need to update the £ double links
when flows come and leave SRR, their time complexities are O(k)
0

It should be noted that if a flow is always not backlogged, the
Add_flow and Del_flow will be invoked once per packet. Though

in SRR (which uses a fixed number of weights, ZK“““ ) the time
complexities of Add_flow and Del_flow are constant values (at
most O(Kzx)), it does introduce a burden that may be comparable
to the O(logN) incremental step in the time-stamp based schemes.

In [5], we propose to use a timer to delay the deletion of an
inactive flow. However, such a mechanism will make SRR not a
strictly O(1) scheme to forward a packet. We also show in [5] that
it is difficult to choose the time-out value of the timer. It is a
question needs further investigation.

5. SIMULATION

In this paper, we use simulation to compare the end-to-end delay
property of SRR with that of WFQ and DRR. For more simulation
experiments (such as local delay bound, queue delay and fairness)
please refer to [5].

5.1 Simulation Configuration
The tool we used in our simulation experiment is ns [31], to
which we added WFQ, SRR scheduling classes, and revised the

Figure 3. Network topology of the simulation experiment
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DRR? scheduling class.

As shown in Figure 3, the above network topology is designed to
compare the end-to-end delay property of SRR with that of WFQ
and DRR. There are 12 hosts (NO-N3, M0-M3, and N4-N7), and
5 routers (R0-R4). The transmission delay and bandwidth
capacities of the links are shown in the following table.

Table 1 Transmission delay and bandwidth parameters of the

links.

Links Transmission delay | Bandwidth

(ms) (Mbps)
N[0-3] —-RO 0.03 10
RO-R1 0.1 6
RI-R2 3 15.5
R2-R3 3 100
R3-R4 0.1 10
R4-M[0-3] 0.03 10
N[4,6]-R1 0.03 10
N[5,7]-R3 0.03 10

In this simulation, RO, R4 are edge routers, R1-R3 are core
routers. A packet from NO to MO will traverse 6 links.

The following traffic traces are used in this experiment,

1. There are 10 CBR flows numbered from 1 to 10 between NO
and MO. The rates of the 10 flows are 10kbps, 10kbps,
20kbps, 20kbps, 40kbps, 80kbps, 80kbps, 160kbps, 260kbps,
320kbps respectively. The CBR flows simulate the real-time
audio service here.

2. There are 2 fip flows between N1 and M1. The total rates of
the two flows are 2Mbps. These 2 flows are best effort
streams. The best effort streams in this experiment are mapped
to flow 0.
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0.05

0.00 T T T T T T 1
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rate(kbps)

Figure 4a. The average delay of the CBR flows

% In ns2.1.b5, the implementation of DRR does not interpret the
algorithm in a right way. It deletes a flow when it deques its last
packet. However, a flow should be deleted only when the last
bit of the last packet left the transmission interface.

3. There are 2 real-time video streams numbered as flow 11, 12
between N2 and M2. The total rates of the 2 streams are
1.1Mbps. The video streams are gotten from [21], one is a
cartoon movie named simpsons (with average rate 464kbps),
the other is a movie named golden finger (with average rate
608kbps). The videos were compressed using an MPEG-1
compliant encoder. The quantization values were: [=10, P=14,
and B=18 using the pattern /BBPBBPBBPBB, which gives a
group of picture (GOP) size of 12.

4. There are 10 flows numbered from 13 to 22 with Pareto
distribution between N3 and M3. The rate of each flow is
200kbps. These flows simulate services with long-range
dependency.

5. There is a fip stream between N5 and N6, and a felnet stream
between N4 and N7. These flows are best effort services used
to consume the redundant bandwidth of the network.

In this experiment, we measure the end-to-end delays of the ten
CBR flows under different scheduling schemes (i.e., WFQ, SRR,
DRR).

5.2 Simulation Results
The average and maximum end-to-end delays of flows 1 to 10 are
shown in Figure 4a and Figure 4b.
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Figure 4b. The maximum delay of the CBR flows

This experiment shows that the end-to-end delay property of SRR
is similar to that of WFQ. The worst-case and average end-to-end
delays of SRR and WFQ decrease with the increasing of the flow
rate. This experiment also shows that the worst-case end-to-end
delay property of SRR is worse than that of WFQ (which
conforms with Theorem 3 of this paper), and the average delay
property of SRR is a little better than that of WFQ. For example,
as to the flow 6, the worst-case end-to-end delays under WFQ,
SRR, and DRR are 36.16ms, 56.61ms and 168ms, and the average
delays are 30.78ms, 25.93ms, and 70.20ms respectively. Thus, as
to flow 6,



DI DR pPRR =1:1.57: 4.65
D"Fe . D3RR DPRR _1:0.84:2.28

mean mean mean
Therefore, the end-to-end delay of SRR is very similar to that of
WFQ. Both WFQ and SRR perform much better than DRR. If
flow 6 is a real-time IP telephony stream, it will work well under
WFQ and SRR. However, it will not work well under DRR for the
large worst-case end-to-end delay.

The experiment also shows that the maximum and average end-to-
end delays of DRR change little with different flow rates. The
average delay is about 80ms, and the maximum delay is about
170ms for DRR. This experiment shows that the worst-case delay
of DRR makes it not suitable for services with certain delay
bound requirements, such as IP telephony.

Thus, SRR is a qualified scheduler for services that do not have
strict end-to-end delay requirements, such as IP telephony, and
adaptive real-time services.

6. CONCLUSION

We have proposed SRR and examined its properties in this paper.
A Weight Spread Sequence and a Weight Matrix are introduced
as two main data structures of the SRR. With the use of the WSS
and the Weight Matrix, the output of SRR is distributed more
evenly than that of the ordinary round robin schedulers. SRR can
provide strictly O(1) time complexity, short-term fairness, and
certain schedule delay bound at the same time.

SRR is attractive for its low time complexity and simplicity. It
only needs to store a static WSS, to maintain K max double links,

and to assign a deficit counter for each flow. Thus it can be
implemented in high-speed links at low cost, where efficiency and
time complexity are the most important factors. It should be noted
that SRR fails to provide a strict local delay bound. Thus, it is not
suitable for those applications where strict end-to-end delay
bound is needed (i.e., guaranteed services). However, simulations
show that SRR can provide good average and certain worst-case
end-to-end delay bounds, thus it is an appropriate scheduler for
services where strict delay bound is not required (such as IP
telephony and adaptive real-time services).

Though it is still elusive that whether an ideal packet scheduler
with strict rate-proportional delay bound, short-term fairness, and
O(1) time complexity exists, this paper introduces a new idea to
avoid the O(log N) limits of various time-stamp based

schedulers while still maintaining short-term fairness and certain
schedule delay bound.

We have implemented and tested the SRR in the Linux Kernel
2.2.5, the implementation indicates that SRR introduces little cost
to the TCP/IP stack, and the experiment results are consonant
with that of the simulation results. Our experiments also show
that SRR is a suitable scheduling algorithm for the AF PHB of
DiffServ.
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APPENDIX

A. Proof of Proposition 3
Proof: 1, when [ = k — 1, the kth WSS

[27]

(28]
[29]
[30]

[31]

St =8k, 8" =82, (k-1),8" 2, k,S* 7, (k-1),8" .
Thus, the chains between two adjacent occurrences of element

(k-1) are Skiz,k,Skfz or Skiz,Skfz.

2. Suppose the Proposition is correct for two adjacent occurrences
of element i(1<i<k—1), this means the WSS can be
expressed as,
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k _ Qi-l . il i-1 . il
St=8",i,...,i,S" ,x, 8 ,i,...,0i,S

. i1 -2 /- )

since §° =.S5" ,(l—l),S’ s

SE=872(i-1),8"i,....,i,8,(i-1),
S x, 872, (i -1),82,i,...,i,S7,(i-1),S .

Thus, the chain between two adjacent occurrences of element

(i-1)is,
S8 or 72, x,87%.
Thus, the proposition follows by induction.

B. Proof of Theorem 2

Before the proof, we observe that the maximum value of
‘Wf Vg (0,1)— W, Vf (O,t)‘ only relates to flow f and flow g
themselves in SRR. Though other flows may change the time
distribution of V' ,Vg,
of flow f'and flow g. Thus, only the service sequence includes f, g
is used in the proof. It is obvious that the theorem is correct when

Wf=10rwg=1.

they will not affect the service sequence

From Lemma 2, we know that at the end of each round,
‘Wj-Vg (O,T)—Wgi (O,T)‘ =0 . Thus we only need to
prove Theorem 2 in its first round. Under this condition,
Vesw, WV, <w,.

Proof: We prove this theorem by induction.

1. When k =2, W, W, € {1,2,3}. It is easy to prove that for

all the 9 combinations of W roWes

W,V (0,6)=w, 7, (0,0)] < max(w, ,w,).

2. Suppose that the inequality is correct using a kth WSS, that is
for any pair of Weo W,

k
W,V (0.6)=w, 7, (0,0) < ~ max(w,,w,).

For any pair of f',g' using a (k+1)th WSS, Wlf and ng can

be expressed as,
w, = 2wf +af,,0 , w, = 2wg +ag"0 , where

w'f > l,wjg >1,a W€ {0,1} .

ro %
Thus, the service sequence of flow f , & can be expressed as,

S(k+1)(f"g') :Sk(fﬂg)a{af‘,o'faag”o'g}’Sk(fﬂg)~



We name the subsequence before {af,’o .f,ag,’o.g} the left

part of S(kﬂ)(f',g') , and the subsequence after

{af',o'f’ ag,,o.g} the right part of S(k+1) (f,g)

With different values of @ g O’ag' 0 there are 4 cases:
n.a,, =0, Ay = 0:;2). a,,= 1, a, =0;
3.4, =0, a, =1;4). a,,= 1, a,,= 1.

The 4 cases can be proven with similar method. Thus, we only
show the proof of the last case.

V,,

As to this case, when Vf‘ = Vf , Vg‘ =V,

w ¥ —w V| =|@w, + 1V, —@w, + 17|

k+1
—max(w

<fw ¥, —2w |+, -7,|< : s

wg,).
When va =w, +1,ng =W,

‘w Vo —w Vf,‘ = |@w, +Dw, —@w, +1)(w, +1)

k+1

= ‘wg +w, +1‘ <Tmax wf,,wg,).
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When va =w, +1,ng =W, +1,
‘wf,Vg, —wg,Vf,‘:|(2wf +1)0w, +1) = Qw, + 10w, +1)

_|Wg

k+1
—wf|<—maxw..,w ).
! 2 / g
When Vf, =w, +1+Vf,Vg, =W, +1+Vg,

‘w Vo—w Y, \ =[@w, +D0w, +14V,)~Qw, +Dw, +1+7,)
=[ow, ¥, 2wV, +w, =V, —w, +V|
<pw,l 2w V[ +w, =V, —w 4V

k+1
< ‘ZWgi —ZWng‘+max(Wf, w,) ST max . W, ).

So, for all the 4 cases,
k+1
‘w V.—-w.V ,‘S—max(w W)
fg g f 2 f g

Thus, Theorem 2 follows by induction.



